EP0309221A2 - Elastomer-modifizierte Epoxydharze - Google Patents

Elastomer-modifizierte Epoxydharze Download PDF

Info

Publication number
EP0309221A2
EP0309221A2 EP88308756A EP88308756A EP0309221A2 EP 0309221 A2 EP0309221 A2 EP 0309221A2 EP 88308756 A EP88308756 A EP 88308756A EP 88308756 A EP88308756 A EP 88308756A EP 0309221 A2 EP0309221 A2 EP 0309221A2
Authority
EP
European Patent Office
Prior art keywords
acrylamide
resin
modifier
mercapto
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88308756A
Other languages
English (en)
French (fr)
Other versions
EP0309221A3 (de
Inventor
Richard A. Markle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Picher Industries Inc
Original Assignee
Eagle Picher Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Picher Industries Inc filed Critical Eagle Picher Industries Inc
Publication of EP0309221A2 publication Critical patent/EP0309221A2/de
Publication of EP0309221A3 publication Critical patent/EP0309221A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • thermosetting polymers as matrices for reinforced structural composites is seriously limited by their brittleness and suscep­tibility to crack initiation and propagation.
  • an epoxy resin is employed as the matrix for a fiberglass reinforced composite, high concentration of internal cracking occurs during cyclic load testing. Once initiated such cracks readily propagate along the fibers in regions of high fiber density.
  • thermoplastics such as polyesters and polymethylmethacrylate have been enhanced by the addition of low concentrations of elastomeric polymers as small discrete particles suspended throughout the resin matrix.
  • Butadiene nitrile rubbers with carboxyl groups at both ends of the chain, butadiene nitrile rubbers with terminal carboxyl groups as well as intermediate pendent carboxyl groups and butadiene nitrile rubbers which have no carboxyl groups but unsaturated carbon to carbon bonds interspersed along the chain were tested for impact modification of epoxy resins. It was found that only the carboxyl termi­nated polymers and the butadiene nitrile rubbers with intermediate pendent carboxyl groups provided toughening. See McGarry and Willner, "Crack Toughened Epoxy Resin Formulations" papers presented at the ACS 155th meeting, April 1968 at page 512.
  • liquid polymer is disclosed in our U. S. Patent 4,529,558.
  • This patent along with various related patents discloses a liquid heat curable polymer formed from rubber monomers such as isoprene or butadiene, acrylonitrile monomer and a potential acid catalyzed cure site monomer, N-(R-oxymethyl)acrylamide.
  • rubber monomers such as isoprene or butadiene, acrylonitrile monomer and a potential acid catalyzed cure site monomer, N-(R-oxymethyl)acrylamide.
  • This is a random terpolymer. It lacks any reactive carboxyl group as well as uniformly positioned reactive terminal groups. It is disclosed that these polymers can be used for preparation of gaskets when coated on a substrate such as metal, paper, cloth, nylon or the like. It is int­ended to be a solventless liquid heat curable polymer.
  • an impact modified thermoset resin comprises either epoxy resin or epoxy novolak resin and an acrylamide diene nitrile random terpolymer which is dispersible in the resin at about less than 30°C, the acrylamide diene nitrile terpolymer being provided in an amount effective to provide impact modification of the thermosetting resin.
  • an epoxy impact modifier is formed by reacting a prepolymer comprising 3 to 15% N-(R-oxymethyl) acrylamide; 60 to 80% diene monomer; 17 to 23% nitrile monomer selected from the group consisting of methacrylonitrile and acrylonitrile having a number average molecular weight effective to provide a liquid polymer at 20°C with a mercapto modifier said mercapto modifier selected from the group consisting of mercapto C3-C10 alkyl acids and C1-C10 alkyl ester derivatives thereof said composition formed by react­ing said modifier with said polymer at less than about 175°C for time less than about 1 hour to provide a mercapto carboxyl modified prepolymer.
  • liquid rubber formed from N-(R oxymethyl) acrylamide, diene, and nitrile is employed. This has been found to effectively impact modify epoxy and epoxy novolak thermoset resins.
  • the epoxy resins or epoxy novolak resins are impact modified by the addition of liquid acrylamide diene nitrile rubber or prepolymer (hereinafter referred to as "ADN”.
  • ADN liquid acrylamide diene nitrile rubber or prepolymer
  • the ADN is formed by the prepolymerization of a diene (i.e., rubber forming) monomer such as isoprene, chloroprene, butadiene or alkyl esters of acrylic or methacrylic acid, a nitrile monomer such as acrylonitrile or methacrylonitrile and an N-(R-oxymethyl)acrylamide monomer or derivative thereof.
  • a diene i.e., rubber forming
  • the acrylamide monomers have the following general formula: R1 can be C3 to C22 alkyl, ether, aldehyde, ketone, amide, ester, carboxylic acid, imide or a phthalimide.
  • N-(R-oxymethyl)acrylamides wherein R represents C3-C8 alkyl are commercially available.
  • R1 must not be a group which will interfere with the chain transfer agent.
  • R1 groups which are non-interfering can be de­rived from ketones, esters and ethers among others.
  • Interfering R1 groups include those with pendent hydrogens which easily react with a radical such as the tertiary hydrogen in certain alcohols and alkyl amines or thiols.
  • R1 can represent a phthalimide, preferably an N-alkyl phthalimide, so that the formed acrylamide monomer would have the following formula: wherein R3 is as C1 to about C10 alkyl and preferably has at least two carbon atoms and can optionally possess a pendent carboxyl group.
  • R5 should be an alkylene group having from 1 to 8 carbon atoms.
  • N-(isobutoxymethyl)acrylamide When N-(isobutoxymethyl)acrylamide is used as a starting material, approximately equimolar amounts of that compound and a replacement primary alcohol or monohydric thiol are reacted in the pres­ence of an acid catalyst such as toluene sulfonic acid (for example, 0.5 weight percent based on the acryl­amide monomer), at as low a temperature as possible.
  • an acid catalyst such as toluene sulfonic acid (for example, 0.5 weight percent based on the acryl­amide monomer)
  • the isobutyl alcohol formed is vacuum distilled from the reaction mixture until the reaction has gone to completion. In a successful reaction, near theoret­ical amounts of isobutyl alcohol should be obtained. Excess replacement alcohols or thiols may be required to react all of the amide present to prevent formation of bisacrylamide cross-linking monomers.
  • the ADN also contains an elasticizing or rubber monomer.
  • rubber monomers include con­jugated diolefins, such as isoprene, chloroprene and butadiene and certain esters of acrylic and methacrylic acid.
  • any alkyl ester of acrylic acid having two to ten carbons in the alkyl group, and any alkyl ester of methacrylic acid with four to eight carbons in the alkyl group can be used.
  • the ADN may optionally include 2-5% acrylic acid or methacrylic acid.
  • the ADN is prepared by mixing from about 65% to about 71% rubber monomer, about 17-22% acrylo­nitrile or methacrylonitrile, and from about 7% to about 15% acrylamide as previously defined.
  • the polymerization formulation should have various other components which are well known to those of ordinary skill in the polymer art. These would include a chain transfer agent, such as t-octyl mercaptan. Other such chain transfer agents include C6-C22 tertiary mercaptans.
  • the amounts of rubber monomer, acrylonitrile or methacrylonitrile and acrylamide monomer may be varied to obtain the desired compatibility for the resin being modified.
  • Suitable emulsifiers include fatty acid soaps and anionic sodium dodecylsulphate and commer­cially available emulsifiers, such as EMCOL 4910, the sodium salt of an unsymmetrical sulfosuccinate pro­duced by Witco Chemical.
  • Chelators such as disodium ethylene diamine tetraacetic acid are also helpful to remove any interfering metal impurities.
  • Other components to initiate reaction or to increase the speed of the reaction would include a redox activator such as ferric chloride hexahydrate, a reducing agent such as sodium formaldehyde sulfoxylate and a free radical initiator.
  • Suitable free radical initiators would include organic peroxides such as tert-butyl hydro­peroxide, di-tertbutyl peroxide, cumene hydroperoxide, dicumene peroxide, benzoyl peroxide and the like.
  • Organic peroxygen compounds such as tertbutyl peracetate, tertbutyl perbenzoate, di-tertbutyl perphthalate are also suitable.
  • the ADN polymer is formed by combining the rubber monomer, the acrylonitrile or methacrylo­nitrile, and the acrylamide in the desired proportions within the limits set forth above, together with sufficient chain transfer agent, emulsifier, chelator, activator, reducing agent, free radical initiator and de-ionized air-free water (and optionally acrylic or methacrylic acid).
  • the reactants are mixed and allowed to react for 2-24 hours at about 20°C. by which time yields of about 60-85% are obtained.
  • the temperature of the reaction should be maintained at less than 40°C., preferably about 20°C.
  • a sufficient amount of a regulator or chain transfer agent must be added to establish the molecular weight of the pre­polymer low enough to maintain the desired viscosity.
  • Suitable transfer agents or regulators include n-butyl mercaptan, n-dodecyl mercaptan, t-butyl mercaptan, ethyl thioglycolate, as well as t-octyl mercaptan, the preferred chain transfer agent.
  • the weight average molecular weight of the ADN should be established between about 10,000 and 30,000, and preferably, between 15,000 and 25,000.
  • the amount of chain transfer agent required will vary depending on the precise monomer used and molecular weight desired, however, this will generally be less than about 5 weight percent based on the total weight of the monomers.
  • the viscosity of the ADN desirably should be less than about 50,000 cps at a mixing temperature of 60°C., or between 90,000 and 150,000 cps at room temperature.
  • this prepolymer can be further modified by the addition of a reactive mercapto acid modifier, i.e., R4-SH.
  • a reactive mercapto acid modifier i.e., R4-SH.
  • R4-SH a reactive mercapto acid modifier
  • approximately 3-11 PHR of a mercapto (C3-C10) alkylene acid such as mercaptopropionic acid is added to the ADN.
  • the mercapto group should preferentially react with the substituted acrylamide at the alkoxy methylene group under acid catalysis producing pendent carboxylic acid groups on the liquid rubber. This renders the liquid rubber more reactive with the epoxy resins.
  • Suitable mercapto modifiers are esters of the mercaptoalkylene carboxylic acid.
  • One parti­cular ester is the tetra ester of pentaerythritol and four moles of mercapto propionic acid.
  • Both the mercapto group and the acid or ester groups are potentially reactive with the ADN.
  • these mercapto modifiers can act as cross-­linking agents for the ADN.
  • the thiol group is substantially more reactive than the acid or ester group. Therefore, the ADN is modified by the mercapto acid or ester by mixing the modifier with the ADN adding an acid catalyst, and heating the mixture to a temperature effective to cause the thiol group to react with the ADN (probably displacing the R-O-group on N-(R-oxymethyl) acrylamide).
  • the reaction con­ditions are maintained sufficiently mild to enhance the reaction of the thiol group and limit or nearly eliminate the reaction of the carboxyl group.
  • a ratio of about 0.2/1.0 to 1.0/1.0 of mercapto compound to acrylamide is preferred.
  • an appreciable percentage of the acrylamide moieties in the ADN are usually not reacted.
  • the ADN will be formed from the N-alkyl phthalimide in combination with isoprene and acrylonitrile.
  • the preferred formu­lation includes 8-11% N[(2-phthalimidoethoxy)methyl]acrylamide, 65-71% isoprene and 21-23% acrylonitrile with a number average molecular weight of from about 5,000 to about 12,000.
  • the ADN is used to modify epoxy resins and epoxy novolak resins.
  • epoxy resins are the family of thermosetting resins containing the oxirane structure which is a three membered ring containing two carbon atoms and one oxygen atom. Originally, these were made by condensing epichlorohydrin and Bisphenol-A. Epoxy resins are generally formed now from low molecular weight diglycidyl ethers of Bisphenol-A and modifications thereof. Another type is formed by the oxidation of olefins with peracetic acid. Depending on molecular weight the resins range from liquids to solid resins. The present invention is limited to those which are liquid at less than 20°C.
  • Epoxy-novolak resins are two step resins formed by reacting epichlorohydrin with phenol formaldehyde condensates. They are also defined as linear thermoplastic B-stage phenolic resins that are in a partial stage of cure. The epoxy-novolaks may have up to seven or more epoxy groups per molecule.
  • Brand name resins include Epon 828, Epon 830, Epon 34, Dow DER 331, Epi-Rez 510, Epotuf 37-140 and Gen Epoxy 190.
  • the ADN is mixed with the resin and prereacted to form partially prereacted ADN epoxy or epoxy novolak adduct concen­trates which can then be cured with standard curing agents.
  • 5-10 phr of the ADN is mixed with a strong acid catalyst such as para-toluene sulfonic acid or Alkaphos 3 (phosphoric acid partial ester) and heated to about 300°F (150°C) (.5-5 weight percent acid on liquid rubber), while stirring over a 5-15 minute period. Then sufficient resin is added to produce a 20-40 weight percent solution of the ADN in resin. This solution is further heated for 5-15 minutes at 300-400°F (150-205°C). This provides a clear stable ADN resin adduct which for use is mixed with additional resin to form an ADN content of 5-15 weight percent. The resin is then cured using stan­dard curing mechanisms.
  • a strong acid catalyst such as para-toluene sulfonic acid or Alkaphos 3 (phosphoric acid partial ester)
  • 300°F 150°C
  • Alkaphos 3 phosphoric acid partial ester
  • epoxy resins were cured and tested in various ways. Certain physical data are set forth in the tables.
  • Experiments 1, 5 and 9 represent unmodified Epon 828 cured with piperidine at 120°C.
  • Experiments 2, 6, 10 and 11 demonstrate the use of prior art Kellogg, Kelpoxy 293-100 in Epon 828 acting as con­trols.
  • Experiments 3, 4, 7, 8 and 12-16 and 18 represent the use of the novel liquid prepolymer in Epon 828.
  • the chemical composition of the ADN was approximately as follows: isoprene 65%, acrylonitrile 21, HPMA 9%, isobutoxymethylacrylamide 3% and acryl­amide 2%.
  • the isobutoxymethylacrylamide and acryl­amide are by products of the HPMA formation reaction.
  • These ADN's have a number average molecular weight of from 6,000 to 9,000.
  • compositions shown in tables 1 and 2 include 24 parts by weight Bisphenol A in Epon 828. This is reported to produce a bimodal distribution of phase dispersed particles of approximately 0.1-1.0 microns and 2 to 5 micron particles using Hycar 1300X8 liquid rubber products.
  • the compositions in table 3 do not contain Bisphenol A and represent a more direct comparison of the relative efficacy of equal parts by weight of Hycar 1300X8 and the ADN of the present invention.
  • control compositions 2 and 6 are replicates which contain 22 parts by weight Hycar brand liquid rubber based on epoxy resin while the experimental compositions 3, 4, 7 and 8 contain 10 parts by weight. Hence 2 and 6 would be expected to show dart impact strengths that are substantially greater than the values for experi­ments 3, 4, 7 and 8. The two values are in fact different by 30% and are lower than the blanks.
  • the samples listed in Table 1 were tested according to the Gardner test procedure.
  • the specimen size was 2.5 inch by 0.5 inch by 0.125 inches (6.357 cm X 1.27 cm X 0.3175 cm).
  • the specimens were condi­tioned 48 hours at 70°F and 50% relative humidity and tested under these conditions.
  • the epoxy compositions were cured in a 6.5 inch by 6.5 inch Teflon coated pan for 16 hours at 120°C in an air circulating oven to form 6.5 inch by 6.5 inch by 0.125 inch slabs which were cut into test pieces using a band saw. The results are the average from 10 test specimens.
  • Epon 828-80.0 g Bisphenol A-19.2 g, ADN Liquid Rubber 89-8.0 g, piperidine-4.0 g, Alkaril Chemicals Alkaphos 3-0.20 g.
  • Epon 828-80.0 g, Bisphenol A-19.2 g, ADN 28-02 8.0 g, piperidine-4.0 g, Alkaphos 0.20 g.
  • the examples shown in table 3 were prepared by the Gardner test procedure with disc specimens of 1.33 inches diameter by 0.25 inch thickness. These specimens were conditioned for 48 hours at 70°F at 50% humidity and tested under these conditions.
  • the epoxy compositions were cured in a 12 cavity Teflon coated, open mold with 1.33 inch diameter cavities for 16 hours at 120°C or using a staged cycle cure 1 hour at 80°C, 1 hour at 100°C, 16 hours at 120°C. Unless otherwise indicated, the 16 hour at 120°C cycle was used. The results again are the average of 10 to 12 test specimens.
  • the ADN was modified with the thiol acid or ester listed and then added to the epoxy resin.
  • the ADN was combined with a strong acid catalyst generally paratoluene sulfonic acid dissolved in alcohol.
  • Cycat 4040 is 40% paratoluene sulfonic acid is isopropyl alcohol. This is mixed with the ADN at about 250-300°F for about 1-2 minutes. The alcohol is allowed to evaporate off and the acid catalyst ADN mixture is cooled to about room temperature.
  • the thiol ester or acid is then added to this mixture and this mixture is heated to about 325°F for about 8 minutes and cooled.
  • the modified ADN is then added to the epoxy resin as indicated.
  • the ADN generally provides comparable results to the Hycar liquid rubber when simply added with the epoxy resin and cured with an acid catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP88308756A 1987-09-21 1988-09-21 Elastomer-modifizierte Epoxydharze Withdrawn EP0309221A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99253 1979-12-03
US07/099,253 US4812521A (en) 1987-09-21 1987-09-21 Epoxy resins modified with N-R-[(oxy or thio)methyl]acrylamide terpolymers

Publications (2)

Publication Number Publication Date
EP0309221A2 true EP0309221A2 (de) 1989-03-29
EP0309221A3 EP0309221A3 (de) 1990-04-18

Family

ID=22273925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88308756A Withdrawn EP0309221A3 (de) 1987-09-21 1988-09-21 Elastomer-modifizierte Epoxydharze

Country Status (5)

Country Link
US (1) US4812521A (de)
EP (1) EP0309221A3 (de)
JP (1) JPH01108251A (de)
AU (1) AU601930B2 (de)
CA (1) CA1337092C (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570611A1 (de) * 1992-05-20 1993-11-24 Friedrich Maurer Söhne GmbH & Co. KG Überbrückungskonstruktion für Dehnungsfugen
WO2010108723A1 (de) 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus bei niedriger temperatur hergestellte formkörper
WO2010108701A1 (de) 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus hergestellte formkörper
DE102010029355A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
WO2012093006A1 (de) 2011-01-04 2012-07-12 Evonik Degussa Gmbh Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth) acrylaten, die mittels uretdionen duroplastisch vernetzt werden
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
DE102011087226A1 (de) 2011-11-28 2013-05-29 Evonik Degussa Gmbh Pseudo-thermoplastische, selbstvernetzende Composites
DE102013204124A1 (de) 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
WO2015074887A1 (de) 2013-11-19 2015-05-28 Evonik Industries Ag Formteile auf basis von dien-funktionalisierten (meth)acrylaten und (hetero-)diels-alder-dienophilen, mit reversibler vernetzung
DE102014207785A1 (de) 2014-04-25 2015-10-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Epoxy-Prepregs und daraus hergestellte Composites auf Basis von radikalisch polymerisierbaren Säuren und Epoxiden
EP2979851A1 (de) 2014-07-28 2016-02-03 Evonik Degussa GmbH Effiziente Herstellung von Composite-Halbzeugen und -Bauteilen im Nasspressverfahren unter Einsatz von hydroxyfunktionalisierten (Meth) Acrylaten, die mittels Isocyanaten oder Uretdionen duroplastisch vernetzt werden
EP2982704A1 (de) 2014-08-06 2016-02-10 Evonik Degussa GmbH Reversibel vernetzte Polymeremulsionen
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
EP3199575A1 (de) 2016-01-29 2017-08-02 Evonik Degussa GmbH Neuartiger hetero-diels-alder-vernetzer und deren verwendung in reversibel vernetzenden polymersystemen
EP3296347A1 (de) 2016-09-20 2018-03-21 Evonik Degussa GmbH Neuartiger dien-baustein für die verwendung in reversibel vernetzenden (hetero-)diels-alder-polymersystemen
WO2018054684A1 (de) 2016-09-20 2018-03-29 Evonik Degussa Gmbh Neuartiger vernetzer-baustein für die verwendung in reversibel vernetzenden polymersystemen
EP3330311A1 (de) 2016-12-02 2018-06-06 Evonik Degussa GmbH Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung
EP3560971A1 (de) 2018-04-27 2019-10-30 Evonik Degussa GmbH Zweikomponentige hybrid-matrix-system aus polyurethanen und polymethacrylaten zur herstellung von kurzfaserverstärkten halbzeugen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315866B2 (ja) * 2004-06-29 2009-08-19 横浜ゴム株式会社 硬化性エポキシ樹脂組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529558A (en) * 1983-01-21 1985-07-16 Eagle-Picher Industries, Inc. Heat curable solventless liquid prepolymer
EP0285898A2 (de) * 1987-04-04 1988-10-12 Bayer Ag Zubereitungen und Verfahren zum Zurichten von Leder und zur Textilbeschichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3551471A (en) * 1968-05-22 1970-12-29 Goodrich Co B F Liquid hydroxy terminated polymers of butadiene-acrylonitrile
US4232135A (en) * 1978-01-10 1980-11-04 Imperial Chemical Industries Limited Coating compositions
EP0038127B1 (de) * 1980-04-14 1984-10-17 Imperial Chemical Industries Plc Mehrschichtiges Überzugsverfahren unter Verwendung eines wässerigen thixotropen Grundschichtgemisches, das vernetzte Polymerpartikeln aufweist
US4562008A (en) * 1983-01-21 1985-12-31 Eagle-Picher Industries, Inc. Heat curable solventless liquid prepolymer and novel monomer derived from hexylcarbitol for use therewith
US4515849A (en) * 1983-06-01 1985-05-07 Matsui Shikiso Chemical Co. Ltd. Transfer printing sheet, printing method and printed article
US4681811A (en) * 1985-08-19 1987-07-21 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents in the clear coat
US4650718A (en) * 1985-08-19 1987-03-17 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529558A (en) * 1983-01-21 1985-07-16 Eagle-Picher Industries, Inc. Heat curable solventless liquid prepolymer
EP0285898A2 (de) * 1987-04-04 1988-10-12 Bayer Ag Zubereitungen und Verfahren zum Zurichten von Leder und zur Textilbeschichtung

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0570611A1 (de) * 1992-05-20 1993-11-24 Friedrich Maurer Söhne GmbH & Co. KG Überbrückungskonstruktion für Dehnungsfugen
WO2010108723A1 (de) 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus bei niedriger temperatur hergestellte formkörper
DE102009001806A1 (de) 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus bei niedriger Temperatur hergestellte Formkörper
WO2010108701A1 (de) 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus hergestellte formkörper
DE102009001793A1 (de) 2009-03-24 2010-10-07 Evonik Degussa Gmbh Prepregs und daraus hergestellte Formkörper
DE102010029355A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
WO2011147688A1 (de) 2010-05-27 2011-12-01 Evonik Degussa Gmbh Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
WO2012038105A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung in lösung
WO2012093006A1 (de) 2011-01-04 2012-07-12 Evonik Degussa Gmbh Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth) acrylaten, die mittels uretdionen duroplastisch vernetzt werden
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
WO2012130672A1 (de) 2011-03-25 2012-10-04 Evonik Degussa Gmbh Lagerstabile polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung mit flüssigen harzkomponenten
DE102011087226A1 (de) 2011-11-28 2013-05-29 Evonik Degussa Gmbh Pseudo-thermoplastische, selbstvernetzende Composites
WO2013079286A1 (de) 2011-11-28 2013-06-06 Evonik Degussa Gmbh Pseudo-thermoplastische, selbstvernetzende composites
DE102013204124A1 (de) 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
WO2014139796A1 (de) 2013-03-11 2014-09-18 Evonik Industries Ag Composite-halbzeuge und daraus hergestellte formteile sowie direkt hergestellte formteile auf basis von hydroxyfunktionalisierten (meth)acrylaten und uretdionen die mittels strahlung duroplastisch vernetzt werden
WO2015074887A1 (de) 2013-11-19 2015-05-28 Evonik Industries Ag Formteile auf basis von dien-funktionalisierten (meth)acrylaten und (hetero-)diels-alder-dienophilen, mit reversibler vernetzung
US9550313B2 (en) 2014-04-25 2017-01-24 Evonik Degussa Gmbh Process for the production of storage-stable epoxy prepregs, and composites produced therefrom, based on epoxides and acids amenable to free-radical polymerisation
DE102014207785A1 (de) 2014-04-25 2015-10-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Epoxy-Prepregs und daraus hergestellte Composites auf Basis von radikalisch polymerisierbaren Säuren und Epoxiden
EP2940069A1 (de) 2014-04-25 2015-11-04 Evonik Degussa GmbH Verfahren zur herstellung von lagerstabilen epoxy-prepregs und daraus hergestellte composites auf basis von radikalisch polymerisierbaren säuren und epoxiden
EP2979851A1 (de) 2014-07-28 2016-02-03 Evonik Degussa GmbH Effiziente Herstellung von Composite-Halbzeugen und -Bauteilen im Nasspressverfahren unter Einsatz von hydroxyfunktionalisierten (Meth) Acrylaten, die mittels Isocyanaten oder Uretdionen duroplastisch vernetzt werden
WO2016016069A1 (de) 2014-07-28 2016-02-04 Evonik Degussa Gmbh Effiziente herstellung von composite-halbzeugen und -bauteilen im nasspressverfahren unter einsatz von hydroxyfunktionalisierten (meth) acrylaten, die mittels isocyanaten oder uretdionen duroplastisch vernetzt werden
EP2982704A1 (de) 2014-08-06 2016-02-10 Evonik Degussa GmbH Reversibel vernetzte Polymeremulsionen
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
EP3199575A1 (de) 2016-01-29 2017-08-02 Evonik Degussa GmbH Neuartiger hetero-diels-alder-vernetzer und deren verwendung in reversibel vernetzenden polymersystemen
WO2017129483A1 (de) 2016-01-29 2017-08-03 Evonik Degussa Gmbh Neuartiger hetero-diels-alder-vernetzer und deren verwendung in reversibel vernetzenden polymersystemen
EP3296347A1 (de) 2016-09-20 2018-03-21 Evonik Degussa GmbH Neuartiger dien-baustein für die verwendung in reversibel vernetzenden (hetero-)diels-alder-polymersystemen
WO2018054684A1 (de) 2016-09-20 2018-03-29 Evonik Degussa Gmbh Neuartiger vernetzer-baustein für die verwendung in reversibel vernetzenden polymersystemen
EP3330311A1 (de) 2016-12-02 2018-06-06 Evonik Degussa GmbH Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung
US10626236B2 (en) 2016-12-02 2020-04-21 Evonik Operations Gmbh Storage-stable one-component polyurethane prepregs and shaped bodies composed of polyurethane composition that have been produced therefrom
EP3560971A1 (de) 2018-04-27 2019-10-30 Evonik Degussa GmbH Zweikomponentige hybrid-matrix-system aus polyurethanen und polymethacrylaten zur herstellung von kurzfaserverstärkten halbzeugen

Also Published As

Publication number Publication date
US4812521A (en) 1989-03-14
EP0309221A3 (de) 1990-04-18
CA1337092C (en) 1995-09-19
AU601930B2 (en) 1990-09-20
JPH01108251A (ja) 1989-04-25
AU2241288A (en) 1989-03-23

Similar Documents

Publication Publication Date Title
US4812521A (en) Epoxy resins modified with N-R-[(oxy or thio)methyl]acrylamide terpolymers
US3947522A (en) Epoxy resin compositions
US3974129A (en) Polybutadiene resin
EP0152425B1 (de) Stabile dispersionen organischer polymere in polyepoxyden
US4708996A (en) Stable dispersions of polymers in polyepoxides
DE2453874A1 (de) Klebstoffzusammensetzungen
US4939271A (en) Mercapto-modified N-(R-oxymethyl) acrylamide/rubber-formable monomer/(meth)acrylonitrile terpolymers
US4565853A (en) Compositions for forming epoxy adhesive containing acrylate rubber
US4789712A (en) Stable dispersions of polymers in polyepoxides
US4350789A (en) Polyester resins toughened with vinyl terminated liquid polymers
DE2727417A1 (de) Verfahren zur herstellung von bindemitteln
DE69308309T2 (de) Härtbare epoxy-vinylesterharz-zusammensetzung mit einem niedrigen exothermen höchstwert während des härtens
CA2055871A1 (en) High impact resistance adhesive compositions
US3679707A (en) Curing agent for epoxy resins
DE2411064A1 (de) Mit butadienpolymeren modifizierte epoxyharze
KR920002772B1 (ko) 아미드 개질된 에폭시 수지
DE3828096A1 (de) Alkenylphenol modifizierte polyimide
EP0072114B1 (de) Härtbare ungesättigte Polyesterzusammensetzungen
US6143233A (en) Polymers containing 2,3-dihydrofuran groups
EP0112391A1 (de) Stabile wässrige dispersionen härtbarer harzzusammensetzungen und aus diesen hergestellte klebe- und beschichtungszusammensetzungen
GB1410111A (en) Epoxy resin compositions containing n-alkyl substituted ethylenediamine curing agents
JPS61161248A (ja) アクリルアミド系オリゴマ−およびその製法
JP3370141B2 (ja) エポキシ樹脂組成物およびその製造方法
US3790633A (en) Novel low-viscosity epoxy curing agents
JPS61197623A (ja) 一液性エポキシ樹脂組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19901009

17Q First examination report despatched

Effective date: 19921006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950302