WO2023038011A1 - 硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法 - Google Patents

硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法 Download PDF

Info

Publication number
WO2023038011A1
WO2023038011A1 PCT/JP2022/033296 JP2022033296W WO2023038011A1 WO 2023038011 A1 WO2023038011 A1 WO 2023038011A1 JP 2022033296 W JP2022033296 W JP 2022033296W WO 2023038011 A1 WO2023038011 A1 WO 2023038011A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
resin molding
powder
urethane resin
reinforcing long
Prior art date
Application number
PCT/JP2022/033296
Other languages
English (en)
French (fr)
Inventor
佑樹 穴井
聡 西島
琢真 山本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to AU2022341726A priority Critical patent/AU2022341726A1/en
Publication of WO2023038011A1 publication Critical patent/WO2023038011A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/44Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from other materials only if the material is essential

Definitions

  • the present invention relates to a curable resin material containing a polyol compound and an isocyanate compound.
  • the present invention also relates to a method for producing a resin molded article using the curable resin material.
  • resin moldings are sometimes used instead of wood.
  • resin-molded sleepers are sometimes used in place of wooden sleepers and concrete sleepers.
  • Patent Document 1 discloses a foamed resin molded article containing a large number of long fibers aligned in one direction and a filler.
  • the content of the filler is 15% by weight or less
  • the expansion ratio of the foamed resin is 2.0 to 4.0 times
  • the average particle size of the filler is the average cell size of the foamed resin. 20% or less of the diameter.
  • Patent Document 2 describes a mixing step of obtaining a first composition by mixing a polyol compound, an isocyanate compound and a filler, and impregnating the first composition between reinforcing long fibers to obtain a curable composition.
  • a method for producing a resin molding is disclosed, which includes an impregnation step of obtaining a resin composition and a curing step of curing the curable resin composition in a mold.
  • the specific gravity of the filler is less than 4, and the average circularity of the filler is 0.65 or more.
  • a resin molding may be produced by impregnating a reinforcing long fiber bundle aligned in one direction with a composition containing a filler. By using fillers and reinforcing long fiber bundles in the resin material, the mechanical strength of the resulting resin molding can be enhanced.
  • the viscosity of the composition containing the filler may become excessively high.
  • the formulation of conventional compositions may result in excessively high viscosities of compositions containing fillers.
  • the viscosity of the composition containing the filler is excessively high, there is a problem that the composition cannot be satisfactorily impregnated into the portion between the reinforcing long fibers. If the portion between the reinforcing long fibers cannot be sufficiently impregnated with the composition, the specific gravity of the resulting resin molding may vary, and physical properties such as mechanical strength of the resulting resin molding may deteriorate. be.
  • the viscosity of the composition containing the filler is excessively high, the composition becomes difficult to mix by stirring, so that the polyol compound and the isocyanate compound cannot be well reacted, and the unreacted polyol compound is may remain. In this case, there is a problem that the flame resistance of the resulting resin molding is lowered.
  • a curable resin material containing a polyol compound, an isocyanate compound, a powder of a urethane resin molding containing a urethane resin and glass fibers, and reinforcing long fibers has an isocyanate index of 110 to 120.
  • a curable resin material is provided which is:
  • the content of the powder of the urethane resin molding is 10 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the polyol compound.
  • the fiber length of the glass fibers contained in the powder of the urethane resin molding is 1000 ⁇ m or less.
  • a resin molded body which is a molded body of the curable resin material described above.
  • the resin molded article is a foamed resin molded article.
  • the step of obtaining a first composition containing a polyol compound, an isocyanate compound, and a powder of a urethane resin molding An impregnation step of impregnating aligned reinforcing long fiber bundles to obtain a second composition, and a curing step of curing the second composition in a mold, wherein the isocyanate of the second composition is provided.
  • a method for producing a resin molding having an index of 110 or more and 120 or less is provided.
  • powder of the urethane resin molded article in the first composition is added to 100 parts by weight of the polyol compound in the first composition. is 10 parts by weight or more and 30 parts by weight or less.
  • the curing step is a foaming curing step of foaming and curing the second composition in the mold.
  • the method for producing a resin molded article includes: between the step of obtaining the first composition and the impregnation step, adding the first composition to the reinforcing long fiber bundle in which the reinforcing long fibers are aligned in one direction.
  • the first composition in the spraying step, is sprayed onto the reinforcing long fiber bundles while advancing the reinforcing long fiber bundles in one direction.
  • the method for producing a resin molded article includes a step of obtaining powder of the urethane resin molded article from a urethane resin molded article containing a urethane resin and glass fibers. Prepare.
  • the urethane resin molded body used to obtain the powder of the urethane resin molded body is a recycled product.
  • the curable resin material according to the present invention contains a polyol compound, an isocyanate compound, a powder of a urethane resin molding containing a urethane resin and glass fibers, and reinforcing long fibers.
  • the isocyanate index of the curable material according to the present invention is 110 or more and 120 or less. Since the curable resin material according to the present invention has the above configuration, it is possible to suppress variations in the specific gravity of the resulting resin molding.
  • the method for producing a resin molded product according to the present invention comprises the steps of: obtaining a first composition containing a polyol compound, an isocyanate compound, and a powder of a urethane resin molded product; An impregnation step of obtaining a second composition by impregnating reinforcing long fiber bundles aligned in one direction, and a curing step of curing the second composition in a mold.
  • the second composition has an isocyanate index of 110 or more and 120 or less. Since the method for producing a resin molded article according to the present invention has the above configuration, it is possible to suppress variations in the specific gravity of the obtained resin molded article.
  • FIG. 1 is a diagram for explaining a method for manufacturing a resin molding according to one embodiment of the present invention.
  • the curable resin material (hereinafter sometimes abbreviated as "resin material") according to the present invention is a urethane resin molded product containing a polyol compound (A), an isocyanate compound (B), a urethane resin, and glass fibers. It contains powder (C) and reinforcing long fibers (D).
  • the isocyanate index of the resin material according to the present invention is 110 or more and 120 or less.
  • the resin material according to the present invention has the above configuration, the polyol compound (A), the isocyanate compound (B), and the powder (C) of the urethane resin molding containing the urethane resin and the glass fiber are mixed.
  • the viscosity of the composition containing (the composition containing components other than the reinforcing long fibers (D)) can be easily adjusted.
  • the portion between the reinforcing long fibers (D) can be satisfactorily impregnated with the composition, and variations in the specific gravity of the resulting resin molding can be suppressed.
  • the resin material according to the present invention has the above configuration, the reaction efficiency between the polyol compound (A) and the isocyanate compound (B) can be increased, and the unreacted polyol compound (A) can be can be reduced. As a result, flame resistance can be improved in the obtained resin molding.
  • the isocyanate compound (B) is contained in an appropriately adjusted amount, so that the curing reaction can proceed well and the amount of residual unreacted polyol compound (A) can be reduced. be able to.
  • the isocyanate index is preferably 111 or more, more preferably 112 or more, still more preferably 113 or more, preferably 119 or less, more preferably 118 or less, and still more preferably 117 or less.
  • the isocyanate index is equal to or more than the lower limit and equal to or less than the upper limit, the flame retardancy of the obtained resin molded article can be further enhanced, and variations in the specific gravity of the resin molded article can be further suppressed. .
  • the isocyanate index means a value obtained by dividing the total number of isocyanate groups possessed by the isocyanate compound (B) in the resin material by the total number of active hydrogen groups in the resin material and multiplying the value by 100. do. That is, the isocyanate index is a value calculated by the following formula (1).
  • the active hydrogen group in the resin material includes, for example, the hydroxyl group of the polyol compound (A) and water as the foaming agent.
  • Isocyanate index (X/Y) x 100 (1) X: total number of isocyanate groups possessed by the isocyanate compound (B) in the resin material Y: total number of active hydrogen groups in the resin material
  • the resin material contains a polyol compound (A).
  • a polyol compound is a compound having two or more hydroxyl groups (--OH groups).
  • the number of hydroxyl groups in the polyol compound (A) may be two, two or more, three, three or more, or four. may be four or more.
  • the number of hydroxyl groups in the polyol compound (A) may be 6 or less, 5 or less, or 4 or less.
  • polyol compound (A) examples include polylactone polyols, polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polyester polyols, and polyether polyols.
  • the polyol compound may be a polymer polyol. Only one kind of the polyol compound (A) may be used, or two or more kinds thereof may be used in combination.
  • polylactone polyols examples include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
  • Examples of the above-mentioned polycarbonate polyol include a dealcoholization reaction product of a hydroxyl group-containing compound and a carbonate compound.
  • Examples of the hydroxyl group-containing compound include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol.
  • Examples of the carbonate compound include diethylene carbonate and dipropylene carbonate.
  • aromatic polyols examples include bisphenol A, bisphenol F, phenol novolac, and cresol novolac.
  • alicyclic polyols examples include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol.
  • aliphatic polyols examples include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
  • polyester polyols examples include dehydration condensates of polybasic acids and polyhydric alcohols, ring-opening polymers of lactones, and condensates of hydroxycarboxylic acids and polyhydric alcohols.
  • the polybasic acid examples include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid.
  • the polyhydric alcohol examples include bisphenol A, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, diethylene glycol, 1,6-hexane glycol, neopentyl glycol and the like.
  • lactone examples include ⁇ -caprolactone and ⁇ -methyl- ⁇ -caprolactone.
  • the hydroxycarboxylic acid examples include castor oil and reaction products of castor oil and ethylene glycol.
  • polyether polyol examples include ring-opening polymers of an active hydrogen compound having two or more active hydrogen atoms and an alkylene oxide.
  • alkylene oxide examples include ethylene oxide, propylene oxide and tetrahydrofuran. It is preferable that the active hydrogen compound has a small molecular weight.
  • the active hydrogen compound include diol compounds such as bisphenol A, ethylene glycol, propylene glycol, butylene glycol, and 1,6-hexanediol; triol compounds such as glycerin and trimethylolpropane; amines such as ethylenediamine and butylenediamine. compounds and the like.
  • polymer polyol examples include a graft polymer obtained by graft-polymerizing an unsaturated organic compound to a polyol compound, polybutadiene polyol, modified polyol of polyhydric alcohol, and hydrogenated products thereof.
  • polyol compound in the graft polymer examples include aromatic polyols, alicyclic polyols, aliphatic polyols, polyester polyols, and polyether polyols.
  • unsaturated organic compound in the graft polymer examples include acrylonitrile, styrene, and methyl (meth)acrylate.
  • Examples of the modified polyols of polyhydric alcohols include reaction-modified products of polyhydric alcohols and alkylene oxides.
  • Examples of polyhydric alcohols include trihydric alcohols such as glycerin and trimethylolpropane; tetrahydric to octahydric alcohol; phenol, phloroglucin, cresol, pyrogallol, catechol, hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1-hydroxynaphthalene, 1,3,6,8-tetrahydroxynaphthalene, anthrol , 1,4,5,8-tetrahydroxyanthracene, and phenolic compounds such as 1-hydroxypyrene; polybutadiene polyol; castor oil polyol; (co)polymer of hydroxyalkyl (meth)acrylate; functional groups of 2 or more and 100 or less) polyols; condensates of phenol and formaldehyde (novolacs);
  • the alkylene oxide examples include ethylene oxide, 1,2-propylene oxide, 1,3-propylene oxide, 1,2-butylene oxide, and 1,4-butylene oxide.
  • the alkylene oxide is preferably 1,2-propylene oxide, ethylene oxide or 1,2-butylene oxide, and is 1,2-propylene oxide or ethylene oxide. is more preferable. Only one kind of the alkylene oxide may be used, or two or more kinds thereof may be used in combination.
  • the form of addition when two or more of the above alkylene oxides are used may be block addition, random addition, or both block addition and random addition.
  • the polyol compound (A) is preferably a polyol compound having a hydroxyl value of 490 mgKOH/g or more and 580 mgKOH/g or less, more preferably a polyol compound having a hydroxyl value of 490 mgKOH/g or more and 530 mgKOH/g or less. , polyester polyol or polyether polyol. In this case, the dispersibility of the urethane resin molding powder (C) in the resin material can be further enhanced.
  • the resin material contains an isocyanate compound.
  • An isocyanate compound is a compound having an isocyanate group (--NCO group).
  • the number of isocyanate groups in the isocyanate compound (B) may be 1, 2, 2 or more, 3, or 3 or more. There may be one, four, or four or more. The number of isocyanate groups in the isocyanate compound (B) may be 6 or less, 5 or less, or 4 or less.
  • the number of isocyanate groups in the isocyanate compound (B) is preferably 2 or more. That is, the isocyanate compound (B) is preferably a polyisocyanate compound (an isocyanate compound having two or more isocyanate groups).
  • Examples of the isocyanate compound (B) include aromatic polyisocyanates, alicyclic polyisocyanates, and aliphatic polyisocyanates. Only one kind of the isocyanate compound (B) may be used, or two or more kinds thereof may be used in combination.
  • aromatic polyisocyanate examples include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate.
  • alicyclic polyisocyanate examples include cyclohexyl diisocyanate, methylcyclohexyl diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and dimethyldicyclohexylmethane diisocyanate.
  • aliphatic polyisocyanate examples include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, and hexamethylene diisocyanate.
  • the isocyanate compound (B) is preferably diphenylmethane diisocyanate or modified diphenylmethane diisocyanate, more preferably diphenylmethane diisocyanate, because it is easily available and convenient.
  • the polyol compound (A) and the isocyanate compound (B) can be used in appropriate amounts so as to efficiently form urethane bonds.
  • the content of the isocyanate compound (B) is preferably 100 parts by weight or more, more preferably 120 parts by weight or more, still more preferably 130 parts by weight or more, preferably 180 parts by weight with respect to 100 parts by weight of the polyol compound (A). It is not more than 160 parts by weight, more preferably not more than 150 parts by weight.
  • the reaction efficiency between the polyol compound (A) and the isocyanate compound (B) can be increased, and the unreacted polyol compound (A) or unreacted isocyanate compound (B) can be further reduced. As a result, it is possible to form a resin molding having a good flexural modulus.
  • the resin material includes a powder (C) of a urethane resin molding containing urethane resin and glass fibers.
  • a urethane resin molding powder (C) can be obtained from a urethane resin molding containing a urethane resin and glass fibers.
  • the powder (C) of the urethane resin molded body functions as a filler.
  • the powder (C) of the urethane resin molding only one type may be used, or two or more types may be used in combination.
  • the powder (C) of the urethane resin molding for example, waste pieces (waste) generated when processing a urethane resin composition containing a urethane resin and glass fiber or a urethane resin molding into a predetermined shape are used. be able to. Waste pieces (conventionally, waste) generated when a urethane resin composition or a urethane resin molded article is processed into a predetermined shape are also called a urethane resin molded article. Further, the powder (C) of the urethane resin molded body may be a molded body molded into an unintended shape. In this case, the environmental load can be reduced and the cost can be lowered. In addition, the powder (C) of the urethane resin molded article may be a powder of a foamed resin molded article.
  • the powder (C) of the urethane resin molded body is cut powder of the urethane resin molded body.
  • the above chips include, for example, powder (cutting waste) generated when cutting the urethane resin molded body, powder (grinding dust) generated when the surface of the urethane resin molded body is sanded, and urethane resin molded body It is powder (cutting waste) etc. generated when a part is scraped off. It is preferable that the powder (C) of the urethane resin molded body is cut waste, grinding dust, or cutting waste of the urethane resin molded body.
  • the powder (C) of the urethane resin molded body is a recycled product of the urethane resin molded body.
  • the urethane resin molded article used to obtain the powder (C) of the urethane resin molded article is a recycled product.
  • the powder (C) of the urethane resin molded article should be replaced with the powder of the resin molded article (the resin of the present invention) produced in another lot.
  • the urethane resin molded body for obtaining the powder (C) of the urethane resin molded body is a resin molded body manufactured in a different lot (another lot product of the resin molded body manufactured from the resin material of the present invention).
  • the environmental load can be further reduced, and the cost can be further reduced.
  • the shape of the powder (C) of the urethane resin molding may be spherical or non-spherical, and may be polygonal, plate-like, scale-like, or the like.
  • the particle diameter D90 of the powder (C) (filler) of the urethane resin molding is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, still more preferably 150 ⁇ m or more, particularly preferably 200 ⁇ m or more, preferably 1000 ⁇ m or less, and more preferably 1000 ⁇ m or less. It is preferably 900 ⁇ m or less, more preferably 700 ⁇ m or less, still more preferably 500 ⁇ m or less, particularly preferably 450 ⁇ m or less, and most preferably 430 ⁇ m or less.
  • the particle size D90 of the powder (C) of the urethane resin molding is at least the lower limit and no more than the upper limit, the effects of the present invention can be exhibited more effectively.
  • the particle size D90 of the powder (C) of the urethane resin molding can be adjusted by performing a classification process or the like.
  • the particle size D50 of the powder (C) of the urethane resin molding is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 150 ⁇ m or less, and more preferably 130 ⁇ m or less.
  • the particle size D50 of the powder (C) of the urethane resin molding is above the lower limit and below the upper limit, the effects of the present invention can be exhibited more effectively.
  • the particle size D90 and the particle size D50 of the powder (C) of the urethane resin molded product are, respectively, from the smaller particle size side in the volume-based cumulative fraction of particle size distribution measurement by a laser diffraction particle size distribution measuring device. It means the value of the diameter corresponding to 90% of the total, and the value of the diameter corresponding to 50% of the total from the smaller particle diameter side.
  • the shape of the powder (C) of the urethane resin molded product having the above particle size D 90 and particle size D 50 may or may not be spherical, and may be polygonal, plate-like, scale-like, or the like. may be in the shape of
  • the fiber length of the glass fiber contained in the powder (C) of the urethane resin molding is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, and even more preferably 700 ⁇ m or less.
  • the fiber length of the glass fiber contained in the powder (C) of the urethane resin molding may be 10 ⁇ m or longer, or 100 ⁇ m or longer.
  • the fiber length of the glass fiber can be adjusted by performing a classification process or the like.
  • the fiber length of the glass fiber can be measured by photographing the filler contained in the powder (C) of the urethane resin molding with a microscope and using commercially available image analysis software for the microscope photograph.
  • the fiber length of the glass fiber is the average value of the fiber lengths of 100 or more arbitrarily selected glass fibers.
  • a new region is photographed with a microscope until the number of glass fibers reaches 100 or more.
  • the content of the powder (C) of the urethane resin molding is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and still more preferably 12 parts by weight or more with respect to 100 parts by weight of the polyol compound (A). , particularly preferably 15 parts by weight or more.
  • the content of the powder (C) of the urethane resin molding is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 25 parts by weight or less with respect to 100 parts by weight of the polyol compound (A). , particularly preferably 23 parts by weight or less, most preferably 20 parts by weight or less.
  • the content of the powder (C) in the urethane resin molded article is at least the above lower limit, the mechanical strength of the obtained resin molded article can be further increased.
  • the content of the powder (C) in the urethane resin molding is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with a composition containing components other than the reinforcing long fibers, and the obtained resin molding. Variation in the specific gravity of the body can be reduced, and the bending elastic modulus can be increased.
  • the content of the urethane resin molding powder (C) is preferably 2 parts by weight or more, more preferably 4 parts by weight, with respect to a total of 100 parts by weight of the polyol compound (A) and the isocyanate compound (B). parts or more, preferably 20 parts by weight or less, more preferably 15 parts by weight or less.
  • the content of the powder (C) in the urethane resin molded article is at least the above lower limit, the mechanical strength of the obtained resin molded article can be further enhanced.
  • the content of the powder (C) in the urethane resin molding is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with a composition containing components other than the reinforcing long fibers, and the obtained resin molding. Variation in the specific gravity of the body can be reduced, and the bending elastic modulus can be increased.
  • the resin material contains reinforcing long fibers (D).
  • Reinforcing long fibers are reinforcing fibers and long fibers. Reinforcing fibers are fibrous materials with a certain strength.
  • As reinforcing fibers for example, carbon fibers, glass fibers, aramid fibers, etc. are known.
  • the fiber length of the long fibers is, for example, an average fiber length of 50 mm or more.
  • the reinforcing long fibers may be a reinforcing long fiber sheet.
  • the reinforcing long fibers (D) may be monofilaments or fibrillated fibers (substances with whiskers protruding fibers).
  • Examples of the reinforcing long fibers (D) include carbon long fibers, glass long fibers, aramid long fibers, polyester fibers, polyamide fibers, and long reinforcing fibers.
  • the reinforcing long fibers only one type may be used, or two or more types may be used in combination.
  • the reinforcing long fibers (D) are preferably glass long fibers.
  • the long glass fiber is a fibrous material obtained by melting glass and pulling it into a fibrous form.
  • the fiber length of the reinforcing long fibers (D) is preferably 50 mm or longer, more preferably 70 mm or longer.
  • the reinforcing long fibers can be cut into a desired size after pultrusion molding, and the fiber length of the reinforcing long fibers can be appropriately changed according to the length to be cut.
  • the upper limit is not particularly limited. From the viewpoint of improving dimensional accuracy, the fiber length of the reinforcing long fibers (D) may be 10 m or less.
  • the reinforcing long fibers (D) can be cut by impregnating the reinforcing long fibers (D) with a composition containing components other than the reinforcing long fibers (D). It can make it harder to get caught and entangled.
  • the resin molding can be molded by pultrusion molding even if the proportion of the reinforcing long fibers (D) is increased.
  • the reinforcing long fibers (D) for example, a string-like fiber obtained by lightly adhering a strand such as roving or yarn to a binder is preferably used.
  • the reinforcing long fibers (D) are preferably roving fibers obtained by arranging monofilaments.
  • the fiber diameter of the monofilament is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably 20 ⁇ m or less.
  • the above fiber diameter is preferably an average diameter.
  • the average diameter is the number average diameter, which is the arithmetic mean of the fiber diameters of 100 randomly selected fibers.
  • the fiber diameter means the diameter of the equivalent circle diameter of the cross section along the direction perpendicular to the length direction of the fiber.
  • the content of the reinforcing long fibers (D) is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, preferably 350 parts by weight or less, and more preferably 300 parts by weight or less.
  • the flexural modulus of the obtained resin molding can be further increased due to the content of the reinforcing long fibers (D).
  • the content of the reinforcing long fibers (D) is equal to or less than the above upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with the composition containing components other than the reinforcing long fibers, and the specific gravity of the resulting resin molding is can be reduced, and the bending elastic modulus can be increased.
  • the content of the reinforcing long fibers (D) is preferably 70 parts by weight or more, more preferably 90 parts by weight or more, with respect to a total of 100 parts by weight of the polyol compound (A) and the isocyanate compound (B), It is preferably 150 parts by weight or less, more preferably 120 parts by weight or less.
  • the content of the reinforcing long fibers (D) is equal to or higher than the above lower limit, the flexural modulus of the resin molding obtained due to the content of the reinforcing long fibers (D) can be further increased.
  • the content of the reinforcing long fibers (D) is equal to or less than the above upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with the composition containing components other than the reinforcing long fibers, and the specific gravity of the resulting resin molding is can be reduced, and the bending elastic modulus can be increased.
  • the content of the reinforcing long fibers (D) is preferably 80 parts by weight or more, more preferably 90 parts by weight or more, and preferably It is 150 parts by weight or less, more preferably 120 parts by weight or less, and still more preferably 110 parts by weight or less.
  • the content of the reinforcing long fibers (D) is equal to or more than the lower limit and equal to or less than the upper limit, it is possible to further increase the flexural modulus of the resin molding obtained due to the content of the reinforcing long fibers (D). can.
  • the content of the reinforcing long fibers (D) is equal to or less than the above upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with the composition containing components other than the reinforcing long fibers, and the specific gravity of the resulting resin molding is can be reduced, and the bending elastic modulus can be increased.
  • the resin material may or may not contain a foaming agent.
  • a foamed resin molding can be obtained.
  • Foamed resin moldings have the advantage of being lightweight.
  • foaming agent examples include water and organic halogen compounds.
  • the foaming agent is preferably water because it is easily available and excellent in convenience. Water acts as a blowing agent by reacting with the isocyanate compound (B) to generate CO2 . Only one type of the foaming agent may be used, or two or more types may be used in combination.
  • organic halogen compounds examples include organic chlorine compounds, organic fluorine compounds, organic bromine compounds, and organic iodine compounds.
  • the above organic halogen compound may be an organic halogen compound in which all of the hydrogen atoms are substituted with halogen atoms, or may be an organic halogen compound in which some of the hydrogen atoms are substituted with halogen atoms.
  • the organic halogen compound is preferably an organic chlorine compound or an organic fluorine compound. preferable.
  • Examples of the organic chlorine compounds include saturated organic chlorine compounds and unsaturated organic chlorine compounds.
  • Examples of the saturated organic chlorine compound include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, and isopentyl chloride.
  • the organic chlorine compound is preferably a saturated organic chlorine compound, and the number of carbon atoms is is a saturated organochlorine compound with 2 to 5.
  • organic fluorine compounds examples include saturated organic fluorine compounds and unsaturated organic fluorine compounds.
  • saturated organic fluorine compounds include hydrofluorocarbons.
  • hydrofluorocarbons include difluoromethane (HFC32), 1,1,1,2,2-pentafluoroethane (HFC125), 1,1,1-trifluoroethane (HFC143a), 1,1,2,2- Tetrafluoroethane (HFC134), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1-difluoroethane (HFC152a), 1,1,1,2,3,3,3-heptafluoropropane (HFC227ea ), 1,1,1,3,3-pentafluoropropane (HFC245fa), 1,1,1,3,3-pentafluorobutane (HFC365mfc) and 1,1,1,2,2,3,4, 5,5,5-decafluoropentane (HFC4310mee) and the like.
  • Examples of the unsaturated organic fluorine compounds include hydrofluoroolefins.
  • the hydrofluoroolefins include 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,3,3,3-tetrafluoropropene (HFO-1234ze) (E and Z isomers), and 1 , 1,1,4,4,4-hexafluoro-2-butene (HFO1336mzz) (E and Z isomers), and the like.
  • examples of the organic fluorine compound include compounds having a chlorine atom, a fluorine atom, and a double bond.
  • examples of the compound having a chlorine atom, a fluorine atom and a double bond include 1,2-dichloro-1,2-difluoroethene (E and Z isomers) and hydrochlorofluoroolefins.
  • hydrochlorofluoroolefins examples include 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) (E and Z isomers), 1-chloro-2,3,3-trifluoropropene (HCFO- 1233yd) (E and Z isomers), 1-(4)chloro-1,3,3-trifluoropropene (HCFO-1233zb) (E and Z isomers), 2-chloro-1,3,3-tri Fluoropropene (HCFO-1233xe) (E and Z isomers), 2-chloro-2,2,3-trifluoropropene (HCFO-1233xc), 2-chloro-3,3,3-trifluoropropene (HCFO- 1233xf), 3-chloro-1,2,3-trifluoropropene (HCFO-1233ye) (E and Z isomers), 3-chloro-1,1,2-trifluoropropene (HCFO-1233yc), 3, 3-dichlor
  • the organic halogen compound is hydrochlorofluoroolefin, hydrofluorocarbon or hydrofluoroolefin.
  • the organic halogen compound is hydrochlorofluoroolefin, hydrofluorocarbon or hydrofluoroolefin.
  • the foaming agent can be used in an appropriate amount.
  • the above resin material contains other components other than the components described above (polyol compound (A), isocyanate compound (B), urethane resin molding powder (C), reinforcing long fibers (D), and these five types of foaming agents). different components) may be included.
  • the above-mentioned other components include catalysts, foam stabilizers, flame retardants, and powders (other fillers) other than the powder (C) of the urethane resin molding.
  • Each of the above other components may be used alone or in combination of two or more.
  • the resin material preferably contains a catalyst.
  • the catalyst include urethanization catalysts and trimerization catalysts. Only one of the above catalysts may be used, or two or more thereof may be used in combination.
  • the resin material preferably contains a urethanization catalyst.
  • the urethanization catalyst promotes the reaction between the hydroxyl groups of the polyol compound and the isocyanate groups of the isocyanate compound, thereby promoting the formation of urethane bonds.
  • the urethanization catalyst examples include organic tin compounds such as dibutyltin dimaleate, dibutyltin diuralate and dibutylbis(oleoyloxy)stannane, triethylamine, N-methylmorpholinebis(2-dimethylaminoethyl)ether, and N,N,N tertiary amine compounds such as ',N'',N''-pentamethyldiethylenetriamine, N,N,N'-trimethylaminoethyl-ethanolamine, bis(2-dimethylaminoethyl) ether, N-methyl, N '-Dimethylaminoethylpiperazine, imidazole compounds in which the secondary amine functional group in the imidazole ring is substituted with a cyanoethyl group, and the like. Only one kind of the urethanization catalyst may be used, or two or more kinds thereof may be used in combination.
  • the urethanization catalyst can be used in an appropriate amount so that the polyol compound and the isocyanate compound react well.
  • the trimerization catalyst promotes the trimerization reaction of the isocyanate groups of the isocyanate compound and promotes the formation of isocyanurate rings. Furthermore, the trimerization catalyst suppresses expansion of the resin molding during combustion.
  • trimerization catalyst examples include aromatic compounds, alkali metal salts of carboxylic acids, quaternary ammonium salts of carboxylic acids, and quaternary ammonium salt/ethylene glycol mixtures.
  • aromatic compounds include tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, and 2,4,6-tris(dialkylaminoalkyl)hexahydro-S-triazine.
  • alkali metal salt of the above carboxylic acid examples include potassium acetate and potassium 2-ethylhexanoate. Only one kind of the trimerization catalyst may be used, or two or more kinds thereof may be used in combination.
  • the trimerization catalyst can be used in an appropriate amount so that the trimerization reaction is favorably promoted.
  • Foam stabilizer examples include polyoxyalkylene foam stabilizers such as polyoxyalkylene alkyl ethers, and silicone foam stabilizers such as organopolysiloxane.
  • filler examples include powder fillers.
  • the filler may be an organic powder, an inorganic powder, or a mixed powder of an organic powder and an inorganic powder. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
  • the filler examples include glass fiber scraps; carbonate compounds such as calcium carbonate, magnesium carbonate, zinc carbonate, and barium carbonate; minerals such as dawsonite, hydrotalcite, mica, imogolite, sericite, and gypsum fiber; calcium sulfate Sulfate compounds such as , barium sulfate, and magnesium sulfate; Silicate compounds such as calcium silicate; Clays such as talc, clay, montmorillonite, bentonite, activated clay, and sepiolite; Aluminum nitride, boron nitride, and silicon nitride, etc.
  • carbon compounds such as carbon black, graphite, carbon balloon, and charcoal powder
  • titanium compounds such as potassium titanate and lead zirconate titanate
  • metal borate compounds such as aluminum borate
  • sulfides such as molybdenum sulfide Carbide such as silicon carbide
  • ash such as fly ash, coal ash, and shirasu balloon
  • sand such as silica sand
  • pyroclastic materials such as pumice stone; mentioned.
  • the resin material comprises the polyol compound (A), the isocyanate compound (B), the urethane resin molding powder (C), the reinforcing long fibers (D), and these blended as necessary. It can be prepared by mixing other ingredients. A method for mixing each component is not particularly limited. A plurality of liquids containing one or more components may be prepared and mixed to obtain the resin material. Mixing of a plurality of liquids may be performed at the time of forming the resin molding. After the isocyanate compound (B) and the powder (C) of the urethane resin molding are mixed with the liquid containing the polyol compound (A), the reinforcing long fibers (D) may be impregnated with this liquid. .
  • the powder (C) of the urethane resin molding is mixed with the liquid containing the polyol compound (A), then the isocyanate compound (B) is mixed, and then the reinforcing long fibers (D) are impregnated with this liquid. good too.
  • a resin molded article according to the present invention is a molded article of the curable resin material described above.
  • a resin molding can be obtained by molding the resin material.
  • a resin molding can be obtained by heating the above resin material at 40° C. to 80° C. to mold and cure the material.
  • the resin molded article may be a foamed resin molded article. When the resin molding is a foamed resin molding, the weight of the resin molding can be reduced.
  • the above resin moldings can be used for applications such as buildings, vehicles/ships, railway facilities, water treatment facilities, factory facilities, fisheries/aquaculture facilities, electrical facilities, sports/park facilities, and civil engineering sites.
  • the above-mentioned resin moldings are suitably used for balconies, floor materials, foundations, beams, joists, bundles, roofs, crosspieces, etc. in buildings.
  • the above resin moldings are suitably used for joists, FFU ships, decks, bulkheads, truck bed materials, bridges, etc. in vehicles or ships.
  • the above resin moldings are suitably used for sidewalk boards, large three-hoist protection boards, platforms, sleepers (bridges, bifurcations, regular, short), etc. in railway facilities.
  • resin moldings are suitably used in water treatment facilities for cover lids, cut corners, weirs, flocculator blades, doors, louvers, rectifiers, baffles, partitions, sloped plates, and the like.
  • the above resin moldings are suitably used for floorboards, corridors, pit lids, chemical tanks, water tanks, workbenches, frames, joists, pallets, freezers, etc. in factory facilities.
  • the above resin moldings are suitably used for hatching tanks, aquaculture tanks, live fish tanks, corridors, etc. in aquaculture facilities.
  • the above resin molding is suitably used for cleats, pipe pillows, etc. in electrical equipment.
  • the above resin moldings are used in sports and park facilities such as pergolas, bridges, information boards, gazebos, back screens, tennis practice boards, scoreboards, floating piers, suspension bridges, promenades, core materials for skis, water wheels, and pool members. It is preferably used.
  • the above resin moldings are suitably used for pressure plates, SEW earth retaining walls, etc. at civil engineering sites.
  • the above resin molding is particularly suitable for use as sleepers.
  • the sleeper may be, for example, a rectangular parallelepiped sleeper, or may be a sleeper including a rectangular parallelepiped main body and a protrusion projecting outward from the main body.
  • the sleeper may have a length direction and a width direction. From the viewpoint of further improving the bending elastic modulus of the sleeper, the reinforcing long fibers are preferably arranged along the length direction of the sleeper (resin molding).
  • the method for manufacturing a resin molded product according to the present invention includes the following steps. (1) A step of obtaining a first composition containing a polyol compound (A), an isocyanate compound (B), and a urethane resin molding powder (C). (2) An impregnation step of impregnating a reinforcing long fiber bundle in which reinforcing long fibers are aligned in one direction with the first composition to obtain a second composition. (3) a curing step of curing the second composition in the mold; The isocyanate index of the second composition is 110 or more and 120 or less. Since the method for producing a resin molded article according to the present invention has the above configuration, it is possible to suppress variations in the specific gravity of the obtained resin molded article. In addition, the portion between the reinforcing long fibers can be well impregnated with the composition containing the powder of the urethane resin molding.
  • the first composition may or may not contain a foaming agent.
  • the second composition may or may not contain a foaming agent.
  • a foaming agent may or may not be used in the curing step.
  • the curing step is preferably a foaming curing step of foaming and curing the second composition in the mold. In this case, the weight of the obtained resin molding can be reduced.
  • the method for manufacturing the resin molded body includes a step of obtaining the powder (C) of the urethane resin molded body from the urethane resin molded body containing the urethane resin and the glass fiber.
  • the shavings can be recycled and used as a filler. Therefore, the environmental load can be reduced and the cost can be reduced.
  • the urethane resin molded article used for obtaining the powder (C) of the urethane resin molded article is a recycled product.
  • the first composition is added so that the reinforcing long fibers are unidirectional. It is preferable to include a spraying step of spraying the reinforcing long fiber bundles that have been aligned.
  • the first composition is sprayed onto the reinforcing long fiber bundles using a spraying device.
  • FIG. 1 is a diagram for explaining a method for manufacturing a resin molding according to one embodiment of the present invention.
  • the manufacturing apparatus 100 includes a hopper 11, a belt feeder 12, an extruder 4 with a built-in screw, a pump 43, a first raw material tank 21, a pump 22, a second raw material tank 31, a pump 51, and mixing and spraying.
  • a device 5 a kneading plate 61, an impregnation plate 62, and a mold 63 having a heating part are provided.
  • the manufacturing apparatus 100 includes a conveying means capable of advancing the reinforcing long fiber bundle 8 in one direction (from the left side to the right side in the figure).
  • a powder (C) (filler 1) of the urethane resin molded product is obtained from the urethane resin molded product containing the urethane resin and the glass fiber. For example, chips of a urethane resin molding are put into a classifier 6 and classified to obtain the filler 1 .
  • the urethane resin molded article may be, for example, waste pieces (conventionally, waste) generated when the urethane resin composition or the urethane resin molded article is processed into a predetermined shape.
  • Step of obtaining the first composition Filler 1 is put into hopper 11 , then filler 1 is conveyed by belt feeder 12 and supplied to extruder 4 .
  • the extruder 4 has twin screws in a cylinder.
  • the first raw material 2 is put into the first raw material tank 21 and mixed.
  • the first raw material 2 is a liquid containing a polyol compound.
  • the first raw material 2 preferably contains a foaming agent.
  • the first raw material 2 is supplied to the extruder 4 by the pump 22 .
  • the filler 1 and the first raw material 2 are mixed by rotating the screw of the extruder 4, and a mixture of the filler 1 and the first raw material 2 (hereinafter referred to as "mixed liquid A" ) is obtained.
  • the second raw material 3 is put into the second raw material tank 31.
  • the second raw material 3 is an isocyanate compound.
  • the second raw material 2 may contain a foaming agent.
  • Mixed liquid A is supplied to mixing and spraying device 5 by pump 43 .
  • the second raw material 3 is supplied to the mixing and spraying device 5 by the pump 51 .
  • the mixed liquid A and the second raw material 3 are uniformly mixed, and the first composition 7 (polyol compound, isocyanate compound, filler 1 (urethane resin molding powder) and foaming agent A mixture of) is obtained.
  • the mixed liquid A may contain a foaming agent
  • the second raw material 3 may contain a foaming agent
  • the foaming agent may be included when the mixed liquid A and the second raw material 3 are mixed. good.
  • the first composition 7 is sprayed from the discharge port of the mixing and spraying device 5 onto the reinforcing long fiber bundles 8 (fiber bundles of reinforcing long fibers) in which the reinforcing long fibers are aligned in one direction.
  • the first composition 7 is sprayed on the reinforcing long fiber bundles 8 while the reinforcing long fiber bundles 8 are advanced in one direction.
  • the reinforcing long fibers are glass long fibers
  • the reinforcing long fiber bundles 8 are glass long fiber bundles.
  • the first composition 7 and the reinforcing long fiber bundle 8 are kneaded between a kneading plate 61 and an impregnated plate 62, and the first composition is applied to the portion between the reinforcing long fibers constituting the reinforcing long fiber bundle 8. 7 is impregnated.
  • the impregnation plate 62 is a plate used for impregnation and a plate for impregnation.
  • a second composition 81 (curable resin material, composite) in which the reinforcing long fiber bundles 8 are impregnated with the first composition 7 is obtained.
  • the resin material is designed to have the first configuration, the first composition 7 is well impregnated into the portion between the reinforcing long fibers, and the first composition 7 is reinforced. Good retention in the inter-long fiber portion.
  • the reinforcing long fiber bundle is impregnated with the first composition to obtain a second composition (curable resin material, composite).
  • a second composition curable resin material, composite
  • the first composition and the reinforcing long fiber bundle are separated between the kneading plate and the impregnation plate. It is preferable to be kneaded.
  • an endless belt may be used to impregnate the reinforcing long fiber bundle with the first composition.
  • the impregnation step it is preferable to impregnate the reinforcing long fiber bundle with the first composition while controlling the temperature of the first composition using a temperature controller.
  • the temperature of the first composition is preferably 10° C. or higher, more preferably 15° C. or higher, even more preferably 18° C. or higher, and 30° C. or lower. is preferred, 25°C or lower is more preferred, and 22°C or lower is even more preferred.
  • the temperature of the first composition in the impregnation step is equal to or higher than the lower limit, the viscosity of the first composition can be further lowered. Better impregnation is possible.
  • the temperature of the first composition in the impregnation step is equal to or lower than the upper limit, unintended curing reaction can be suppressed.
  • ⁇ Curing step (preferably foaming curing step)>
  • the second composition 81 is transferred to the mold 63, and the second composition 81 is cured (preferably foamed and cured) in the mold 63 to form a resin molding (preferably foamed resin molding) can be obtained.
  • a resin molding preferably foamed resin molding
  • the second composition (curable resin material) in a mold provided in the molding passage.
  • the second composition can be cured by heating a metal belt provided on the inner surface of the molding passage.
  • the heating temperature of the mold is preferably 35° C. or higher, more preferably 40° C. or higher, still more preferably 45° C. or higher, preferably 100° C. or lower, more preferably 80° C. or lower, further preferably 60° C. °C or less, particularly preferably 55°C or less.
  • the heating temperature of the mold is equal to or higher than the lower limit and equal to or lower than the upper limit, the resin material can be cured satisfactorily.
  • the viscosity of the first composition at 20° C. and 20 rpm is preferably 10,000 cps or more, more preferably 15,000 cps or more, still more preferably 20,000 cps or more, particularly preferably 25,000 cps or more, preferably 45,000 cps or less, more preferably 40,000 cps or less. be.
  • the viscosity is equal to or higher than the lower limit and equal to or lower than the upper limit, the portion between reinforcing long fibers can be impregnated with the first composition satisfactorily.
  • the viscosity can be measured using, for example, a Brookfield viscometer.
  • the content of the powder (C) of the urethane resin molding is preferably 4% by weight or more, more preferably 6% by weight or more, and preferably 9% by weight or less. Preferably, it is 7% by weight or less.
  • the content of the powder (C) in the urethane resin molded article is at least the above lower limit, the mechanical strength of the obtained resin molded article can be further enhanced.
  • the content of the powder (C) in the urethane resin molded body is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers with the composition containing components other than the reinforcing long fibers, and the resulting resin molded body is obtained. Variation in specific gravity can be reduced, and bending elastic modulus can be increased.
  • the content of the urethane resin molding powder (C) in the first composition is preferably 5 parts by weight with respect to 100 parts by weight of the polyol compound (A) in the first composition. Above, more preferably 10 parts by weight or more, still more preferably 12 parts by weight or more, and particularly preferably 15 parts by weight or more. With respect to 100 parts by weight of the polyol compound in the first composition, the content of the powder (C) of the urethane resin molded body in the first composition is preferably 50 parts by weight or less, or more. It is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, particularly preferably 23 parts by weight or less, and most preferably 20 parts by weight or less.
  • the content of the filler is at least the lower limit
  • the mechanical strength of the obtained resin molding can be further enhanced.
  • the content of the filler is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers with the composition containing components other than the reinforcing long fibers, and the variation in the specific gravity of the resulting resin molding can be reduced. Also, the flexural modulus can be increased.
  • the content of the urethane resin molding powder (C) in the first composition is preferably 5 parts by weight with respect to 100 parts by weight of the polyol compound (A) in the first composition. Above, more preferably 10 parts by weight or more, still more preferably 12 parts by weight or more, and particularly preferably 15 parts by weight or more.
  • the content of the urethane resin molding powder (C) in the first composition is preferably 50 parts by weight with respect to 100 parts by weight of the polyol compound (A) in the first composition. 30 parts by weight or less, more preferably 25 parts by weight or less, particularly preferably 23 parts by weight or less, and most preferably 20 parts by weight or less.
  • the content of the powder (C) in the urethane resin molded article is at least the above lower limit, the mechanical strength of the obtained resin molded article can be further enhanced.
  • the content of the powder (C) in the urethane resin molding is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with a composition containing components other than the reinforcing long fibers, and the obtained resin molding. Variation in the specific gravity of the body can be reduced, and the bending elastic modulus can be increased.
  • the powder (C ) is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, preferably 20 parts by weight or less, and more preferably 15 parts by weight or less.
  • the content of the powder (C) in the urethane resin molded article is at least the above lower limit, the mechanical strength of the obtained resin molded article can be further enhanced.
  • the content of the powder (C) in the urethane resin molding is equal to or less than the upper limit, it becomes easier to impregnate the portion between the reinforcing long fibers (D) with a composition containing components other than the reinforcing long fibers, and the obtained resin molding. Variation in the specific gravity of the body can be reduced, and the bending elastic modulus can be increased.
  • the foaming agent may be contained in the first raw material, may be contained in the second raw material, or may be contained in both the first raw material and the second raw material. It may be The first raw material may be free of blowing agents and the second raw material may be free of blowing agents.
  • the first composition, the first raw material, and the second raw material are each other than the polyol compound (A), the isocyanate compound (B), the urethane resin molding powder (C), the reinforcing long fibers, and the foaming agent.
  • the first composition may contain a catalyst and may contain a foam stabilizer.
  • the catalyst may be contained in the first raw material, may be contained in the second raw material, or may be contained in both the first raw material and the second raw material.
  • the first feedstock may be catalyst-free and the second feedstock may be catalyst-free.
  • the foam stabilizer may be contained in the first raw material, may be contained in the second raw material, or may be contained in both the first raw material and the second raw material.
  • the first material may not contain a foam stabilizer, and the second material may not contain a foam stabilizer.
  • Polyol compound (A) Polyether polyol to which propylene oxide is added (“SBU Polyol J610” manufactured by Sumika Covestro Urethane Co., Ltd.)
  • Long glass fiber Long glass fiber made into a roving by arranging a large number of monofilaments with a fiber diameter of 10 ⁇ m to 20 ⁇ m
  • Powder of resin molding containing urethane resin (UR powder (C) in the table, particle size D50 : 1000 ⁇ m or less, fiber length of glass fiber: 1000 ⁇ m or less)
  • the particle size D90 and particle size D50 of the filler were measured using a laser diffraction particle size analyzer.
  • Catalyst a mixture of dipropylene glycol and triethylenediamine
  • Example 1 A resin molding was produced by the method shown in FIG. As a filler, powder (C) of a resin molding containing urethane resin was used. Further, as the first raw material shown in FIG. 1, a liquid containing a polyol compound, a foaming agent, a catalyst and a foam stabilizer was used. A polyisocyanate compound was used as the second raw material shown in FIG.
  • ⁇ Step of obtaining the first composition The filler charged into the hopper was supplied to the extruder by a belt feeder. Also, the first raw material put into the first raw material tank was supplied to the extruder by a pump. The filler and the first raw material were mixed in an extruder to obtain a mixed liquid (mixed liquid A) of the filler and the first raw material. Mixture A was then pumped into the mixing and spraying device. Also, the second raw material put into the second raw material tank was supplied to the mixing and spraying device by the pump. Mixed liquid A and the second raw material were uniformly mixed in a mixing and spraying device to obtain a first composition. Table 1 shows the content of each component in the first composition.
  • the first composition was sprayed from the discharge port of the mixing and spraying device onto a reinforcing long fiber bundle (a fiber bundle of reinforcing long fibers) in which the reinforcing long fibers were aligned in one direction.
  • the first composition was sprayed on the reinforcing long fiber bundle while advancing the reinforcing long fiber bundle in one direction.
  • the first composition and the reinforcing long fiber bundle are kneaded between a kneading plate and an impregnated plate under conditions of 15° C. to 25° C., and the first composition is rubbed between each reinforcing long fiber constituting the reinforcing long fiber bundle. to obtain a second composition in which the reinforcing long fiber bundles were impregnated with the first composition.
  • Table 1 shows the content of the reinforcing long fibers in the second composition (content per 100 parts by weight of the polyol compound).
  • ⁇ Curing step (foaming curing step)> The second composition was transferred to a mold, and cured (foaming cured) in the mold to obtain a resin molded article (foamed resin molded article).
  • Examples 2 to 13 and Comparative Examples 1 to 8 The type of filler, the content of each component in the first composition, and the content of reinforcing long fibers in the second composition (content per 100 parts by weight of polyol compound) are shown in Tables 1 to 6.
  • a resin molded product was obtained in the same manner as in Example 1, except that it was set to .
  • Viscosity of the First Composition The viscosity of the first composition at 20° C. and 20 rpm was measured using a B-type viscometer (“TVC-10 type viscometer” manufactured by Toki Sangyo Co., Ltd.).
  • Impregnability of the first composition into the portion between the reinforcing long fibers After impregnating the reinforcing long fibers with the first composition using a lab-scale impregnation device, the first composition is impregnated between the reinforcing long fibers.
  • the area impregnated in the part (impregnated area) was measured using image analysis software (ImageJ).
  • ImageJ image analysis software
  • a resin molding obtained by impregnating reinforcing long fibers with the first composition was cut into a regular hexahedron having a side of 20 mm. Ten samples of the cut resin molding were prepared, and the specific gravity of each sample was measured. The standard deviation of the specific gravity of the measured 10 samples was obtained. Incidentally, it means that the smaller the variation in the specific gravity, the better the impregnating property of the first composition into the portion between the reinforcing long fibers.
  • the standard deviation of specific gravity is less than 0.11, and the impregnated area ratio is 99% or more
  • the standard deviation of specific gravity is less than 0.11, but the impregnated area ratio is less than 99%, or
  • the standard deviation of the specific gravity is 0.11 or more and less than 0.13, and the impregnation area ratio is 99% or more
  • the standard deviation of the specific gravity is 0.11 or more and less than 0.13, and the impregnation area ratio is 99% is less than ⁇ : the standard deviation of the specific gravity is 0.13 or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

得られる樹脂成形体において、比重のばらつきを抑えることができる硬化性樹脂材料を提供する。 本発明に係る硬化性樹脂材料は、ポリオール化合物と、イソシアネート化合物と、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末と、強化長繊維とを含み、硬化性樹脂材料のイソシアネートインデックスが110以上120以下である。

Description

硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法
 本発明は、ポリオール化合物とイソシアネート化合物とを含む硬化性樹脂材料に関する。また、本発明は、上記硬化性樹脂材料を用いた樹脂成形体樹脂成形体の製造方法に関する。
 建材等の構造材として、木材等に代えて樹脂成形体が用いられることがある。例えば、鉄道用枕木として、木枕木及びコンクリート枕木に代えて樹脂成形体の枕木が用いられることがある。
 上記樹脂成形体の一例として、下記の特許文献1には、一方向に引き揃えられた多数の長繊維と充填材とを含有する発泡樹脂成形体が開示されている。上記発泡樹脂成形体では、充填材の含有量が15重量%以下であり、発泡樹脂の発泡倍率が2.0倍~4.0倍であり、充填材の平均粒径が発泡樹脂の平均気泡径の20%以下である。
 下記の特許文献2には、ポリオール化合物とイソシアネート化合物と充填材とを混合して、第1の組成物を得る混合工程と、強化長繊維間に前記第1の組成物を含浸させて硬化性樹脂組成物を得る含浸工程と、金型内で前記硬化性樹脂組成物を硬化させる硬化工程とを備える樹脂成形体の製造方法が開示されている。上記樹脂成形体の製造方法では、上記充填材の比重が4未満であり、上記充填材の平均円形度が0.65以上である。
特開2000-80191号公報 WO2020/054056A1
 充填材を含む組成物を一方向に引き揃えられた強化長繊維束に含浸させて、樹脂成形体が製造されることがある。樹脂材料に充填材及び強化長繊維束を用いることにより、得られる樹脂成形体の機械的強度を高めることができる。
 しかしながら、従来の樹脂成形体の製造方法では、充填材を含む組成物の粘度が過度に高くなることがある。また、従来の組成物の配合組成では、充填材を含む組成物の粘度が過度に高くなることがある。
 充填材を含む組成物の粘度が過度に高くなると、該組成物を強化長繊維間部分に良好に含浸させることができないという課題がある。該組成物を強化長繊維間部分に良好に含浸させることができない場合には、得られる樹脂成形体の比重にばらつきが生じ、得られる樹脂成形体の機械的強度等の物性が低下することがある。
 また、充填材を含む組成物の粘度が過度に高くなると、該組成物が撹拌によって混合されにくくなるため、ポリオール化合物とイソシアネート化合物とを良好に反応させることができず、未反応のポリオール化合物が残存することがある。この場合、得られる樹脂成形体の耐燃性が低下するという課題がある。
 本発明の目的は、得られる樹脂成形体において、比重のばらつきを抑えることができる硬化性樹脂材料を提供することである。また、本発明は、比重のばらつきを抑えることができる樹脂成形体を提供することも目的とする。また、本発明は、得られる樹脂成形体において、比重のばらつきを抑えることができる樹脂成形体の製造方法を提供することも目的とする。
 本明細書において、以下の硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法を開示する。
 本発明の広い局面によれば、ポリオール化合物と、イソシアネート化合物と、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末と、強化長繊維とを含み、硬化性樹脂材料のイソシアネートインデックスが110以上120以下である、硬化性樹脂材料が提供される。
 本発明に係る硬化性樹脂材料のある特定の局面では、前記ポリオール化合物100重量部に対して、前記ウレタン樹脂成形体の粉末の含有量が10重量部以上30重量部以下である。
 本発明に係る硬化性樹脂材料のある特定の局面では、前記ウレタン樹脂成形体の粉末に含まれる前記ガラス繊維の繊維長が、1000μm以下である。
 本発明の広い局面によれば、上述した硬化性樹脂材料の成形体である、樹脂成形体が提供される。
 本発明に係る樹脂成形体のある特定の局面では、前記樹脂成形体は、発泡樹脂成形体である。
 本発明の広い局面によれば、ポリオール化合物とイソシアネート化合物とウレタン樹脂成形体の粉末とを含む第1の組成物を得る工程と、前記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に含浸させて、第2の組成物を得る含浸工程と、金型内で前記第2の組成物を硬化させる硬化工程とを備え、前記第2の組成物のイソシアネートインデックスが110以上120以下である、樹脂成形体の製造方法が提供される。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記第1の組成物中の前記ポリオール化合物100重量部に対して、前記第1の組成物中の前記ウレタン樹脂成形体の粉末の含有量が10重量部以上30重量部以下である。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記硬化工程が、前記金型内で前記第2の組成物を発泡硬化させる発泡硬化工程である。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記樹脂成形体の製造方法は、前記第1の組成物を得る工程と前記含浸工程との間に、前記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に散布する散布工程を備える。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記散布工程において、前記強化長繊維束を一方向に進行させながら、前記第1の組成物を前記強化長繊維束に散布する。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記樹脂成形体の製造方法は、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体から、前記ウレタン樹脂成形体の粉末を得る工程を備える。
 本発明に係る樹脂成形体の製造方法のある特定の局面では、前記ウレタン樹脂成形体の粉末を得るために用いられるウレタン樹脂成形体が、リサイクル品である。
 本発明に係る硬化性樹脂材料は、ポリオール化合物と、イソシアネート化合物と、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末と、強化長繊維とを含む。本発明に係る硬化性材料のイソシアネートインデックスが110以上120以下である。本発明に係る硬化性樹脂材料では、上記の構成が備えられているので、得られる樹脂成形体において、比重のばらつきを抑えることができる。
 また、本発明に係る樹脂成形体の製造方法は、ポリオール化合物とイソシアネート化合物とウレタン樹脂成形体の粉末を含む第1の組成物を得る工程と、上記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に含浸させて、第2の組成物を得る含浸工程と、金型内で上記第2の組成物を硬化させる硬化工程とを備える。本発明に係る樹脂成形体の製造方法では、上記第2の組成物のイソシアネートインデックスが110以上120以下である。本発明に係る樹脂成形体の製造方法では、上記の構成が備えられているので、得られる樹脂成形体において、比重のばらつきを抑えることができる。
図1は、本発明の一実施形態に係る樹脂成形体の製造方法を説明するための図である。
 以下、本発明を詳細に説明する。
 (硬化性樹脂材料)
 本発明に係る硬化性樹脂材料(以下、「樹脂材料」と略記することがある)は、ポリオール化合物(A)と、イソシアネート化合物(B)と、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末(C)と、強化長繊維(D)とを含む。本発明に係る樹脂材料のイソシアネートインデックスが110以上120以下である。
 本発明に係る樹脂材料では、上記の構成が備えられているので、ポリオール化合物(A)と、イソシアネート化合物(B)と、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末(C)とを含む組成物(強化長繊維(D)以外の成分を含む組成物)の粘度を容易に調整することができる。結果として、該組成物を強化長繊維(D)間部分に良好に含浸させることができ、得られる樹脂成形体の比重のばらつきを抑えることができる。また、本発明に係る樹脂材料では、上記の構成が備えられているので、ポリオール化合物(A)と、イソシアネート化合物(B)との反応効率を高めることができ、未反応のポリオール化合物(A)を少なくすることができる。結果として、得られる樹脂成形体において、耐燃性を高めることができる。
 本発明に係る樹脂材料では、イソシアネート化合物(B)が適切に調整された量で含まれるので、硬化反応を良好に進行させることができ、未反応のポリオール化合物(A)の残存量を少なくすることができる。また、ポリオール化合物(A)、イソシアネート化合物(B)及びウレタン樹脂成形体の粉末(C)を含む組成物の粘度を調整しやくすなり、該組成物を強化長繊維(D)間部分に良好に含浸させることができる。その結果、本発明の効果が奏される。
 上記イソシアネートインデックスは、好ましくは111以上、より好ましくは112以上、更に好ましくは113以上、好ましくは119以下、より好ましくは118以下、更に好ましくは117以下である。上記イソシアネートインデックスが上記下限以上及び上記上限以下であると、得られる樹脂成形体において、耐難燃性をより一層高めることができ、かつ、樹脂成形体の比重のばらつきをより一層抑えることができる。
 本明細書において、イソシアネートインデックスとは、樹脂材料中のイソシアネート化合物(B)が有する全イソシアネート基の数を、樹脂材料中の活性水素基の合計数で割った値に100を掛けた値を意味する。すなわち、イソシアネートインデックスは、下記式(1)で算出される値である。なお、樹脂材料中の活性水素基としては、例えば、ポリオール化合物(A)の水酸基及び発泡剤としての水等が挙げられる。
 イソシアネートインデックス=(X/Y)×100   ・・・(1)
 X:樹脂材料中のイソシアネート化合物(B)が有する全イソシアネート基の数
 Y:樹脂材料中の活性水素基の合計数
 以下、上記樹脂材料に含まれる成分の詳細などを説明する。
 <ポリオール化合物(A)>
 上記樹脂材料は、ポリオール化合物(A)を含む。ポリオール化合物とは、2個以上の水酸基(-OH基)を有する化合物である。
 上記ポリオール化合物(A)における水酸基の個数は、2個であってもよく、2個以上であってもよく、3個であってもよく、3個以上であってもよく、4個であってもよく、4個以上であってもよい。上記ポリオール化合物(A)における水酸基の個数は、6個以下であってもよく、5個以下であってもよく、4個以下であってもよい。
 上記ポリオール化合物(A)としては、ポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール、及びポリエーテルポリオール等が挙げられる。上記ポリオール化合物は、ポリマーポリオールであってもよい。上記ポリオール化合物(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ポリラクトンポリオールとしては、ポリプロピオラクトングリコール、ポリカプロラクトングリコール、及びポリバレロラクトングリコール等が挙げられる。
 上記ポリカーボネートポリオールとしては、水酸基含有化合物とカーボネート化合物との脱アルコール反応物等が挙げられる。上記水酸基含有化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、及びノナンジオール等が挙げられる。上記カーボネート化合物としては、ジエチレンカーボネート、及びジプロピレンカーボネート等が挙げられる。
 上記芳香族ポリオールとしては、ビスフェノールA、ビスフェノールF、フェノールノボラック、及びクレゾールノボラック等が挙げられる。
 上記脂環族ポリオールとしては、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロヘキシルメタンジオール、及びジメチルジシクロヘキシルメタンジオール等が挙げられる。
 上記脂肪族ポリオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、及びヘキサンジオール等が挙げられる。
 上記ポリエステルポリオールとしては、多塩基酸と多価アルコールとの脱水縮合物、ラクトンの開環重合物、及びヒドロキシカルボン酸と多価アルコールとの縮合物等が挙げられる。上記多塩基酸としては、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、及びコハク酸等が挙げられる。上記多価アルコールとしては、ビスフェノールA、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキサングリコール、及びネオペンチルグリコール等が挙げられる。上記ラクトンとしては、ε-カプロラクトン、及びα-メチル-ε-カプロラクトン等が挙げられる。上記ヒドロキシカルボン酸としては、ひまし油、及びひまし油とエチレングリコールとの反応生成物等が挙げられる。
 上記ポリエーテルポリオールとしては、活性水素原子を2個以上有する活性水素化合物とアルキレンオキサイドとの開環重合体等が挙げられる。上記アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド及びテトラヒドロフラン等が挙げられる。上記活性水素化合物の分子量は小さいことが好ましい。上記活性水素化合物としては、ビスフェノールA、エチレングリコール、プロピレングリコール、ブチレングリコール、及び1,6-ヘキサンジオール等のジオール化合物;グリセリン、及びトリメチロールプロパン等のトリオール化合物;エチレンジアミン、及びブチレンジアミン等のアミン化合物等が挙げられる。
 上記ポリマーポリオールとしては、ポリオール化合物に不飽和有機化合物がグラフト重合されたグラフト重合体、ポリブタジエンポリオール、多価アルコールの変性ポリオール、及びこれらの水素添加物等が挙げられる。
 上記グラフト重合体における上記ポリオール化合物としては、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリエステルポリオール、及びポリエーテルポリオール等が挙げられる。上記グラフト重合体における上記不飽和有機化合物としては、アクリロニトリル、スチレン、及びメチル(メタ)アクリレート等が挙げられる。
 上記多価アルコールの変性ポリオールとしては、多価アルコールとアルキレンオキサイドとの反応変性物等が挙げられる。上記多価アルコールとしては、グリセリン及びトリメチロールプロパン等の3価アルコール;ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール、ショ糖、グルコース、マンノース、フルクトース、メチルグルコシド及びこれらの誘導体等の4価以上8価以下のアルコール;フェノール、フロログルシン、クレゾール、ピロガロール、カテコール、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、1-ヒドロキシナフタレン、1,3,6,8-テトラヒドロキシナフタレン、アントロール、1,4,5,8-テトラヒドロキシアントラセン、及び1-ヒドロキシピレン等のフェノール化合物;ポリブタジエンポリオール;ひまし油ポリオール;ヒドロキシアルキル(メタ)アクリレートの(共)重合体;ポリビニルアルコール等の多官能(例えば官能基数2以上100以下)ポリオール;フェノールとホルムアルデヒドとの縮合物(ノボラック)等が挙げられる。上記アルキレンオキサイドとしては、炭素数が2以上6以下のアルキレンオキサイドが挙げられる。上記アルキレンオキサイドの具体例としては、エチレンオキサイド、1,2-プロピレンオキサイド、1,3-プロピレンオキサイド、1,2-ブチレンオキサイド、及び1,4-ブチレンオキサイド等が挙げられる。性状や反応性を良好にする観点からは、上記アルキレンオキサイドは、1,2-プロピレンオキサイド、エチレンオキサイド又は1,2-ブチレンオキサイドであることが好ましく、1,2-プロピレンオキサイド又はエチレンオキサイドであることがより好ましい。上記アルキレンオキサイドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記アルキレンオキサイドを2種以上用いる場合の付加の形態は、ブロック付加であってもよく、ランダム付加であってもよく、ブロック付加とランダム付加との双方であってもよい。
 上記ポリオール化合物(A)は、水酸基価が490mgKOH/g以上580mgKOH/g以下であるポリオール化合物であることが好ましく、水酸基価が490mgKOH/g以上530mgKOH/g以下であるポリオール化合物であることがより好ましく、ポリエステルポリオール又はポリエーテルポリオールであることが好ましい。この場合には、樹脂材料中でのウレタン樹脂成形体の粉末(C)の分散性をより一層高めることができる。
 <イソシアネート化合物(B)>
 上記樹脂材料は、イソシアネート化合物を含む。イソシアネート化合物とは、イソシアネート基(-NCO基)を有する化合物である。
 上記イソシアネート化合物(B)におけるイソシアネート基の個数は、1個であってもよく、2個であってもよく、2個以上であってもよく、3個であってもよく、3個以上であってもよく、4個であってもよく、4個以上であってもよい。上記イソシアネート化合物(B)におけるイソシアネート基の個数は、6個以下であってもよく、5個以下であってもよく、4個以下であってもよい。
 硬化反応性を高める観点からは、上記イソシアネート化合物(B)におけるイソシアネート基の個数は、2個以上であることが好ましい。すなわち、上記イソシアネート化合物(B)は、ポリイソシアネート化合物(イソシアネート基を2個以上有するイソシアネート化合物)であることが好ましい。
 上記イソシアネート化合物(B)としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、及び脂肪族ポリイソシアネート等が挙げられる。上記イソシアネート化合物(B)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記芳香族ポリイソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、及びポリメチレンポリフェニルポリイソシアネート等が挙げられる。
 上記脂環族ポリイソシアネートとしては、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、及びジメチルジシクロヘキシルメタンジイソシアネート等が挙げられる。
 上記脂肪族ポリイソシアネートとしては、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、及びヘキサメチレンジイソシアネート等が挙げられる。
 入手が容易であり、利便性に優れることから、上記イソシアネート化合物(B)は、ジフェニルメタンジイソシアネート又は変性ジフェニルメタンジイソシアネートであることが好ましく、ジフェニルメタンジイソシアネートであることがより好ましい。
 上記ポリオール化合物(A)と上記イソシアネート化合物(B)とは、ウレタン結合を効率的に形成するように、適宜の配合量で用いることができる。上記ポリオール化合物(A)100重量部に対して、上記イソシアネート化合物(B)の含有量は、好ましくは100重量部以上、より好ましくは120重量部以上、更に好ましくは130重量部以上、好ましくは180重量部以下、より好ましくは160重量部以下、更に好ましくは150重量部以下である。上記イソシアネート化合物(B)の含有量が上記下限以上及び上記上限以下であると、上記ポリオール化合物(A)と上記イソシアネート化合物(B)との反応効率を高めることができ、未反応の上記ポリオール化合物(A)又は未反応の上記イソシアネート化合物(B)をより一層少なくすることができる。結果として、良好な曲げ弾性率を有する樹脂成形体を形成することができる。
 <ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末(C)(充填材)>
 上記樹脂材料は、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末(C)を含む。ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体から、ウレタン樹脂成形体の粉末(C)を得ることができる。上記ウレタン樹脂成形体の粉末(C)は、充填材としての役割を果たす。上記ウレタン樹脂成形体の粉末(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ウレタン樹脂成形体の粉末(C)として、例えば、ウレタン樹脂及びガラス繊維を含むウレタン樹脂組成物又はウレタン樹脂成形体を所定の形状に加工等する際に発生する屑片(廃棄物)を用いることができる。ウレタン樹脂組成物又はウレタン樹脂成形体を所定の形状に加工等する際に発生する屑片(従来は廃棄物)も、ウレタン樹脂成形体と呼ぶ。また、上記ウレタン樹脂成形体の粉末(C)は、意図しない形状に成形された成形体であってもよい。この場合には、環境負荷を軽減することができ、かつコストを下げることができる。なお、上記ウレタン樹脂成形体の粉末(C)は、発泡樹脂成形体の粉末であってもよい。
 環境負荷の軽減の観点及びコストの低減の観点から、上記ウレタン樹脂成形体の粉末(C)は、ウレタン樹脂成形体の切粉であることが好ましい。上記切粉とは、例えば、ウレタン樹脂成形体を切断したときに発生する粉末(切断屑)、ウレタン樹脂成形体の表面をサンディングしたときに発生する粉末(研削屑)、及びウレタン樹脂成形体の一部を削り取ったときに発生する粉末(切削屑)等である。上記ウレタン樹脂成形体の粉末(C)は、ウレタン樹脂成形体の切断屑、研削屑、又は切削屑であることが好ましい。
 環境負荷の軽減の観点及びコストの低減の観点から、上記ウレタン樹脂成形体の粉末(C)は、ウレタン樹脂成形体のリサイクル品であることが好ましい。環境負荷の軽減の観点及びコストの低減の観点から、上記ウレタン樹脂成形体の粉末(C)を得るために用いられる上記ウレタン樹脂成形体が、リサイクル品であることが好ましい。本発明の樹脂材料から製造される樹脂成形体のリサイクル性を高める観点からは、上記ウレタン樹脂成形体の粉末(C)は、別のロットで製造された樹脂成形体の粉末(本発明の樹脂材料から製造される樹脂成形体の別ロット品の粉末)であることが好ましい。上記ウレタン樹脂成形体の粉末(C)を得るための上記ウレタン樹脂成形体は、別のロットで製造された樹脂成形体(本発明の樹脂材料から製造される樹脂成形体の別ロット品)であることが好ましい。また、この場合には、環境負荷をより一層軽減することができ、かつコストをより一層下げることができる。
 ウレタン樹脂成形体の粉末(C)の形状は、球状であってもよく、球状でなくてもよく、多角形状、板状又は鱗片状等の形状であってもよい。
 上記ウレタン樹脂成形体の粉末(C)(充填材)の粒径D90は、好ましくは50μm以上、より好ましくは100μm以上、更に好ましくは150μm以上、特に好ましくは200μm以上、好ましくは1000μm以下、より好ましくは900μm以下、より一層好ましくは700μm以下、更に好ましくは500μm以下、特に好ましくは450μm以下、最も好ましくは430μm以下である。上記ウレタン樹脂成形体の粉末(C)の粒径D90が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。
 上記ウレタン樹脂成形体の粉末(C)の粒径D90は、分級処理を行うこと等により調整することができる。
 上記ウレタン樹脂成形体の粉末(C)の粒径D50は、好ましくは30μm以上、より好ましくは50μm以上、好ましくは150μm以下、より好ましくは130μm以下である。上記ウレタン樹脂成形体の粉末(C)の粒径D50が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。
 上記ウレタン樹脂成形体の粉末(C)の粒径D90及び粒径D50はそれぞれ、レーザー回折式粒度分布測定装置による粒子径分布測定の体積基準の積算分率において、粒子径の小さい側から積算して90%に相当する径の値、及び粒子径の小さい側から積算して50%に相当する径の値を意味する。上記の粒径D90及び粒径D50を有する上記ウレタン樹脂成形体の粉末(C)の形状は、球状であってもよく、球状でなくてもよく、多角形状、板状又は鱗片状等の形状であってもよい。
 上記ウレタン樹脂成形体の粉末(C)に含まれる上記ガラス繊維の繊維長は、好ましくは2000μm以下、より好ましくは1000μm以下、更に好ましくは700μm以下である。上記ウレタン樹脂成形体の粉末に含まれるガラス繊維長が上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。上記ウレタン樹脂成形体の粉末(C)に含まれる上記ガラス繊維の繊維長は、10μm以上であってもよく、100μm以上であってもよい。
 上記ガラス繊維の繊維長は、分級処理を行うこと等により調整することができる。
 上記ガラス繊維の繊維長は、ウレタン樹脂成形体の粉末(C)に含まれている充填材をマイクロスコープで撮影し、マイクロスコープ写真を市販の画像解析ソフトを用いて測定することができる。上記ガラス繊維の繊維長は、任意に選択した100個以上のガラス繊維の繊維長の平均値である。なお、得られるマイクロスコープ写真に100個以上のガラス繊維が存在しない場合には、ガラス繊維の数が100個以上となるまで、新たな領域をマイクロスコープで撮影する。
 上記ポリオール化合物(A)100重量部に対して、上記ウレタン樹脂成形体の粉末(C)の含有量は、好ましくは5重量部以上、より好ましくは10重量部以上、更に好ましくは12重量部以上、特に好ましくは15重量部以上である。上記ポリオール化合物(A)100重量部に対して、上記ウレタン樹脂成形体の粉末(C)の含有量は、好ましくは50重量部以下、より好ましくは30重量部以下、更に好ましくは25重量部以下、特に好ましくは23重量部以下、最も好ましくは20重量部以下である。上記ウレタン樹脂成形体の粉末(C)の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記ウレタン樹脂成形体の粉末(C)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記ポリオール化合物(A)と上記イソシアネート化合物(B)との合計100重量部に対して、上記ウレタン樹脂成形体の粉末(C)の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記ウレタン樹脂成形体の粉末(C)の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記ウレタン樹脂成形体の粉末(C)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 <強化長繊維(D)>
 上記樹脂材料は、強化長繊維(D)を含む。強化長繊維は、強化繊維であり、長繊維である。強化繊維は、一定の強度を持った繊維状物である。強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維等が知られている。長繊維の繊維長は、例えば、平均繊維長が50mm以上である。上記強化長繊維は、強化長繊維シートであってもよい。
 上記強化長繊維(D)は、モノフィラメントであってもよく、フィブリル化繊維(髭状に繊維が突き出た物質)であってもよい。
 上記強化長繊維(D)としては、炭素長繊維、ガラス長繊維、アラミド長繊維、ポリエステル繊維、ポリアミド繊維、及び長尺強化繊維等が挙げられる。上記強化長繊維は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 樹脂成形体の機械的強度をより一層高める観点からは、上記強化長繊維(D)は、ガラス長繊維であることが好ましい。上記ガラス長繊維とは、ガラスを融解、牽引して繊維状にした繊維状物である。
 樹脂成形体の機械的強度をより一層高める観点からは、上記強化長繊維(D)の繊維長は、50mm以上であることが好ましく、70mm以上であることがより好ましい。なお、強化長繊維は、引抜成形後に所望の大きさで裁断することができ、裁断する長さによって強化長繊維の繊維長を適宜変えることができるため、強化長繊維(D)の繊維長の上限は特に限定されない。寸法精度を高める観点からは、上記強化長繊維(D)の繊維長は、10m以下であってもよい。また、強化長繊維(D)の繊維長が長くても、強化長繊維(D)以外の成分を含む組成物を強化長繊維(D)に含浸させることにより、強化長繊維(D)が切断されたり、絡み合ったりしにくくすることができる。また、上記樹脂成形体は、引抜成形することにより、強化長繊維(D)の配合割合を多くしても成形可能である。
 上記強化長繊維(D)として、例えば、ロービング及びヤーン等のストランドをバインダーに軽く付着させて紐状とした繊維が好適に用いられる。
 上記強化長繊維(D)は、モノフィラメントを引き揃えてロービングにした繊維であることが好ましい。上記モノフィラメントの繊維径は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは10μm以上、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは20μm以下である。
 上記繊維径は、平均径であることが好ましい。上記平均径とは、数平均径であり、ランダムに選択した100個の繊維の繊維径の相加平均値である。また、上記繊維径とは、繊維の長さ方向に直交する方向に沿った断面において、該断面の円相当径の直径を意味する。
 上記ポリオール化合物(A)100重量部に対して、上記強化長繊維(D)の含有量は、好ましくは200重量部以上、より好ましくは250重量部以上、好ましくは350重量部以下、より好ましくは300重量部以下である。上記強化長繊維(D)の含有量が上記下限以上であると、強化長繊維(D)の含有量に起因して、得られる樹脂成形体の曲げ弾性率をより一層高めることができる。上記強化長繊維(D)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記ポリオール化合物(A)と上記イソシアネート化合物(B)との合計100重量部に対して、上記強化長繊維(D)の含有量は、好ましくは70重量部以上、より好ましくは90重量部以上、好ましくは150重量部以下、より好ましくは120重量部以下である。上記強化長繊維(D)の含有量が上記下限以上であると、強化長繊維(D)の含有量に起因して得られる樹脂成形体の曲げ弾性率をより一層高めることができる。上記強化長繊維(D)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記樹脂材料中の強化長繊維(D)を除く成分100重量部に対して、上記強化長繊維(D)の含有量は、好ましくは80重量部以上、より好ましくは90重量部以上、好ましくは150重量部以下、より好ましくは120重量部以下、更に好ましくは110重量部以下である。上記強化長繊維(D)の含有量が上記下限以上及び上記上限以下であると、強化長繊維(D)の含有量に起因して得られる樹脂成形体の曲げ弾性率をより一層高めることができる。上記強化長繊維(D)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 <発泡剤>
 上記樹脂材料は、発泡剤を含んでいてもよく、含んでいなくてもよい。上記樹脂材料が発泡剤を含む場合には、発泡樹脂成形体を得ることができる。発泡樹脂成形体は、軽量であるという利点を有する。
 上記発泡剤としては、水、及び有機ハロゲン化合物等が挙げられる。入手が容易であり、利便性に優れることから、上記発泡剤は水であることが好ましい。水は上記イソシアネート化合物(B)と反応してCOを発生させることにより発泡剤として作用する。上記発泡剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記有機ハロゲン化合物としては、有機塩素化合物、有機フッ素化合物、有機臭素化合物、及び有機ヨウ素化合物等が挙げられる。上記有機ハロゲン化合物は、水素原子の全てがハロゲン原子で置換された有機ハロゲン化合物であってもよく、水素原子の一部がハロゲン原子で置換された有機ハロゲン化合物であってもよい。樹脂成形体の形成時の発泡性を良好にし、樹脂成形体の熱伝導率をより一層長期にわたり低く維持する観点からは、上記有機ハロゲン化合物は、有機塩素化合物、又は有機フッ素化合物であることが好ましい。
 上記有機塩素化合物としては、飽和有機塩素化合物、及び不飽和有機塩素化合物等が挙げられる。上記飽和有機塩素化合物としては、ジクロロエタン、プロピルクロライド、イソプロピルクロライド、ブチルクロライド、イソブチルクロライド、ペンチルクロライド、及びイソペンチルクロライド等が挙げられる。樹脂成形体の形成時の発泡性を良好にし、樹脂成形体の熱伝導率をより一層長期にわたり低く維持する観点からは、上記有機塩素化合物は、飽和有機塩素化合物であることが好ましく、炭素数が2~5の飽和有機塩素化合物であることがより好ましい。
 上記有機フッ素化合物としては、飽和有機フッ素化合物、及び不飽和有機フッ素化合物等が挙げられる。
 上記飽和有機フッ素化合物としては、ハイドロフルオロカーボン等が挙げられる。上記ハイドロフルオロカーボンとしては、ジフルオロメタン(HFC32)、1,1,1,2,2-ペンタフルオロエタン(HFC125)、1,1,1-トリフルオロエタン(HFC143a)、1,1,2,2-テトラフルオロエタン(HFC134)、1,1,1,2-テトラフルオロエタン(HFC134a)、1,1-ジフルオロエタン(HFC152a)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC227ea)、1,1,1,3,3-ペンタフルオロプロパン(HFC245fa)、1,1,1,3,3-ペンタフルオロブタン(HFC365mfc)及び1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(HFC4310mee)等が挙げられる。
 上記不飽和有機フッ素化合物としては、ハイドロフルオロオレフィン等が挙げられる。上記ハイドロフルオロオレフィンとしては、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)(E及びZ異性体)、及び1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz)(E及びZ異性体)等が挙げられる。
 さらに、上記有機フッ素化合物としては、塩素原子とフッ素原子と2重結合とを有する化合物も挙げられる。上記塩素原子とフッ素原子と2重結合とを有する化合物としては、1,2-ジクロロ-1,2-ジフルオロエテン(E及びZ異性体)、及びヒドロクロロフルオロオレフィン等が挙げられる。上記ヒドロクロロフルオロオレフィンとしては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)(E及びZ異性体)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)(E及びZ異性体)、1-(4)クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)(E及びZ異性体)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)(E及びZ異性体)、2-クロロ-2,2,3-トリフルオロプロペン(HCFO-1233xc)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)(E及びZ異性体)、3-クロロ-1,1,2-トリフルオロプロペン(HCFO-1233yc)、3,3-ジクロロ-3-フルオロプロペン、1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd)(E及びZ異性体)、2-クロロ-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(E及びZ異性体)、及び2-クロロ-1,1,1,3,4,4,4-ヘプタフルオロ-2-ブテン(E及びZ異性体)等が挙げられる。
 樹脂成形体の形成時の発泡性を良好にし、樹脂成形体の熱伝導率をより一層長期にわたり低く維持する観点からは、上記有機ハロゲン化合物は、ヒドロクロロフルオロオレフィン、ハイドロフルオロカーボン又はハイドロフルオロオレフィンであることが好ましい。
 発泡性を考慮して、上記発泡剤は、適宜の含有量で用いることができる。
 <他の成分>
 上記樹脂材料は、上述した成分以外の他の成分(ポリオール化合物(A)、イソシアネート化合物(B)、ウレタン樹脂成形体の粉末(C)、強化長繊維(D)、及び発泡剤のこれら5種とは異なる成分)を含んでいてもよい。
 上記他の成分としては、触媒、整泡剤、難燃剤、ウレタン樹脂成形体の粉末(C)以外の粉末(他の充填材)等が挙げられる。上記他の成分はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 触媒:
 上記樹脂材料は、触媒を含むことが好ましい。上記触媒としては、ウレタン化触媒、及び三量化触媒等が挙げられる。上記触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記樹脂材料は、ウレタン化触媒を含むことが好ましい。上記ウレタン化触媒は、上記ポリオール化合物の水酸基と、上記イソシアネート化合物のイソシアネート基との反応を促進させ、ウレタン結合の形成を促進する。
 上記ウレタン化触媒としては、ジブチル錫ジマレート、ジブチル錫ジウラレート及びジブチルビス(オレオイルオキシ)スタンナン等の有機錫化合物、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、及びN,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン等の第3級アミン化合物、N,N,N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N-メチル,N’-ジメチルアミノエチルピペラジン、並びにイミダゾール環中の第2級アミン官能基がシアノエチル基で置換されたイミダゾール化合物等が挙げられる。
上記ウレタン化触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ウレタン化触媒は、上記ポリオール化合物と上記イソシアネート化合物とが良好に反応するように、適宜の含有量で用いることができる。
 上記三量化触媒は、イソシアネート化合物のイソシアネート基の三量化反応を促進させ、イソシアヌレート環の形成を促進する。さらに、上記三量化触媒は、樹脂成形体の燃焼時の膨張を抑制する。
 上記三量化触媒としては、芳香族化合物、カルボン酸のアルカリ金属塩、カルボン酸の4級アンモニウム塩、及び4級アンモニウム塩/エチレングリコール混合物等が挙げられる。上記芳香族化合物としては、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、及び2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等が挙げられる。上記カルボン酸のアルカリ金属塩としては、酢酸カリウム、及び2-エチルヘキサン酸カリウム等が挙げられる。上記三量化触媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記三量化触媒は、三量化反応が良好に促進されるように、適宜の含有量で用いることができる。
 整泡剤:
 上記整泡剤としては、ポリオキシアルキレンアルキルエーテル等ポリオキシアルキレン整泡剤、及びオルガノポリシロキサン等のシリコーン整泡剤等が挙げられる。
 他の充填材(以下、充填材):
 上記充填材としては、粉末状の充填材が挙げられる。上記充填材を用いることにより、気泡壁の補強効果が効果的に発揮される。また、上記充填材を用いることにより、コストを低く抑えることができる。上記充填材は、有機粉末であってもよく、無機粉末であってもよく、有機粉末と無機粉末との混合粉末であってもよい。上記充填材は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記充填材としては、ガラス繊維屑;炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、及び炭酸バリウム等の炭酸塩化合物;ドーソナイト、ハイドロタルサイト、マイカ、イモゴライト、セリサイト、及び石膏繊維等の鉱物;硫酸カルシウム、硫酸バリウム、及び硫酸マグネシウム等の硫酸塩化合物;ケイ酸カルシウム等のケイ酸塩化合物;タルク、クレー、モンモリロナイト、ベントナイト、活性白土、及びセピオライト等の粘土;窒化アルミニウム、窒化ホウ素、及び窒化ケイ素等の窒化物;カーボンブラック、グラファイト、炭素バルーン、及び木炭粉末等の炭素化合物;チタン酸カリウム、及びチタン酸ジルコン酸鉛等のチタン化合物;アルミニウムボレート等の金属ホウ酸塩化合物;硫化モリブデン等の硫化物;炭化ケイ素等の炭化物;フライアッシュ、石炭灰、及びシラスバルーン等の灰;硅砂等の砂;軽石等の火山砕屑物;木片;竹片;澱粉;米糠;樹脂成形体の粉体等が挙げられる。
 <硬化性樹脂材料の他の詳細>
 上記樹脂材料は、上記ポリオール化合物(A)と、上記イソシアネート化合物(B)と、上記ウレタン樹脂成形体の粉末(C)と、上記強化長繊維(D)と、必要に応じて配合されるこれら以外の成分とを混合することで調製できる。各成分の混合方法は、特に限定されない。1又は複数の成分を含む複数の液を調製し、複数の液を混合して、樹脂材料を得てもよい。複数の液の混合は、樹脂成形体の形成時に行われてもよい。上記ポリオール化合物(A)を含む液に、上記イソシアネート化合物(B)と上記ウレタン樹脂成形体の粉末(C)とを混合した後、この液を上記強化長繊維(D)に含浸させてもよい。上記ポリオール化合物(A)を含む液に上記ウレタン樹脂成形体の粉末(C)を混合し、次いで、上記イソシアネート化合物(B)を混合した後、この液を強化長繊維(D)に含浸させてもよい。
 (樹脂成形体)
 本発明に係る樹脂成形体は、上述した硬化性樹脂材料の成形体である。上記樹脂材料を成形することにより、樹脂成形体を得ることができる。例えば、上記樹脂材料を40℃~80℃で加熱して、成形及び硬化させることにより、樹脂成形体を得ることができる。上記樹脂成形体は、発泡樹脂成形体であってもよい。上記樹脂成形体が発泡樹脂成形体である場合には、該樹脂成形体を軽量にすることができる。
 上記樹脂成形体は、建築物、車両・船舶、鉄道施設、水処理施設、工場施設、水産・養殖施設、電気設備、スポーツ・公園施設、及び土木現場等の用途に使用できる。
 上記樹脂成形体は、建築物において、バルコニー、フロアー材、土台、梁、根太、束、屋根、及び桟木等に好適に用いられる。
 上記樹脂成形体は、車両又は船舶において、根太、FFU船、デッキ、バルクヘッド、トラック荷台材、及びブリッジ等に好適に用いられる。
 上記樹脂成形体は、鉄道施設において、歩道板、大三帆条保護板、プラットホーム、及び枕木(橋、分岐、並、短)等に好適に用いられる。
 上記樹脂成形体は、水処理施設において、覆蓋、角落し、セキ板、フロキューター羽根、ドア、ガラリ、整流板、迂流板、仕切り板、及び傾斜版等に好適に用いられる。
 上記樹脂成形体は、工場施設において、床板、歩廊、ピット蓋、薬液槽、水槽、作業台、架台、根太材、パレット、及び冷凍庫等に好適に用いられる。
 上記樹脂成形体は、水産・養殖施設において、孵化槽、養殖槽、活魚槽、及び歩廊等に好適に用いられる。
 上記樹脂成形体は、電気設備において、クリート、及び管枕等に好適に用いられる。
 上記樹脂成形体は、スポーツ・公園施設において、パーゴラ、橋、案内板、あずま屋、バックスクリーン、テニス練習板、スコアボード、浮桟橋、吊り橋、遊歩道、スキー板芯材、水車、及びプール部材等に好適に用いられる。
 上記樹脂成形体は、土木現場において、受圧板、及びSEW土留め壁等に好適に用いられる。
 上記樹脂成形体は、枕木として特に好適に用いられる。上記枕木は、例えば、直方体状の枕木であってもよく、直方体状の本体部と、該本体部から外側に突出している突出部とを備える枕木であってもよい。
 枕木(樹脂成形体)は、長さ方向と幅方向とを有していてもよい。枕木の曲げ弾性率をより一層良好にする観点からは、上記強化長繊維は、枕木(樹脂成形体)の長さ方向に沿って配置されていることが好ましい。
 (樹脂成形体の製造方法)
 以下の樹脂成形体の製造方法の欄で説明する樹脂成形体の各材料((1)ポリオール化合物、(A)、イソシアネート化合物(B)、ウレタン樹脂成形体の粉末(C)及び発泡剤など)の詳細は、上記硬化性樹脂材料の欄で説明した各材料と同じである。
 本発明に係る樹脂成形体の製造方法は、以下の工程を備える。(1)ポリオール化合物(A)とイソシアネート化合物(B)とウレタン樹脂成形体の粉末(C)とを含む第1の組成物を得る工程。(2)上記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に含浸させて、第2の組成物を得る含浸工程。(3)金型内で上記第2の組成物を硬化させる硬化工程。上記第2の組成物のイソシアネートインデックスは、110以上120以下である。本発明に係る樹脂成形体の製造方法では、上記の構成が備えられているので、得られる樹脂成形体において、比重のばらつきを抑えることができる。また、ウレタン樹脂成形体の粉末を含む組成物を強化長繊維間部分に良好に含浸させることができる。
 上記第1の組成物は、発泡剤を含んでいてもよく、含んでいなくてもよい。上記第2の組成物は、発泡剤を含んでいてもよく、含んでいなくてもよい。上記硬化工程において、発泡剤を用いてもよく、用いなくてもよい。上記硬化工程は、上記金型内で上記第2の組成物を発泡硬化させる発泡硬化工程であることが好ましい。この場合には、得られる樹脂成形体を軽量にすることができる。
 上記樹脂成形体の製造方法は、ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体から、上記ウレタン樹脂成形体の粉末(C)を得る工程を備えることが好ましい。この場合には、樹脂成形体の製造方法において、ウレタン樹脂成形体の加工時にウレタン樹脂成形体の切粉が大量に発生した場合にも、該切粉をリサイクルして充填材として活用することができるので、環境負荷を軽減することができ、かつコストを下げることができる。また、環境負荷の軽減の観点及びコストの低減の観点から、上記ウレタン樹脂成形体の粉末(C)を得るために用いられる上記ウレタン樹脂成形体が、リサイクル品であることが好ましい。
 上記樹脂成形体の製造方法は、上記(1)第1の組成物を得る工程と上記(2)含浸工程との間に、(1A)上記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に散布する散布工程を備えることが好ましい。上記散布工程では、散布装置を用いて、上記第1の組成物を上記強化長繊維束に散布することが好ましい。また、上記散布工程では、上記強化長繊維束を一方向に進行させながら、上記第1の組成物を上記強化長繊維束に散布することが好ましい。
 図1は、本発明の一実施形態に係る樹脂成形体の製造方法を説明するための図である。
 製造装置100は、ホッパー11と、ベルトフィーダー12と、スクリュー内蔵の押出機4と、ポンプ43と、第1原料タンク21と、ポンプ22と、第2原料タンク31と、ポンプ51と、混合散布装置5と、揉み板61と、含浸板62と、加熱部を有する金型63とを備える。また、製造装置100は、強化長繊維束8を一方向(図中、左側から右側方向)に進行させることが可能な搬送手段を備える。
 <上記ウレタン樹脂成形体の粉末(C)を得る工程(分級工程ともいう)>
 ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体から、上記ウレタン樹脂成形体の粉末(C)(充填材1)を得る。例えば、ウレタン樹脂成形体の切粉を分級機6に投入して分級処理を行い、充填材1を得る。この工程において、上記ウレタン樹脂成形体は、例えば、ウレタン樹脂組成物又はウレタン樹脂成形体を所定の形状に加工等する際に発生する屑片(従来は廃棄物)であってもよい。
 <第1の組成物を得る工程>
 充填材1がホッパー11に投入され、次いで、充填材1がベルトフィーダー12によって運搬されて押出機4に供給される。押出機4は、シリンダ内に2軸のスクリューを備える。また、第1原料2が第1原料タンク21に投入され、混合される。第1原料2は、ポリオール化合物を含む液である。第1原料2は、発泡剤を含むことが好ましい。第1原料2は、ポンプ22によって押出機4に供給される。押出機4では、充填材1と第1原料2とが、押出機4のスクリューの回転により混合され、充填材1と第1原料2との混合液(以降、「混合液A」と記載することがある)が得られる。
 第2原料3が第2原料タンク31に投入される。第2原料3は、イソシアネート化合物である。第2原料2が、発泡剤を含んでいてもよい。
 混合液Aが、ポンプ43によって混合散布装置5へ供給される。第2原料3が、ポンプ51によって混合散布装置5へ供給される。混合散布装置5では、混合液Aと第2原料3とが均一に混合されて、第1の組成物7(ポリオール化合物とイソシアネート化合物と充填材1(ウレタン樹脂成形体の粉末)と発泡剤との混合液)が得られる。混合液Aが、発泡剤を含んでいてもよく、第2原料3が、発泡剤を含んでいてもよく、混合液Aと第2の原料3との混合時に、発泡剤を含ませてもよい。
 <散布工程>
 第1の組成物7は、混合散布装置5の吐出口から、強化長繊維が一方向に引き揃えられた強化長繊維束8(強化長繊維の繊維束)に散布される。強化長繊維束8を一方向に進行させながら、第1の組成物7が強化長繊維束8に散布される。本実施形態では、強化長繊維はガラス長繊維であり、強化長繊維束8は、ガラス長繊維束である。
 <含浸工程>
 第1の組成物7と強化長繊維束8とは、揉み板61と含浸板62との間で揉まれ、強化長繊維束8を構成する強化長繊維の間の部分に第1の組成物7が含浸される。含浸板62は、含浸に用いられる板であり、含浸用板である。このようにして、第1の組成物7が強化長繊維束8に含浸された第2の組成物81(硬化性樹脂材料、複合体)が得られる。本発明では、上記樹脂材料が上記第1の構成を備えるように設計されているため、第1の組成物7が強化長繊維間部分に良好に含浸され、かつ第1の組成物7が強化長繊維間部分に良好に保持される。
 上記含浸工程では、上記第1の組成物を上記強化長繊維束に含浸させて、第2の組成物(硬化性樹脂材料、複合体)を得る。上記第1の組成物を強化長繊維間部分に良好に含浸させる観点からは、上記含浸工程において、上記第1の組成物と上記強化長繊維束とは、揉み板と含浸板との間で揉まれることが好ましい。ただし、上記含浸工程において、上記含浸板に代えて、例えば、無端ベルトを用いることにより、上記第1の組成物を上記強化長繊維束に含浸させてもよい。
 上記含浸工程では、温度調節機を用いて上記第1の組成物の温度を制御しながら、上記第1の組成物を上記強化長繊維束に含浸させることが好ましい。上記含浸工程において、上記第1の組成物の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、18℃以上であることが更に好ましく、30℃以下であることが好ましく、25℃以下であることがより好ましく、22℃以下であることが更に好ましい。上記含浸工程における上記第1の組成物の温度が上記下限以上であると、第1の組成物の粘度をより一層低くすることができるので、上記第1の組成物を強化長繊維間部分により一層良好に含浸させることができる。上記含浸工程における上記第1の組成物の温度が上記上限以下であると、意図しない硬化反応を抑えることができる。
 <硬化工程(好ましくは発泡硬化工程)>
 第2の組成物81を金型63に移送し、金型63内で第2の組成物81を硬化(好ましくは発泡硬化)させて、金型63の形状に対応する樹脂成形体(好ましくは発泡樹脂成形体)を得ることができる。なお、第2の組成物81を金型63に順次移送することで、樹脂成形体を連続的に製造することができる。
 上記硬化工程では、成形用通路内に設けられた金型内で、上記第2の組成物(硬化性樹脂材料)を硬化させることが好ましい。例えば、上記成形用通路の内面に設けられた金属ベルトを加熱することにより、上記第2の組成物を硬化させることができる。
 上記硬化工程において、上記金型の加熱温度は、好ましくは35℃以上、より好ましくは40℃以上、更に好ましくは45℃以上、好ましくは100℃以下、より好ましくは80℃以下、更に好ましくは60℃以下、特に好ましくは55℃以下である。上記金型の加熱温度が上記下限以上及び上記上限以下であると、上記樹脂材料を良好に硬化させることができる。
 <他の詳細>
 上記第1の組成物の20℃及び20rpmでの粘度は、好ましくは10000cps以上、より好ましくは15000cps以上、更に好ましくは20000cps以上、特に好ましくは25000cps以上、好ましくは45000cps以下、より好ましくは40000cps以下である。上記粘度が上記下限以上及び上記上限以下であると、上記第1の組成物を強化長繊維間部分に良好に含浸させることができる。
 上記粘度は、例えば、B型粘度計を用いて測定することができる。
 上記第1の組成物100重量%中、上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは4重量%以上、より好ましくは6重量%以上、好ましくは9重量%以下、より好ましくは7重量%以下である。上記ウレタン樹脂の成形体の粉末(C)の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記ウレタン樹脂の成形体の粉末(C)の含有量が上記上限以下であると、強化長繊維間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記第1の組成物中の上記ポリオール化合物(A)100重量部に対して、上記第1の組成物中の上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは5重量部以上、より好ましくは10重量部以上、更に好ましくは12重量部以上、特に好ましくは15重量部以上である。上記第1の組成物中の上記ポリオール化合物100重量部に対して、上記第1の組成物中の上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは50重量部以下、より好ましくは30重量部以下、更に好ましくは25重量部以下、特に好ましくは23重量部以下、最も好ましくは20重量部以下である。上記充填材の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記充填材の含有量が上記上限以下であると、強化長繊維間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記第1の組成物中の上記ポリオール化合物(A)100重量部に対して、上記第1の組成物中の上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは5重量部以上、より好ましくは10重量部以上、更に好ましくは12重量部以上、特に好ましくは15重量部以上である。上記第1の組成物中の上記ポリオール化合物(A)100重量部に対して、上記第1の組成物中の上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは50重量部以下、より好ましくは30重量部以下、更に好ましくは25重量部以下、特に好ましくは23重量部以下、最も好ましくは20重量部以下である。上記ウレタン樹脂成形体の粉末(C)の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記ウレタン樹脂成形体の粉末(C)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記第1の組成物中の上記ポリオール化合物(A)と上記ポリイソシアネート化合物(B)との合計100重量部に対して、上記第1の組成物中の上記ウレタン樹脂の成形体の粉末(C)の含有量は、好ましくは2重量部以上、より好ましくは4重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下である。上記ウレタン樹脂成形体の粉末(C)の含有量が上記下限以上であると、得られる樹脂成形体の機械的強度をより一層高めることができる。上記ウレタン樹脂成形体の粉末(C)の含有量が上記上限以下であると、強化長繊維(D)間部分に強化長繊維以外の成分を含む組成物を含浸させやすくなり、得られる樹脂成形体の比重のばらつきを小さくすることができ、また、曲げ弾性率を高めることができる。
 上記第1の組成物を得る工程において、上記発泡剤は、第1原料に含まれていてもよく、第2原料に含まれていてもよく、第1原料と第2原料との双方に含まれていてもよい。第1原料は発泡剤を含んでいなくてもよく、第2原料は発泡剤を含んでいなくてもよい。
 上記第1の組成物、第1原料、及び第2原料はそれぞれ、ポリオール化合物(A)、イソシアネート化合物(B)、上記ウレタン樹脂の成形体の粉末(C)、強化長繊維、及び発泡剤以外の成分を含んでいてもよい。上記ポリオール化合物(A)、イソシアネート化合物(B)、上記ウレタン樹脂の成形体の粉末(C)、強化長繊維、及び発泡剤以外の成分は、例えば、上記硬化性樹脂材料の欄に記載の他の成分であってもよい。上記第1の組成物は、触媒を含んでいてもよく、整泡剤を含んでいてもよい。上記触媒は、第1原料に含まれていてもよく、第2原料に含まれていてもよく、第1原料と第2原料との双方に含まれていてもよい。第1原料は触媒を含んでいなくてもよく、第2原料は触媒を含んでいなくてもよい。上記整泡剤は、第1原料に含まれていてもよく、第2原料に含まれていてもよく、第1原料と第2原料との双方に含まれていてもよい。第1原料は整泡剤を含んでいなくてもよく、第2原料は整泡剤を含んでいなくてもよい。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 以下の材料を用意した。
 (ポリオール化合物(A))
 プロピレンオキサイドが付加されたポリエーテルポリオール(住化コベストロウレタン社製「SBU ポリオール J610」)
 (イソシアネート化合物(B))
 ジフェニルメタンジイソシアネート(住化コベストロウレタン社製「44V20L」)
 (強化長繊維)
 ガラス長繊維(繊維径10μm~20μmのモノフィラメントを多数引き揃えてロービングにしたガラス長繊維)
 (ウレタン樹脂成形体の粉末(C))
 <分級工程>
 別のロットで製造された樹脂成形体(リサイクル品、ウレタン樹脂を含む樹脂成形体)の切削屑を分級処理して、以下のウレタン樹脂を含む樹脂成形体の粉末を得た。
 ウレタン樹脂を含む樹脂成形体の粉末(表中UR粉末(C)、粒径D50:1000μm以下、ガラス繊維の繊維長:1000μm以下)
 上記充填材の粒径D90及び粒径D50は、レーザー回折式粒度分布測定装置を用いて測定した。
 (他の充填材)
 珪砂
 フライアッシュ
 (発泡剤)
 水
 (触媒)
 触媒:ジプロピレングリコールとトリエチレンジアミンとの混合物
 (整泡剤)
 シリコンオイル(東レダウシリコン社製「SZ-1729」)
 (実施例1)
 図1に示す方法で、樹脂成形体を作製した。なお、充填材として、ウレタン樹脂を含む樹脂成形体の粉末(C)を用いた。また、図1に示す第1原料として、ポリオール化合物と発泡剤と触媒と整泡剤とを含む液を用いた。また、図1に示す第2原料として、ポリイソシアネート化合物を用いた。
 <第1の組成物を得る工程>
 ホッパーに投入された充填材をベルトフィーダーによって押出機に供給した。また、第1原料タンクに投入された第1原料をポンプによって押出機に供給した。押出機にて、充填材と第1原料とを混合し、充填材と第1原料との混合液(混合液A)を得た。次いで、混合液Aをポンプによって混合散布装置へ供給した。また、第2原料タンクに投入された第2原料をポンプによって混合散布装置へ供給した。混合散布装置にて、混合液Aと第2原料とを均一に混合し、第1の組成物を得た。なお、第1の組成物中の各成分の含有量を表1に示す。
 <散布工程>
 第1の組成物を、混合散布装置の吐出口から、強化長繊維が一方向に引き揃えられた強化長繊維束(強化長繊維の繊維束)に散布した。なお、強化長繊維束を一方向に進行させながら、第1の組成物を強化長繊維束に散布した。
 <含浸工程>
 第1の組成物と強化長繊維束とを、15℃~25℃の条件で、揉み板と含浸板との間で揉みこみ、強化長繊維束を構成する各強化長繊維の間に第1の組成物を含浸させて、第1の組成物が強化長繊維束に含浸された第2の組成物を得た。なお、第2の組成物中の強化長繊維の含有量(ポリオール化合物100重量部に対する含有量)を表1に示す。
 <硬化工程(発泡硬化工程)>
 第2の組成物を金型に移送し、金型内で第2の組成物を硬化(発泡硬化)させて、樹脂成形体(発泡樹脂成形体)を得た。
 (実施例2~13及び比較例1~8)
 充填材の種類及び第1の組成物中の各成分の含有量、並びに、第2の組成物中の強化長繊維の含有量(ポリオール化合物100重量部に対する含有量)を表1~6のように設定したこと以外は、実施例1と同様にして、樹脂成形体を得た。
 (参考例1)
 充填材を用いなかったこと、及び第1の組成物中の各成分の含有量を表3のように設定したこと以外は、実施例1と同様にして、樹脂成形体を得た。
 (評価)
 (1)樹脂成形体の比重のばらつき(標準偏差)
 得られた樹脂成形体を、幅12.7mm、厚み12.7mm、長さ127mmに切断した。切断した樹脂成形体を10サンプル用意し、各サンプルの比重を測定した。測定した10サンプルの比重の標準偏差を求めた。なお、比重のばらつきが小さいほど、第1の組成物の強化長繊維間部分への含浸性が良好であったことを意味する。
 (2)第1の組成物の粘度
 第1の組成物の20℃及び20rpmでの粘度を、B型粘度計(東機産業社製「TVC-10形粘度計」)を用いて測定した。
 (3)第1の組成物の強化長繊維間部分への含浸性
 ラボスケールの含浸装置を用いて、強化長繊維に第1の組成物を含浸後、第1の組成物が強化長繊維間部分に含浸している面積(含浸面積)を、画像解析ソフト(ImageJ)にて測定した。また、強化長繊維に第1の組成物を含浸させた樹脂成形体を一辺が20mmの正六面体状に切断した。切断した樹脂成形体を10サンプル用意し、各サンプルの比重を測定した。測定した10サンプルの比重の標準偏差を求めた。なお、比重のばらつきが小さいほど、第1の組成物の強化長繊維間部分への含浸性が良好であったことを意味する。
  <第1の組成物の強化長繊維間部分への含浸性の判定基準>
 〇〇:比重の標準偏差が0.11未満であり、含浸面積割合が99%以上である
 ○:比重の標準偏差が0.11未満であるが、含浸面積割合が99%未満である、又は、比重の標準偏差が0.11以上0.13未満であり、含浸面積割合が99%以上である
 △:比重の標準偏差が0.11以上0.13未満であり、含浸面積割合が99%未満である
 ×:比重の標準偏差が0.13以上である
 組成及び結果を下記の表1~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例2~13では、第1の組成物の強化長繊維間部分への含浸性が良好であり、その結果、得られる樹脂成形体において、充填材及び樹脂成分が良好に分散されていた。そのため、実施例2~13で得られた樹脂成形体では機械的強度を良好に高めることができる。
 なお、参考例1では、充填材を用いなかったため、樹脂成形体の比重のばらつきは小さかった。しかしながら、参考例1の樹脂成形体は、充填材を含まないため、実施例2~13の樹脂成形体と比べて、機械的強度が低かった。
 1…充填材
 2…第1原料
 3…第2原料
 4…押出機
 5…混合散布装置
 6…分級機
 7…第1の組成物
 8…強化長繊維束
 10…樹脂成形体
 11…ホッパー
 12…ベルトフィーダー
 21…第1原料タンク
 22…ポンプ
 31…第2原料タンク
 43…ポンプ
 51…ポンプ
 61…揉み板
 62…含浸板
 63…金型
 81…第2の組成物
 100…製造装置

Claims (12)

  1.  ポリオール化合物と、
     イソシアネート化合物と、
     ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体の粉末と、
     強化長繊維とを含み、
     硬化性樹脂材料のイソシアネートインデックスが110以上120以下である、硬化性樹脂材料。
  2.  前記ポリオール化合物100重量部に対して、前記ウレタン樹脂成形体の粉末の含有量が10重量部以上30重量部以下である、請求項1に記載の硬化性樹脂材料。
  3.  前記ウレタン樹脂成形体の粉末に含まれる前記ガラス繊維の繊維長が、1000μm以下である、請求項1又は2に記載の硬化性樹脂材料。
  4.  請求項1~3のいずれか1項に記載の硬化性樹脂材料の成形体である、樹脂成形体。
  5.  発泡樹脂成形体である、請求項4に記載の樹脂成形体。
  6.  ポリオール化合物とイソシアネート化合物とウレタン樹脂成形体の粉末とを含む第1の組成物を得る工程と、
     前記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に含浸させて、第2の組成物を得る含浸工程と、
     金型内で前記第2の組成物を硬化させる硬化工程とを備え、
     前記第2の組成物のイソシアネートインデックスが110以上120以下である、樹脂成形体の製造方法。
  7.  前記第1の組成物中の前記ポリオール化合物100重量部に対して、前記第1の組成物中の前記ウレタン樹脂成形体の粉末の含有量が10重量部以上30重量部以下である、請求項6に記載の樹脂成形体の製造方法。
  8.  前記硬化工程が、前記金型内で前記第2の組成物を発泡硬化させる発泡硬化工程である、請求項6又は7に記載の樹脂成形体の製造方法。
  9.  前記第1の組成物を得る工程と前記含浸工程との間に、前記第1の組成物を、強化長繊維が一方向に引き揃えられた強化長繊維束に散布する散布工程を備える、請求項6~8のいずれか1項に記載の樹脂成形体の製造方法。
  10.  前記散布工程において、前記強化長繊維束を一方向に進行させながら、前記第1の組成物を前記強化長繊維束に散布する、請求項9に記載の樹脂成形体の製造方法。
  11.  ウレタン樹脂及びガラス繊維を含むウレタン樹脂成形体から、前記ウレタン樹脂成形体の粉末を得る工程を備える、請求項6~10のいずれか1項に記載の樹脂成形体の製造方法。
  12.  前記ウレタン樹脂成形体の粉末を得るために用いられるウレタン樹脂成形体が、リサイクル品である、請求項6~11のいずれか1項に記載の樹脂成形体の製造方法。
PCT/JP2022/033296 2021-09-10 2022-09-05 硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法 WO2023038011A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022341726A AU2022341726A1 (en) 2021-09-10 2022-09-05 Curable resin material, resin molded body, and method for producing resin molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021147982 2021-09-10
JP2021-147982 2021-09-10
JP2021161765 2021-09-30
JP2021-161765 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023038011A1 true WO2023038011A1 (ja) 2023-03-16

Family

ID=85507638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033296 WO2023038011A1 (ja) 2021-09-10 2022-09-05 硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法

Country Status (2)

Country Link
AU (1) AU2022341726A1 (ja)
WO (1) WO2023038011A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080191A (ja) 1998-09-02 2000-03-21 Sekisui Chem Co Ltd 長繊維補強硬化性樹脂発泡成形体
JP2008056928A (ja) * 2006-08-31 2008-03-13 Bayer Material Science Llc 低密度硬質強化ポリウレタンおよびその製造方法
JP2012521450A (ja) * 2009-03-24 2012-09-13 エボニック デグサ ゲーエムベーハー プリプレグ、及び前記プリプレグから製造される成形体
WO2014196607A1 (ja) * 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物
JP2018103451A (ja) * 2016-12-26 2018-07-05 積水化学工業株式会社 ハニカム構造体
JP2019515070A (ja) * 2016-04-21 2019-06-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタンをベースとする引抜成形製品の製造方法
US20200010647A1 (en) * 2017-03-13 2020-01-09 Boral Ip Holdings (Australia) Pty Limited Highly-filled polyurethane composites with non-silane treated glass fibers
WO2020054056A1 (ja) 2018-09-14 2020-03-19 積水化学工業株式会社 硬化性樹脂組成物、樹脂成形体及び樹脂成形体の製造方法
US20200317851A1 (en) * 2016-05-23 2020-10-08 Boral Ip Holdings (Australia) Pty Limited Surfactant-free filled polyurethane foam and method of making same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080191A (ja) 1998-09-02 2000-03-21 Sekisui Chem Co Ltd 長繊維補強硬化性樹脂発泡成形体
JP2008056928A (ja) * 2006-08-31 2008-03-13 Bayer Material Science Llc 低密度硬質強化ポリウレタンおよびその製造方法
JP2012521450A (ja) * 2009-03-24 2012-09-13 エボニック デグサ ゲーエムベーハー プリプレグ、及び前記プリプレグから製造される成形体
WO2014196607A1 (ja) * 2013-06-07 2014-12-11 株式会社カネカ 硬化性樹脂組成物、それを用いてなる構造接着剤、コーティング材又は繊維強化複合材料、それを発泡してなる発泡体、それを硬化してなる積層体、及びそれらの硬化物
JP2019515070A (ja) * 2016-04-21 2019-06-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリウレタンをベースとする引抜成形製品の製造方法
US20200317851A1 (en) * 2016-05-23 2020-10-08 Boral Ip Holdings (Australia) Pty Limited Surfactant-free filled polyurethane foam and method of making same
JP2018103451A (ja) * 2016-12-26 2018-07-05 積水化学工業株式会社 ハニカム構造体
US20200010647A1 (en) * 2017-03-13 2020-01-09 Boral Ip Holdings (Australia) Pty Limited Highly-filled polyurethane composites with non-silane treated glass fibers
WO2020054056A1 (ja) 2018-09-14 2020-03-19 積水化学工業株式会社 硬化性樹脂組成物、樹脂成形体及び樹脂成形体の製造方法

Also Published As

Publication number Publication date
AU2022341726A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
JP5111395B2 (ja) バラストおよびバラストの製造方法
CN1146615C (zh) 用于生产开孔聚氨酯柔性泡沫体的硅氧烷表面活性剂
US7763341B2 (en) Filled polymer composite and synthetic building material compositions
DE2524191C3 (de) Verfahren zur Herstellung bochgeffillter hydrophober Harnstoffgruppen enthaltender Leichtschaumstoffe
JP2021185254A (ja) ポリウレタン組成物原料液剤、ポリウレタン組成物、及び混合システム
JP4803045B2 (ja) ウレタンセメント系組成物、塗り床材及びその施工方法
JP6626601B1 (ja) 硬化性樹脂組成物、樹脂成形体及び樹脂成形体の製造方法
DE2227147B2 (de) Als kolloides Xerosol vorliegendes homogenes anorganisch-organisches Ionomer-Polykieselsäure-gel-Verbundmaterial
WO2023038011A1 (ja) 硬化性樹脂材料、樹脂成形体及び樹脂成形体の製造方法
JP2023041026A (ja) 樹脂成形体の製造方法
DE2359607C2 (de) Verfahren zur Herstellung eines anorganisch-organischen Verbundmaterials
JP2024048323A (ja) 硬化性樹脂材料及び樹脂成形体
JP2023051773A (ja) 硬化性樹脂材料及び樹脂成形体
JP2024048324A (ja) 硬化性樹脂材料及び樹脂成形体
JP2021161361A (ja) 硬化性樹脂組成物、樹脂成形体及び樹脂成形体の製造方法
WO2021060396A1 (ja) 樹脂成形体及び樹脂成形体の製造方法
CN1074009C (zh) 储存稳定、含阻燃剂的多元醇成分
JP2018193848A (ja) まくら木およびその製造方法
JP2023143615A (ja) 硬化性樹脂組成物、樹脂成形体及び樹脂成形体の製造方法
JP2019026819A (ja) 硬化性組成物及び成形体
JP2019206686A (ja) 硬化性組成物、ポリウレタン発泡体及びポリウレタン発泡体形成用材料
JP2021107515A (ja) ポリオール組成物、発泡性ポリウレタン組成物及びポリウレタンフォーム
JP2020015785A (ja) 発泡成形体
DE102006039901A1 (de) Neuartige hoch wasserhaltige Polyurethane, Verfahren zur ihrer Herstellung und Anwendung
JP7453795B2 (ja) 区画構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022341726

Country of ref document: AU

Ref document number: AU2022341726

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022341726

Country of ref document: AU

Date of ref document: 20220905

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022867333

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022867333

Country of ref document: EP

Effective date: 20240410