DE102008028300B4 - Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung - Google Patents

Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung Download PDF

Info

Publication number
DE102008028300B4
DE102008028300B4 DE102008028300.2A DE102008028300A DE102008028300B4 DE 102008028300 B4 DE102008028300 B4 DE 102008028300B4 DE 102008028300 A DE102008028300 A DE 102008028300A DE 102008028300 B4 DE102008028300 B4 DE 102008028300B4
Authority
DE
Germany
Prior art keywords
circuit board
flexible area
layer
cover layer
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102008028300.2A
Other languages
English (en)
Other versions
DE102008028300A1 (de
Inventor
Wolfgang Pahl
Hans Krüger
Dr. Demmer Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
TDK Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Electronics AG filed Critical TDK Electronics AG
Priority to DE102008028300.2A priority Critical patent/DE102008028300B4/de
Priority to US12/997,867 priority patent/US9035189B2/en
Priority to PCT/EP2009/057051 priority patent/WO2009150133A1/de
Priority to JP2011512955A priority patent/JP2011523223A/ja
Publication of DE102008028300A1 publication Critical patent/DE102008028300A1/de
Application granted granted Critical
Publication of DE102008028300B4 publication Critical patent/DE102008028300B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0394Conductor crossing over a hole in the substrate or a gap between two separate substrate parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09081Tongue or tail integrated in planar structure, e.g. obtained by cutting from the planar structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09109Locally detached layers, e.g. in multilayer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Abstract

Leiterplatte umfassend:- einen Schaltungsträger (1),- eine Deckschicht (4) aus einem nicht leitenden Material, welches eine organische Substanz umfasst, angeordnet auf dem Schaltungsträger (1),- eine erste Metallisierungsebene (5) zumindest teilweise angeordnet auf der Deckschicht (4),wobei die erste Metallisierungsebene (5) einen flexiblen Bereich (10) aufweist,wobei die erste Metallisierungsebene (5) im flexiblen Bereich (10) Kontaktflächen (9) zur elektrischen Kontaktierung eines Bauteils (55) umfasst,wobei die Deckschicht (4) im flexiblen Bereich (10) Aussparungen (50) aufweist, welche die Flexibilität des flexiblen Bereiches (10) erhöhen und sich zumindest teilweise zwischen den Kontaktflächen (9) erstrecken.

Description

  • Ein weit verbreitetes Problem bei der Fertigung von an sich starren Leiterplatten ist es, flexible Bereiche zu realisieren, ohne die Robustheit oder Geschlossenheit der Leiterplatte insgesamt zu beeinträchtigen.
  • Aus der US 2004 / 0 118 595 A1 sind Leiterplattensysteme mit einem flexiblen Bereich bekannt. Aus der DE 10 2004 028 211 A1 sind Leiterplatten mit Strukturen zum Anpassen der Steifigkeit bekannt. Aus der US 2004 / 0 244 191 A1 sind miniaturisierte Vorrichtungen bekannt. Aus der US 2004 / 0 145 874 A1 sind Details zur Integration von Schaltungen bekannt. Aus der DE 197 20 106 C2 sind Vorrichtungen zum Aufnehmen von Komponenten elektrischer Schaltungen bekannt. Die JP 2006-231 174 A1 betrifft ebenfalls elektrische Schaltungen.
  • Eine Aufgabe von Ausführungsformen besteht darin, eine an sich starre Leiterplatte bereitzustellen, welche einen flexiblen Bereich aufweist. Die Leiterplatte soll sich zudem einfach und kostengünstig mit nur geringfügig modifizierten Standardprozessen der Produktion starrer Leiterplatten verwirklichen lassen.
  • Die Aufgabe wird durch eine Leiterplatte bzw. einem Verfahren zur Herstellung gemäß den unabhängigen Ansprüchen gelöst. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen an.
  • Ein Beispiel betrifft eine Leiterplatte, umfassend einen Schaltungsträger, eine Deckschicht aus einem nicht-leitenden Material, welches eine organische Substanz umfasst und auf dem Schaltungsträger angeordnet ist, eine erste Metallisierungsebene, angeordnet auf der Deckschicht, wobei die erste Metallisierungsebene einen flexiblen Bereich aufweist.
  • Unter flexibel ist in diesem Zusammenhang zu verstehen, dass bei einer Krafteinwirkung senkrecht zur Leiterplatte wenigstens die 10-fache Auslenkung der Oberfläche erfolgt verglichen mit den nicht flexiblen Bereichen der Leiterplatte. Diese Bedingung ist zumindest für Zugkräfte zu erfüllen, vorteilhafter Weise aber für Zug- und Druckkräfte. Ausführungsformen, bei denen der flexible Bereich nennenswert aus der Leiterplattenebene herausgebogen wird, sollen die Bedingung vor dem Herausbiegen erfüllen.
  • Der flexible Bereich kann sich hierbei auf einen relativ zur gesamten Fläche der Leiterplatte sehr kleinen Teil der Leiterplatte beschränken. Über den flexiblen Bereich können beispielsweise flexible Anschlüsse realisiert werden, ohne dass die Robustheit oder Geschlossenheit der Leiterplatte insgesamt beeinträchtigt wird. Das Material für die Deckschicht kann als organische Substanz beispielsweise ein Harz umfassen.
  • In einer weiteren Ausführungsform ist in dem flexiblen Bereich zusätzlich zu der ersten Metallisierungsebene auch die Deckschicht flexibel.
  • Dies hat den Vorteil, dass die erste Metallisierungsebene durch die Deckschicht mechanisch stabilisiert werden kann. Dies ermöglicht Ausführungsformen, bei denen die erste Metallisierungsebene in der Schichtdicke sehr dünn ausgeformt ist. Sie kann dann so dünn sein, dass sie für sich alleine mechanisch instabil wäre und die Schichtdicke in ihrer Mindestdicke nur noch durch die Funktion als elektrischer Leiter limitiert wird. Die Geometrie der ersten Metallisierungsebene wird hierbei nicht mehr durch tragende Funktion bestimmt, sondern kann beispielsweise nur noch durch die elektrisch leitende Funktion bestimmt sein. Die geringe Dicke der Metallisierungsebene ermöglicht Ausführungsformen bei denen der flexible Bereich eine sehr hohe Flexibilität aufweist.
  • Für die Deckschicht kann ein Material verwendet werden, welches die Flexibilität der ersten Metallisierungsebene nicht einschränkt und trotzdem zur ausreichenden Stabilität der ersten Metallisierungsebene beiträgt.
  • In einer weiteren Ausführungsform weist der flexible Bereich zumindest eine Achse auf, entlang der er sich gegen die restlichen Leiterplatten abbiegen lässt. Es sind Ausführungsformen möglich, bei denen sich der flexible Bereich um diese Achse sowohl zu der restlichen Leiterplatte hin wie auch von ihr weg bewegen lässt.
  • Dies ermöglicht es, dass der flexible Bereich um die besagte Achse sowohl in die Leiterplatte hinein wie auch aus ihrer Ebene heraus gebogen werden kann. Bei dem Drehen um die Achse aus der Ebene der Leiterplatte heraus ist auch beispielsweise eine Drehung um 180° denkbar. Somit würde der flexible Bereich mit seiner ehemaligen Oberseite wieder auf der Deckschicht oder der Metallisierung aufliegen, oder mit einem gewissen Zwischenraum zur Deckschicht wieder parallel zur Deckschicht verlaufen. Es sind aber auch Winkel größer 180° denkbar, so zum beispielsweise für den Fall, dass sich die Drehachse am Rande der Deckschicht oder in der Nähe des Randes der Deckschicht befindet. Dabei wäre es beispielsweise denkbar, dass der flexible Bereich um 270° um die Achse gebogen wird, so dass er dann senkrecht am äußeren Rand der Leiterplatte nach unten steht. Es sind auch Ausführungsformen möglich, bei denen eine Bewegung des flexiblen Bereiches erst in Betrieb der Leiterplatten auftritt oder vorgenommen wird.
  • In einer weiteren Ausführungsform ist der flexible Bereich an nur einer Seite mit seiner Umgebung bzw. der übrigen Leiterplatte verbunden. Der flexible Bereich kann dann beispielsweise als Zunge ausgeformt sein.
  • Dies verleit dem flexiblen Bereich eine sehr hohe Flexibilität. Die Seite, an der der flexible Bereich mit der Umgebung verbunden ist, kann zusätzlich auch Aussparungen aufweisen. Diese können von den Außenkanten des flexiblen Bereichs ausgehen und sich in diesen hinein erstrecken, so dass Ecken entstehen. Es kann sich aber auch um Aussparungen handeln, welche nicht bis an die Außenkante verlaufen, wie beispielsweise Löcher oder Schlitze in dem flexiblen Bereich. Durch die Aussparungen wird die Flexibilität des flexiblen Bereiches nochmals erhöht.
  • In einer weiteren Ausführungsform ist der flexible Bereich über einem Freiraum angeordnet. Unter Freiraum ist in diesem Zusammenhang zu verstehen, dass der flexible Bereich keine mechanische oder chemische Bindung zu der Ebene, die unter ihm verläuft, aufweist. Der Freiraum kann somit beispielsweise als Hohlraum ausgeformt sein, in den sich der flexible Bereich hinein bewegen lässt. Unter Freiraum ist aber auch zu verstehen, dass unter dem flexiblen Bereich direkt eine Ebene oder Schicht folgt mit der die Unterseite des flexiblen Bereiches nicht verbunden ist, oder nicht auf ihr haftet. Der flexible Bereich hat somit die Möglichkeit, auch ohne dass sich ein Hohlraum unter ihm befindet, sich aus der Leiterebene heraus bewegen zu können. Bei dieser Ausführungsform eignen sich für die Schicht unter dem flexiblen Bereich besonders Materialien, welche eine geringe Haftneigung aufweisen. Es kann beispielsweise ein Material verwendet werden, welches fluorierte Polymere aufweist.
  • In einer Ausführungsform ist die erste Metallisierungsebene auf der Deckschicht in Teilbereichen des flexiblen Bereiches als Leiterbahn und/oder Kontaktfläche ausgeformt.
  • Bei dieser Ausführungsform kann sich die erste Metallisierungsebene auf einen kleinen Teilbereich des flexiblen Bereiches beschränken. Die erste Metallisierungsebene nimmt hierbei die Funktion der Stromleitung beziehungsweise der elektrischen Kontaktierung wahr. Die Kontaktfläche kann beispielsweise zur elektrischen Kontaktierung eines elektronischen Bauelements dienen, welches auf die Leiterplatten aufgesetzt oder montiert wird. Es sind Ausführungsformen denkbar, bei denen der flexible Bereich vor der Montage des elektronischen Bauelements erst aus der Ebene der Leiterplatte heraus gebogen wird, bevor das elektronische Bauelement auf die Kontaktfläche aufgesetzt wird. Ebenso sind auch Ausführungsformen denkbar, bei denen durch das Aufsetzen des elektronischen Bauelements die flexiblen Bereiche in den Hohlraum der sich unter ihnen befindet hineingedrückt werden. Des Weiteren sind Ausführungsformen denkbar, bei denen nach der Montage des elektronischen Bauelements die flexiblen Bereiche sich noch immer in ihrer Ausgangsposition parallel zur Leiterplatte befinden, ihre Flexibilität dem aufgesetzten elektronischen Bauelement aber eine gewisse Beweglichkeit ermöglicht.
  • In einer weiteren Ausführungsform weist der flexible Bereich Aussparungen auf, welche die Flexibilität des flexiblen Bereiches erhöhen.
  • Diese Aussparungen können sowohl von den freien Rändern wie auch von der Seite her, mit der der flexible Bereich mit der Umgebung verbunden ist, in den flexiblen Bereich hineinführen. Ebenso sind auch Aussparungen denkbar, die weder von einer freien Seite noch von der angebundenen Seite des flexiblen Bereiches starten, sondern als Löcher unterschiedlicher Geometrien in dem flexiblen Bereich vorliegen. Hierbei sind Ausführungsformen denkbar, bei denen die Deckschicht im flexiblen Bereich soweit in der Dicke reduziert oder gar entfernt ist, dass sie nur noch in den Teilbereichen vorhanden ist, wo sie mit der ersten Metallisierungsebene beschichtet ist.
  • In einer weiteren Ausführungsform umfasst die Deckschicht ein stabilisierendes Gewebe.
  • Dieses Gewebe kann beispielsweise aus einzelnen freien Fasern wie aber auch aus einer Matte bestehen. Bei dem Material kann es sich beispielsweise um ein Fasergewebe handeln. Die Deckschicht kann neben dem stabilisierenden Gewebe oder auch anstelle desselben andere Verstärkungselemente aufweisen. Diese Verstärkungselemente können sowohl in die Schicht selbst eingearbeitet sein, wie auch sich auf der Oberfläche der Deckschicht befinden. Die Verstärkungselemente können der Deckschicht eine zusätzliche Steifigkeit verleihen. Bei dem Aufbringen der Verstärkungselemente kann der Bereich der Achse um die sich der flexible Bereich bewegen kann ausgespart werden, oder die Verstärkungselemente können in einem weiteren Verfahrensschritt in dem Bereich der Achse wieder zerstört werden.
  • In einer weiteren Ausführungsform ist auf dem flexiblen Bereich ein elektronisches Bauteil angeordnet, welches elektrisch leitend mit der ersten Metallisierungsebene verbunden ist.
  • Für den Fall, dass das elektronische Bauteil nur über einen oder mehrere flexible Bereiche mit der Leiterplatte verbunden ist, weist das gesamte elektronische Bauteil gegenüber der Leiterplatte eine gewisse Flexibilität auf. Diese Flexibilität kann nicht nur zur Leiterplatte hin oder von ihr weg bestehen, sondern in alle drei Raumrichtungen. Eine Leiterplatte kann auch mehr als nur einen flexiblen Bereich aufweisen. Auf einer Leiterplatte kann auch über einem oder mehreren flexiblen Bereichen mehr als ein Bauteil angeordnet sein.
  • In einer weitren Ausführungsform wird die Nachgiebigkeit gegenüber Zugspannung des flexiblen Bereiches in Richtung der Leiterplattenebene durch Aussparungen erhöht wird.
  • In einer weitren Ausführungsform wird auf der Leiterplatte eine Kappe so aufgesetzt, dass zumindest in Teilbereichen ein eingeschlossenes Volumen zur Aufnahme eines Bauelements gebildet ist. Die Kappe kann hierbei nur einen Teil der Leiterplatte, aber auch die gesamte Leiterplatte überdecken. Der flexible Bereich kann sich hierbei im oder auch außerhalb der Kappe befinden befinden.
  • Die Leiterplatte kann beispielsweise als Interposer verwendet werden. Hierbei kann sie zwischen einem herkömmlichen Schaltungsträger und einem auf der Leiterplatte vorzugsweise im flexiblen Bereich aufsitzenden stress-sensiblen Bauelement angeordnet werden.
  • In einer weiteren Ausführungsform kann eine Leiterplatte verwendet werden, die einen thermischen Längenausdehnungskoeffizienten bezüglich der Leiterplattenebene aufweist, der mindestens 4 ppm/K größer ist, als der des elektronischen Bauteils, welches auf der Leiterplatte montiert ist. So kann beispielsweise der thermische Längenausdehnungskoeffizient der Leiterplatte größer 12 ppm/K sein, und der des elektronischen Bauteils, welches auf der Leiterplatte montiert ist, kleiner 8 ppm/K sein. Der flexible Bereich verhindert dabei eine unzulässig hohe thermische Stressbelastung des Bauteils.
  • Neben der Leiterplatte selbst werden auch Verfahren zur Herstellung der Leiterplatte beansprucht.
  • Eine Verfahrensvariante zur Herstellung einer Leiterplatte umfasst die folgenden Verfahrensschritte: Bereitstellen eines Schaltungsträgers, Aufbringen einer Delaminations-Schicht auf einen räumlich begrenzten Teilbereich des Schaltungsträgers, Aufbringen einer Schichtenfolge auf die Delaminations-Schicht und einen Teilbereich des Schaltungsträgers, umfassend eine Deckschicht, welche ein organisches Material umfasst, und eine erste Metallisierungsebene auf der Deckschicht, und Strukturieren der Deckschicht und der ersten Metallisierungsebene, wobei ein flexibler Bereich der ersten Metallisierungsebene definiert wird.
  • Durch das Strukturieren der Deckschicht und der ersten Metallisierungsebene im Bereich der Deckschicht wird ein Teilbereich der Deckschicht von dem Rest der Deckschicht zumindest partiell gelöst. Das bedeutet, dass beispielsweise durch Schneiden, Fräsen oder Ätzen oder andere Prozesstechniken ein Teil der Deckschicht herausstrukturiert wird, der jetzt nicht mehr zu allen Seiten hin mit der umgebenden Deckschicht verbunden ist und so gegenüber der umgebenden Deckschicht eine erhöhte Flexibilität aufweist. Mit der Deckschicht weist auch die auf der Deckschicht angeordnete erste Metallisierungsebene diese Flexibilität auf. Der so definierte flexible Bereich kann jetzt beispielsweise in einem weiteren Verfahrensschritt aus der Ebene der Deckschicht herausgebogen werden.
  • In einer weiteren Variante dieses Verfahrens wird zur Ausbildung des flexiblen Bereiches in einem weiteren Verfahrensschritt die Delaminations-Schicht entfernt. Durch das Entfernen der Delaminations-Schicht kann ein Hohlraum unter dem flexiblen Bereich erzeugt werden. Dieser Hohlraum ermöglicht es dem flexiblen Bereich, sich nicht nur aus der Leiterplattenebene heraus zu bewegen, sondern auch in die Ebene hinein. Die Delaminations-Schicht kann als Opferschicht aufgebracht und strukturiert werden.
  • Die Opferschicht kann ausgewählt sein aus löslichen Schichten, selektiv ätzbaren Schichten, flüchtigen oder zersetzbaren Schichten, verdampfbaren Schichten und niedrig schmelzenden Schichten. Dies ermöglicht es, dass die Opferschicht auf der Leiterplatte entfernt werden kann ohne dass die angrenzenden Schichten in Mitleidenschaft gezogen werden. Die Methode der Opferschicht ermöglicht es, zum einen sehr große Freiräume zu erzeugen, zum anderen über der Opferschicht sehr dünne und bereits dadurch flexible Schichten zu generieren. In weiteren nachfolgenden Verfahrensschritten können die dünnen Schichten nach ihrem Aufbringen auf der Opferschicht so stabilisiert und ausgehärtet werden, so dass sie nach dem Entfernen der Opferschicht eine ausreichende Stabilität aufweisen. Dies kann beispielsweise durch das Erzeugen oder Übereinanderaufbringen von mehreren weiteren dünnen Schichten erfolgen.
  • In einer weiteren von der ersten Verfahrensvariante unabhängigen Verfahrensvariante kann die Leiterplatte durch ein Herstellungsverfahren hergestellt werden, welches folgende Verfahrensschritte umfasst: Bereitstellen eines Schaltungsträgers, Herausarbeiten einer Vertiefung in dem Schaltungsträger, Aufbringen einer Schichtenfolge auf den Schaltungsträger so, dass die Vertiefung überdeckt aber nicht ausgefüllt wird, wodurch ein Freiraum ausgebildet wird, wobei die Schichtenfolge eine Deckschicht, welche ein organisches Material umfasst, und eine erste Metallisierungsebene auf der Deckschicht umfasst, Strukturieren der Deckschicht und der ersten Metallisierungsebene über dem Freiraum, so dass ein flexibler Bereich der ersten Metallisierungsebene ausgebildet wird.
  • Diese Verfahrensvariante hat den Vorteil gegenüber der ersten beschriebenen Verfahrensvariante, dass hier keine Delaminations-Schicht notwendig ist.
  • Im Folgenden sollen Varianten anhand von Figuren und Ausführungsbeispielen näher erläutert werden.
  • Es zeigen:
    • 1a bis i schematisch die Verfahrensschrittabfolge einer Verfahrensvariante,
    • 2 schematisch die Aufsicht eines Ausführungsbeispiels,
    • 3 die Aufsicht einer weiteren Ausführungsform,
    • 4 die schematische Seitenansicht einer möglichen besonderen Ausführungsform,
    • 5 die schematische Seitenansicht einer weiteren besonderen Ausführungsform,
    • 6 eine schematische Seitenansicht einer möglichen weiteren Ausführungsform,
    • 7 eine schematische Seitenansicht einer möglichen weiteren Ausführungsform mit zusätzlichen Elementen,
    • 8a und 8b weitere Ausführungsformen, welche zusätzlich noch eine Kappe aufweisen,
    • 9 eine schematische Seitenansicht einer möglichen weiteren Ausführungsform,
    • 10a bis 10c schematisch die Verfahrensschritte eines weiteren Herstellungsverfahrens,
    • 11a bis 11d schematisch Zwischenstufen in einem Herstellungsprozess in der Aufsicht.
  • Die Figurenfolge 1a bis 1i zeigt schematisch Schritte einer möglichen Herstellungsvariante. In 1a ist der Schaltungsträger 1 dargestellt. Auf dem Schaltungsträger 1 ist eine zweite Metallisierungsebene 2 angeordnet. Aus Gründen der Übersicht wurde auf die Darstellung von Durchkontaktierungen oder externen Anschlüssen auf Ober- und/oder Unterseite des Schaltungsträgers verzichtet. Für den Schaltungsträger 1 kann beispielsweise ein glasfaserverstärktes Epoxidsubstrat verwendet werden. Für die zweite Metallisierungsebene kann beispielsweise eine Kupferfolie verwendet werden. Die Kupferfolie kann beispielsweise auf den Schaltungsträger 1 auflaminiert werden. Die zweite Metallisierungsebene 2 kann vor dem Aufbringen auf den Schaltungsträger 1 bereits strukturiert sein oder nach dem Aufbringen auf den Schaltungsträger noch strukturiert werden.
  • Die 1b zeigt die Schichtenfolge umfassend den Schaltungsträgers 1, die zweite Metallisierungsebene 2 und die Delaminations-Schicht 3. Diese Schichtenfolge kann beispielsweise aus der in 1a dargestellten Schichtenfolge dadurch hervorgehen, dass auf die zweite Metallisierungsebene 2 die Delaminations-Schicht 3 aufgebracht wurde. In 1b bedeckt die Delaminations-Schicht 3 noch die gesamte zweite Metallisierungsebene 2. Für die Delaminations-Schicht können beispielsweise ein negativer Fotolack, ein positiver Fotolack, oder aber auch laminierbare Trockenresists verwendet werden.
  • Eine bevorzugte Dicke für die Delaminations-Schicht 3 liegt im Bereich von 1 bis 50 um.
  • Das Material für die Delaminations-Schicht 3 kann so gewählt werden, dass es in einem weiteren späteren Verfahrensschritt wieder entfernt werden kann. Für das Entfernen kommen beispielsweise folgende Techniken in Frage: Herauslösen, Herausätzen, Behandlung mit Plasma, Behandlung mit erhöhten Temperaturen, Verdampfen, Sublimieren, Zersetzen, Aufquellen oder Aufschäumen. Für den Fall, dass lösliche Resists verwendet werden, sind solche Resists bevorzugt, die sich sehr gut auflösen statt in grobe Partikel oder Flocken zu dispergieren oder zu zerfallen. Dies vereinfacht das restlose Entfernen des Materials der Delaminations-Schicht 3.
  • Neben Lacken eignen sich insbesondere auch thermisch rückstandsarm beziehungsweise rückstandslos zersetzbare Polymere. Materialien, welche mit wässrigen Lösungsmitteln entfernt werden können, sind beispielsweise Polyvinylalkohol oder Polyvinylpyrrolidon. Der Temperaturbereich für die thermische Zersetzung liegt bevorzugt im Bereich von 180 bis 260 °C. Als thermisch zersetzbares Material eignet sich beispielsweise Cellulosederivate, wie Methylcellulose, Carboxymethylcellulose, Hydroxypropylcellulose, Celluloseacetat und Celluloseester. Die Cellulosederivate können aber auch mittels Lösungsmittel entfernt werden. Es eignen sich auch besonders gut Materialien, deren Schmelzpunkte im Bereich von 150 bis 220 °C liegen. Hier wäre beispielsweise Hexachlorethan zu nennen, dessen Schmelzpunkt bei 186 °C liegt, welches aber bei 185 °C bereits eine hohe Sublimationsrate aufweist. Ein weiteres mögliches Material, welches für die Delaminations-Schicht 3 verwendet werden kann, ist Unity 2000P® Sacrificial Polymer von Promeros LLC, Ohio.
  • In 1c ist schematisch ein Belichtungsverfahren dargestellt, durch welches die Delaminations-Schicht 3 strukturiert werden soll. Hierzu wird über der Delaminations-Schicht 3 eine Maske 15 angebracht, wodurch nur ein Teilbereich der Delaminations-Schicht 3 durch die Strahlung, welche schematisch durch die Pfeile dargestellt ist, getroffen wird. Zur Strukturierung der Delaminations-Schicht 3 sind auch andere Strukturierungsmethoden denkbar. Beispielsweise ist auch eine scannende Direktbelichtung möglich, wie sie beispielsweise mit einem Laser durchgeführt werden kann.
  • 1d zeigt schematisch die Seitenansicht des Schaltungsträgers, der jetzt eine strukturierte Delaminations-Schicht 3 aufweist. Die Delaminations-Schicht 3 bedeckt jetzt nur noch einen Teilbereich der zweiten Metallisierungsebene 2. Zu dem in 1d dargestellten Leiterplatte kann man nicht nur über das in 1b und 1c dargestellten subtraktive Verfahren gelangen, sondern auch alternativ über additive Verfahren. Hier wäre beispielsweise das Sieb- oder Schablonendruckverfahren oder auch das Auftragen mittels Inkjet zu nennen. Für die additiven Verfahren können auch nicht lichtempfindliche Substanzen verwendet werden.
  • In 1e wird nun auf den in 1d dargestellten Leiterplatte eine Deckschicht 4 über die freien Teilbereiche der zweiten Metallisierungsebene 2 und über die Delaminations-Schicht 3 aufgebracht. Auf der Deckschicht 4 befindet sich eine erste Metallisierungsebene 5. Das Aufbringen kann beispielsweise über Laminieren erfolgen. Die Schichtenfolge Deckschicht 4 und erste Metallisierungsebene 5 kann auch in zwei getrennten Verfahrensschritten aufgebracht werden. Hierzu kann die Deckschicht 4, welche ein organisches Material umfasst, beispielsweise durch Gießen, Aufschleudern oder Laminieren aufgebracht werden. In einem zweiten nachfolgenden Verfahrensschritt kann dann die erste Metallisierungsebene 5 auf die Deckschicht 4 aufgebracht werden. Soll die Schichtenfolge Deckschicht 4 und erster Metallisierungsebene 5 in einem Verfahrensschritte aufgebracht werden, so kann hierfür beispielsweise ein glasfaserverstärktes Epoxidbasismaterial verwendet werden, welches auf einer Seite eine Metallisierung aufweist, welche beispielsweise eine dünne Kupferfolie sein kann. Die erste Metallisierungsebene 5 hat vorzugsweise eine Dicke im Bereich von 3 bis 20 µm. Die Deckschicht 4 hat vorzugsweise eine Dicke im Bereich von 5 bis 100 µm. Für die Deckschicht 4 kann beispielsweise auch ein harzartiges Material verwendet werden, welches im oder nach dem Auftragungsprozess noch mit weiteren Verstärkungselementen versehen werden kann. Für die Deckschicht 4 eignet sich beispielsweise auch ein Polyimidbasiertes Material, welches zusätzlich eine Kupferkaschierung aufweisen kann.
  • In 1f ist eine Leiterplatte dargestellt, auf den jetzt die Deckschicht 4 und die erste Metallisierungsebene 5 aufgebracht wurden. Es ist zu sehen, dass die Deckschicht 4 über der Delaminations-Schicht 3 eine deutlich geringere Dicke aufweist, als in den Teilbereichen, wo sie auf der zweiten Metallisierungsebene 2 aufliegt. Es sind auch Ausführungsformen denkbar, in denen über der Delaminations-Schicht 3 keine Deckschicht 4 aufgebracht ist, sondern direkt die erste Metallisierungsebene 5 auf der Delaminations-Schicht 3 angeordnet ist. Nach dem Auflaminieren oder Verpressen der Deckschicht 4 kann auch ein weiterer Härtungsschritt der Deckschicht folgen.
  • In 1 9 wird eine Leiterplatte dargestellt, bei dem ein kleiner Teilbereich der ersten Metallisierungsebene 5 entfernt wurde. Durch das Entfernen ist eine kleine Öffnung 20a in der ersten Metallisierungsebene 5 entstanden, welche über der Delaminations-Schicht 3 angeordnet ist. Das Entfernen des Teilbereichs der ersten Metallisierungsebene 5 kann beispielsweise über einen Fotostrukturierungsschritt und einem anschließenden Ätzschritt erfolgen.
  • In 1h ist ein Leiterplatte dargestellt, bei dem die unter der Öffnung 20a liegende Deckschicht 4 entfernt wurde, so dass ein Graben 20b entstanden ist. Der Graben 20b kann, wie in 1h dargestellt, auch in die Delaminations-Schicht 3 hineinreichen. Für das Erzeugen des Grabens 20b kann beispielsweise ein Ätzverfahren verwendet werden, wie beispielsweise ein Plasmaätzverfahren. Für das Ätzverfahren kann die erste Metallisierungsebene 5 als Maske dienen. Zur Erzeugung des Grabens kann auch ein Laser verwendet werden. Die in 1 g und in 1h dargestellten Verfahrensschritte können auch in einem gemeinsamen Verfahrensschritt durchgeführt werden.
  • In 1i ist eine Leiterplatte dargestellt, bei der die Delaminations-Schicht 3 entfernt wurde, so dass ein Freiraum 7 entstanden ist. Die Delaminations-Schicht 3 kann beispielsweise durch ein Herauslösen oder Herausätzen oder durch ein thermisches Verfahren entfernt werden. Das Material der Delaminations-Schicht 3 kann je nach verwendeter Technik hierbei aufgequollen, aufgeschäumt oder zersetzt werden. Durch das Entfernen der Delaminations-Schicht 3 ist der flexible Bereich 10 ausgebildet worden. In diesem Ausführungsbeispiel sind die Deckschicht 4 und die zweite Metallisierungsebene 2 in dem flexiblen Bereich 10 als Zunge 6 ausgeformt. Der Schaltungsträger 1 unter dem Freiraum 7 ist starr, also nicht flexibel.
  • Die 2 zeigt eine Aufsicht auf eine Leiterplatte. Bei dieser Leiterplatte könnte es sich beispielsweise um eine solche handeln, wie sie in 1i dargestellt ist. Dargestellt ist die Deckschicht 4, auf der die erste Metallisierungsebene 5 aufgebracht ist. Die Deckschicht 4 und die erste Metallisierungsebene 5 umfassen einen flexiblen Bereich 10. Der flexible Bereich 10 ist u-förmig nach drei Seiten durch den Graben 20b begrenzt. Durch den Graben 20b sieht man die darunter liegende Delaminations-Schicht 3, die wie gesagt noch durch diesen Graben 20b hindurch entfernt werden kann. Die erste Metallisierungsebene 5 ist hier als ein Paar Leiterbahnen ausgeformt, die jeweils in einer Kontaktfläche 9 enden. Nach dem Entfernen der Delaminations-Schicht 3 ist die Flexibilität des Bereiches innerhalb des Grabens 20b nochmals deutlich erhöht. Somit sind auch die beiden Kontaktflächen 9 am Ende der ersten Metallisierungsebene 5 flexibel. Die mechanischen Eigenschaften des flexiblen Bereiches 10 werden in diesem Ausführungsbeispiel überwiegend durch die Struktur der ersten Metallisierungsebene 5 und deren Dicke bestimmt. Eine weitere Flexibilisierung besonders gegenüber Zug- und Schubspannungen in der Ebene kann durch entsprechende Ausformung der Leiterbahnen der ersten Metallisierungsebene 5, wie sie in 2 dargestellt sind, erzielt werden.
  • In 3 ist als Aufsicht eine weitere Ausführungsform der Leiterplatte dargestellt. Neben den Elementen, wie sie in 2 zu sehen sind, umfasst die Ausführungsform in 3 zusätzlich noch Aussparungen 50. Während der Graben 20b in 2 den flexiblen Bereich 10 umgibt, dient er auch dazu, die Delaminations-Schicht 3 herauslösen zu können. Die Aussparungen in 3 haben zusätzlich noch die Funktion, die Flexibilität des flexiblen Bereichs 10 zu erhöhen. Um die Montage eines elektronischen Bauelements auf der Leiterplatte zu erleichtern, werden die Verbindungen des Bauelement zur Leiterplatte beispielsweise mittels Bonddrähten, Verlötungen oder Thermosonic-Flipchip-Verbindungen vorzugsweise vor dem Entfernen der Delaminations-Schicht 3 durchgeführt, da diese, solange sie noch vorhanden ist den flexiblen Bereich 10 stabilisiert.
  • Die 4 zeigt eine besondere Ausführungsform der Leiterplatte. Die Ausführungsform umfasst einen Schaltungsträger 1, eine zweite Metallisierungsebene 2, eine Deckschicht 4, sowie eine erste Metallisierungsebene 5. Bei dieser Ausführungsform ist im flexiblen Bereich 10 keine Deckschicht 4 mehr vorhanden. Der flexible Bereich 10 umfasst somit nur die erste Metallisierungsebene 5. Der Freiraum 7 ist in dieser Ausführungsform als Kanal 35 ausgeformt. Der Kanal 35 kann über den Einlass 25a mit Flüssigkeiten oder Gasen gefüllt werden, welche über den Auslass 25b den Kanal 35 wieder verlassen können. Oberhalb des Kanals 35 ist auf der ersten Metallisierungsebene 5 ein elektronisches Bauelement 30 angeordnet. Der Kanal 35 kann beispielsweise dafür verwendet werden, das elektronische Bauelement 30 zu kühlen. Da die erste Metallisierungsebene 5 aus Metall besteht, kann sie beispielsweise gut die Wärme des elektronischen Bauelements 30 an beispielsweise eine Kühlflüssigkeit, welche durch den Kanal 35 strömt, weiterleiten.
  • In 5 ist eine Ausführungsform der Leiterplatte dargestellt, bei der der flexible Bereich 10 auf einen Randbereich beschränkt ist, der um den Freiraum 7 herum verläuft.
  • Die 6 zeigt eine Ausführungsform einer Leiterplatte, wie sie aus der in 1i dargestellten Leiterplatte hervorgehen könnte. Hierzu wurde in einem weiteren Verfahrensschritt die dem flexiblen Bereich entsprechende Zunge 6 aus der Ebene der Deckschicht 4 herausgebogen. Die Flexibilität der Zunge 6 kann vor dem Herausbiegen durch Ausarbeiten von Aussparungen 50 (siehe 3) verbessert werden. Des Weiteren kann auch der noch dünne Rest der Deckschicht 4 im Bereich der Biegeachse entfernt werden. 7 zeigt eine Ausführungsform, bei der die Zunge 6 soweit aus der Ebene der Deckschicht 4 herausgebogen ist, dass sie jetzt senkrecht zur Deckschicht 4 steht. Das ermöglicht es jetzt, dass auf dem Leiterplatte Elemente 40 angeordnet werden können, die in alle drei Raumrichtungen (x, y, z) gerichtet sind. Hierbei kann das Element 40z schon vor dem Entfernen der Delaminations-Schicht 3 beziehungsweise dem Herausbiegen der Zunge 6 montiert werden. Somit entfallen die prozesstechnischen Herausforderungen, die nötig wären, ein solches Element erst an einem Bauelement anzubringen, welches bereits in der z-Dimension ausgeformt ist. Bei den Elementen 40 kann es sich beispielsweise um richtungsabhängige Sensoren, Anzeigen oder Aktoren handeln. Die dargestellte Anordnung ermöglicht dann beispielsweise die Detektion von Bewegung in alle Dreiraumrichtungen.
  • In 8a und 8b sind zwei Ausführungsformen der Leiterplatte dargestellt, welche noch zusätzlich jeweils eine Kappe 45 umfassen. In 8a ist das Bauelement aus 7 dargestellt, welches zusätzlich noch durch die Kappe 45 alle drei Elemente 40 komplett umschließt. Die 8b zeigt eine weitere Ausführungsform, welche nur zwei Elemente 40 aufweist, die durch eine Kappe 45 umschlossen werden, welches nur einen Teilbereich der Leiterplatte umschließt.
  • Die 9 zeigt ein Ausführungsbeispiel der Leiterplatte, bei der die Zunge 6 um 180° aus ihrer ursprünglichen Position herausgebogen wurde. Die Zunge 6 reicht hierdurch jetzt über den äußeren Rand der Leiterplatte hinaus. Hierdurch kann die Zunge 6 jetzt beispielsweise als externe Verbindung z.B. zur elektrischen Verschaltung genutzt werden. So können beispielsweise auf einfache Weise Verbindungen zu anderen Leiterplatten hergestellt werden. Des Weiteren kann die Zunge 6 auch als Heizfolie, Antenne, kapazitiver oder induktiver Sender/Empfänger genutzt werden.
  • In den 10a bis 10c ist eine weitere Variante eines Herstellungsverfahrens dargestellt. Die 10a zeigt einen Schaltungsträger 1 und darauf angeordnet eine zweite Metallisierungsebene 2. In 10b ist eine Leiterplatte dargestellt, die eine Vertiefung 8 aufweist. Diese Leiterplatte könnte beispielsweise aus der Leiterplatte, wie sie in 10a dargestellt ist, durch ein Herausfräsen oder Ätzen der Vertiefung 8 hergestellt werden. Die Vertiefung 8 kann aber beispielsweise auch mit Hilfe einer Lasertechnik gefertigt werden. Die in 1c dargestellte Leiterplatte weist jetzt zusätzlich noch eine Deckschicht 4 mit einer ersten Metallisierungsebene 5 auf. Dadurch dass die Deckschicht 4 nur mit der zweiten Metallisierungsebene 2 in Kontakt steht und nicht in die zuvor gefertigte Vertiefung 8 hineinragt, bildet diese einen Freiraum 7 aus. Bei diesem Herstellungsverfahren wird also ein Freiraum 7 ausgebildet, ohne dass eine Opferschicht speziell dafür aufgetragen wird und später wieder entfernt werden muss. Die Deckschicht 4 der ersten Metallisierungsebene 5 kann beispielsweise auf die zweite Metallisierungsebene 2 auflaminiert werden. Damit die Deckschicht 4 nicht in die Vertiefung 8 fließt, können für die Deckschicht 4 beispielsweise so genannte No-Flow-Laminate verwendet werden. Solche No-Flow-Laminate können beispielsweise auf Harz- oder Epoxidbasis gefertigt sein. Sie können des Weiteren zur Verstärkung ein stabilisierendes Gewebe oder auch andere Verstärkungselemente aufweisen. Ein mögliches Material das beispielsweise für die Deckschicht 4 verwendet werden könnte ist FR406NF der Firma Isola. In 10c ist eine Ausführungsform dargestellt bei der sowohl auf der Oberseite wie auch auf der Unterseite eine Deckschicht 4 aufgebracht wurde. Dieser symmetrische Aufbau sorgt beispielsweise dafür, dass es in der Leiterplatte nicht zu Verspannungen kommt. Dies Verspannungen können beispielsweise dadurch entstehen, dass für den Schaltungsträger 1 und die Deckschicht 4 unterschiedliche Materialien verwendet werden.
  • In den 11a bis 11d ist jeweils der flexible Bereich 10 einer Leiterplatte schematisch in der Aufsicht für verschiedene Prozessstufen dargestellt. In 11a ist der flexible Bereich 10 mit der Deckschicht 4 und der darauf aufgebrachten ersten Metallisierungsebene 5 dargestellt. Die erste Metallisierungsebene 5 ist hierbei zu Leiterbahnen und Kontaktflächen 9 ausgeformt. In 11b wurde die Flexibilität der Bereiche, in denen sich die Kontaktflächen 9 der ersten Metallisierungsebene 5 befinden, durch Aussparungen 50 erhöht. Das Fertigen der Aussparungen 50 kann beispielsweise mit Hilfe eines Lasers geschehen. Die Flexibilität der Deckschicht 4 in den Bereichen, in denen sich die Kontaktflächen befinden, ist jedoch hier noch eingeschränkt, da diese Teilbereiche über die Ecken noch jeweils mit der Umgebung verbunden sind. Dies verleiht den schon flexiblen Teilbereichen noch eine gewisse Stabilität. Dies ermöglicht es jetzt, wie in 11c dargestellt, ein elektronisches Bauteil 55 auf den flexiblen Bereich 10 der Leiterplatte aufzusetzen und über die Kontaktflächen 9 elektrisch zu kontaktieren. Dazu kann beispielsweise auch eine Lotpaste verwendet werden. Aus Gründen der Übersicht ist das elektronische Bauteil 55 nur mit seinem Umriss dargestellt. Wie in 11d dargestellt werden nach dem Aufsetzen des elektronischen Bauteils 55 noch weitere Aussparungen 60 gefertigt. Durch diese weiteren Aussparungen haben die flexiblen Bereiche, in denen sich die Kontaktflächen 9 befinden, über die Ecken jetzt keine Anbindung mehr zu ihrer Umgebung. Die Flexibilität dieser Teilbereiche wurde durch die zusätzlichen Aussparungen 60 noch einmal deutlich erhöht. Somit steht das elektronische Bauteil 55 mit der Leiterplatte nur über sehr flexible Elemente in Verbindung. Durch die Aussparungen 50 und 60, sowie durch die geschwungene Führung der Leiterbahnen, wird zusätzlich die Nachgiebigkeit des flexiblen Bereiches 10 gegenüber Zugspannung in Richtung der Leiterplattenebene erhöht.
  • Bevorzugte Kontaktierungsverfahren zwischen dem elektronischen Bauteil 55 und den Kontaktflächen 9 sind Löten, Leitkleben, Thermosonic-Bonden und Thermokompressions-Bonden unter Zuhilfenahme metallischer Verbindungshöcker (Stud Bumps). Die beiden erstgenannten Verfahren lassen sich hierbei problemlos auf den flexiblen Kontaktflächen 9 durchführen. Die beiden letztgenannten Verfahren werden vorzugsweise angewandt, solange der flexible Bereich 10 noch von der Delaminations-Schicht 3 gestützt wird, da hierbei erhebliche senkrechte Kräfte wirken.
  • Im Folgenden werden noch weitere Ausführungsformen beschrieben, welche nicht als Figuren dargestellt sind.
  • Eine Leiterplatte kann auch einen Schaltungsträger 1 umfassen, der auf zwei gegenüber liegenden Seiten flexible Bereiche 10 aufweist.
  • In einer weiteren Ausführungsform umfasst die Leiterplatte zusätzlich eine Barriereschicht, welche zwischen der Delaminations-Schicht 3 und der Deckschicht 4 angeordnet ist. Diese Barriereschicht kann beispielsweise einen Lack oder ein Metall umfassen. Eine solche zusätzliche Barriereschicht kann mögliche Einflüsse der Deckschicht 4 bei dessen Härtung auf die Delaminations-Schicht 3 verhindern.
  • In einer weiteren Ausführungsform wird eine Delaminations-Schicht 3 in der Leiterplatte ausgeformt, diese aber nicht wieder entfernt. Für die in der Leiterplatte verbleibende Delaminations-Schicht 3 kann beispielsweise ein Material verwendet werden, auf dem die Deckschicht 4 nicht haftet. Hierzu können beispielsweise florierte Polymere wie PTFE verwendet werden. Dadurch, dass zwischen der Delaminations-Schicht 3 und der darüber angeordneten Deckschicht 4 keine Haftung besteht, kann der flexible Bereich 10 aus der Ebene der Deckschicht 4 in die der Delaminations-Schicht 3 abgewandten Richtung bewegt werden. Des Weiteren kann der flexible Bereich durch Knickung oder Stauchung auch in Richtung der Leiterplattenebene wirkenden Druckspannungen ausweichen.
  • In einer weiteren Ausführungsform umfasst der flexible Bereich 10 nur die erste Metallisierungsebene 5 und keine Deckschicht 4. Die erste Metallisierungsebene 5 kann jedoch auf ihrer oberen Seite durch eine zusätzliche Schicht stabilisiert sein. Unterhalb der ersten Metallisierungsebene 5 befindet sich eine korrespondierende Kontaktfläche, welche beispielsweise in der zweiten Metallisierungsebene 2 ausgeformt sein kann. Die korrespondierende Kontaktfläche ist so angeordnet, dass beim Hineindrücken des flexiblen Bereichs 10 zwischen der ersten Metallisierungsebene 5 bzw. dem Bereich, der als Kontaktfläche 9 ausgebildet ist, und der korrespondierenden Kontaktfläche ein elektrisch leitender Kontakt hergestellt werden kann. Auf diese Weise können beispielsweise Drucktaster gefertigt werden.
  • Der flexible Bereich 10 kann auch mehrere erste Metallisierungsebenen 5 umfassen, welche beispielsweise durch mehrere Deckschichten 4, welche zwischen ihnen liegen, getrennt sein können. Hierbei kann jede erste Metallisierungsebene 5 unterschiedlich ausgeformt sein. Somit könnten beispielsweise die in 11 dargestellten vier Leiterbahnen sich in vier verschiedenen Ebenen befinden.
  • Es gibt Bauelement-Leiterplatten-Kombinationen, bei denen die Kontaktierung der Bauelemente zurzeit nur mittels eines Bonddrahtes oder einer anderen flexiblen Verbindung möglich ist. Der Grund dafür besteht darin, dass bei einer festen Verbindung, beispielsweise eines direkten Anlötens des Bauelements auf der Leiterplatte, im Bauelement zu starke mechanische Spannungen auftreten würden. Durch das entsprechende Beispiel ist es jetzt auch möglich, solche Bauelemente über eine starre Verbindung an die Leiterplatte anzubinden, wenn sich die Kontaktpunkte auf der Leiterplatte in einem flexiblen Bereich befinden. Die flexiblen Bereiche führen dazu, dass in dem aufgebrachten Bauteil keine Spannungen auftreten.
  • In Ausführungsformen, in denen der Freiraum 7 als Hohlraum ausgeformt ist, ist in einer besonderen Ausführungsform der Hohlraum mit einer weichen oder gallertartigen Masse ausgefüllt, so dass der flexible Bereich 10, der in den Hohlraum hineingedrückt wird, entweder stabilisiert oder zurückgefedert wird.
  • Bezugszeichenliste
  • 1
    Schaltungsträger
    2
    zweite Metallisierungsebene
    3
    Delaminations-Schicht
    4
    Deckschicht
    5
    erste Metallisierungsebene
    6
    Zunge
    7
    Freiraum
    8
    Vertiefung
    9
    Kontaktfläche
    10
    flexibler Bereich
    15
    Maske
    20a
    Öffnung
    20b
    Graben
    25a
    Einlass
    25b
    Auslass
    30
    elektronisches Bauelement
    35
    Kanal
    40
    Element
    45
    Kappe
    50
    Aussparung
    55
    elektronisches Bauteil
    60
    weitere Aussparungen

Claims (25)

  1. Leiterplatte umfassend: - einen Schaltungsträger (1), - eine Deckschicht (4) aus einem nicht leitenden Material, welches eine organische Substanz umfasst, angeordnet auf dem Schaltungsträger (1), - eine erste Metallisierungsebene (5) zumindest teilweise angeordnet auf der Deckschicht (4), wobei die erste Metallisierungsebene (5) einen flexiblen Bereich (10) aufweist, wobei die erste Metallisierungsebene (5) im flexiblen Bereich (10) Kontaktflächen (9) zur elektrischen Kontaktierung eines Bauteils (55) umfasst, wobei die Deckschicht (4) im flexiblen Bereich (10) Aussparungen (50) aufweist, welche die Flexibilität des flexiblen Bereiches (10) erhöhen und sich zumindest teilweise zwischen den Kontaktflächen (9) erstrecken.
  2. Leiterplatte nach Anspruch 1, wobei im flexiblen Bereich (10) zusätzlich auch die Deckschicht (4) flexibel ist.
  3. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei der flexible Bereich (10) zumindest eine Achse aufweist, entlang der sich der flexible Bereich (10) gegen die restliche Leiterplatte abbiegen lässt.
  4. Leiterplatte nach Anspruch 3, wobei sich der flexible Bereich (10) um diese Achse sowohl zu der restlichen Leiterplatte hin, wie auch von ihr weg bewegen lässt.
  5. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei der flexible Bereich (10) an nur einer Seite mit seiner Umgebung verbunden ist.
  6. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei der flexible Bereich (10) als Zunge (6) ausgeformt ist.
  7. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei der flexible Bereich (10) über einem Freiraum (7) angeordnet ist.
  8. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei die erste Metallisierungsebene (5) auf der Deckschicht (4) in Teilbereichen des flexiblen Bereichs (10) als Leiterbahn und / oder Kontaktfläche ausgeformt ist.
  9. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei die Deckschicht (4) ein stabilisierendes Gewebe umfasst.
  10. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei die Nachgiebigkeit des flexiblen Bereiches (10) gegenüber Zugspannung in Richtung der Leiterplattenebene durch Aussparungen (50) erhöht wird.
  11. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei auf der Leiterplatte eine Kappe (45) so aufgesetzt ist, dass zumindest in Teilbereichen ein eingeschlossenes Volumen zur Aufnahme des Bauteils (55) gebildet ist.
  12. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei die Leiterplatte als Interposer verwendet wird.
  13. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei die Leiterplatte einen thermischen Längenausdehnungskoeffizienten bezüglich der Leiterplattenebene aufweist, der mindestens 4 ppm/K größer ist, als der des Bauteils (55) welches auf der Leiterplatte montiert ist.
  14. Leiterplatte nach einem der vorhergehenden Ansprüche, wobei es sich bei dem Bauteil (55) um einen richtungsabhängigen Sensor handelt.
  15. Leiterplatte nach Anspruch 14, wobei die Leiterplatte mehr als einen richtungsabhängigen Sensor aufweist.
  16. Leiterplatte nach einem der Ansprüche 14 oder 15, wobei ein abgebogener Teil des flexiblen Bereichs (10), auf dem ein richtungsabhängigen Sensor montiert ist, senkrecht zum Schaltungsträger (1) angeordnet ist.
  17. Verfahren zur Herstellung einer Leiterplatte umfassend die Verfahrensschritte: - Bereitstellen eines Schaltungsträgers (1), - Aufbringen einer Delaminations-Schicht (3) auf einen räumlich begrenzten Teilbereich des Schaltungsträgers (1), - Aufbringen einer Schichtenfolge auf die Delaminations-Schicht (3) und einen Teilbereich des Schaltungsträgers (1), umfassend -- eine Deckschicht (4), welche ein organisches Material umfasst, und -- eine erste Metallisierungsebene (5) auf der Deckschicht (4), - Strukturieren der Deckschicht (4) und der ersten Metallisierungsebene (5), wobei ein flexibler Bereich (10) der ersten Metallisierungsebene (5) definiert wird, und wobei die erste Metallisierungsebene (5) im flexiblen Bereich (10) Kontaktflächen (9) zur elektrischen Kontaktierung eines Bauteils (55) umfasst, - Ausformen von Aussparungen (50) im flexiblen Bereich (10) der Deckschicht (4), welche die Flexibilität des flexiblen Bereiches (10) erhöhen und sich zumindest teilweise zwischen den Kontaktflächen (9) erstrecken.
  18. Verfahren nach Anspruch 17, wobei für die Delaminations-Schicht (3) ein Material verwendet wird, welches mit wässrigen Lösungsmitteln entfernt werden kann.
  19. Verfahren nach Anspruch 18, wobei das Material Polyvinylalkohol oder Polyvinylpyrrolidon umfasst.
  20. Verfahren nach Anspruch einem der Ansprüche 17 bis 19, wobei für die Delaminations-Schicht (3) ein Material verwendet wird, welches ein Cellulosederivat umfasst.
  21. Verfahren nach einem der Ansprüche 17 bis 20, wobei zur Ausbildung des flexiblen Bereichs (10) in einem weiteren Verfahrensschritt die Delaminations-Schicht (3) entfernt wird.
  22. Verfahren nach einem der Ansprüche 17 bis 21, bei dem als Delaminations-Schicht (3) eine Opferschicht aufgebracht und strukturiert wird, die ausgewählt ist aus einer löslichen Schicht, einer selektiv ätzbaren Schicht, einer flüchtigen oder zersetzbaren Schicht, einer verdampfbaren Schicht und einer niedrig schmelzenden Schicht.
  23. Verfahren nach einem der Ansprüche 17 bis 22, wobei das Verfahren als zusätzlichen Verfahrensschritt umfasst: - Montieren des Bauteils (55) auf den flexiblen Bereich (10).
  24. Verfahren nach Anspruch 23, wobei das Verfahren als zusätzlichen Verfahrensschritt umfasst: - Ausformen weiterer Aussparungen (50) nach der Montage des Bauteils (55) welche an den Bereich angrenzen, auf dem das Bauteils (55) montiert ist.
  25. Verfahren zur Herstellung einer Leiterplatte umfassend die Verfahrensschritte: - Bereitstellen eines Schaltungsträgers (1), - Herausarbeiten einer Vertiefung (8) in dem Schaltungsträger (1) , - Aufbringen einer Schichtenfolge auf den Schaltungsträger (1), so dass die Vertiefung (8) überdeckt aber nicht ausgefüllt wird, wodurch ein Freiraum (7) ausgebildet wird, wobei die Schichtenfolge eine Deckschicht (4), welche ein organisches Material umfasst, und eine erste Metallisierungsebene (5) auf der Deckschicht (4) umfasst, - Strukturieren der Deckschicht (4) und der ersten Metallisierungsebene (5) über dem Freiraum (7), so dass ein flexibler Bereich (10) der ersten Metallisierungsebene (5) ausgebildet wird, - Ausformen von Kontaktflächen (9) auf der ersten Metallisierungsebene (5) zur elektrischen Kontaktierung eines Bauteils (55), - Ausformen von Aussparungen (50) im flexiblen Bereich (10) der Deckschicht (4), welche die Flexibilität des flexiblen Bereichs (10) erhöhen und sich zumindest teilweise zwischen den Kontaktflächen (9) erstrecken.
DE102008028300.2A 2008-06-13 2008-06-13 Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung Active DE102008028300B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102008028300.2A DE102008028300B4 (de) 2008-06-13 2008-06-13 Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung
US12/997,867 US9035189B2 (en) 2008-06-13 2009-06-08 Circuit board with flexible region and method for production thereof
PCT/EP2009/057051 WO2009150133A1 (de) 2008-06-13 2009-06-08 Leiterplatte mit flexiblem bereich und verfahren zur herstellung
JP2011512955A JP2011523223A (ja) 2008-06-13 2009-06-08 可撓領域を備えた回路基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008028300.2A DE102008028300B4 (de) 2008-06-13 2008-06-13 Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung

Publications (2)

Publication Number Publication Date
DE102008028300A1 DE102008028300A1 (de) 2009-12-24
DE102008028300B4 true DE102008028300B4 (de) 2021-10-07

Family

ID=41058975

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008028300.2A Active DE102008028300B4 (de) 2008-06-13 2008-06-13 Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung

Country Status (4)

Country Link
US (1) US9035189B2 (de)
JP (1) JP2011523223A (de)
DE (1) DE102008028300B4 (de)
WO (1) WO2009150133A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034718B4 (de) 2010-08-18 2017-11-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dehnbares Substrat mit einer Kontaktstelle zwischen einem polymerbasierten elektrischen Leiter und einem weiteren elektrischen Leiter
JP5880428B2 (ja) * 2012-12-28 2016-03-09 株式会社オートネットワーク技術研究所 カードエッジコネクタ
DE102015208523A1 (de) * 2015-05-07 2016-11-10 Conti Temic Microelectronic Gmbh Leiterplatte und Verfahren zur Herstellung einer Leiterplatte
US20170027070A1 (en) * 2015-07-23 2017-01-26 Magna Closures Inc. Housing assembly of a power operated device and method of manufacturing thereof
EP3454312B1 (de) * 2017-09-11 2019-08-07 Siemens Schweiz AG Optischer rauchmelder mit einem aufschwenkbaren leiterplattenabschnitt mit einem darauf angeordneten lichtsender und/oder lichtempfänger
EP3562279A1 (de) * 2018-04-25 2019-10-30 Siemens Aktiengesellschaft Herstellung einer elektrischen verbindung von bauelementen mit einer kontaktierungsplatte
DE102019201281B4 (de) * 2019-01-31 2022-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Trägeranordnung und Verfahren zur Herstellung einer Trägeranordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720106C2 (de) 1997-05-16 2001-03-15 Telefunken Microelectron Vorrichtung zur Aufnahme von elektrischen Bauteilen
US20040118595A1 (en) 2002-12-06 2004-06-24 Flammer Jeffrey D. Rigid-flex circuit board system
US20040145874A1 (en) 2003-01-23 2004-07-29 Stephane Pinel Method, system, and apparatus for embedding circuits
US20040244191A1 (en) 2001-10-25 2004-12-09 Bruce Orr Method of fabrication of micro-devices
DE102004028211A1 (de) 2004-06-09 2005-12-29 Robert Bosch Gmbh Streßoptimierte Leiterplatte
JP2006231174A (ja) 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 有機物処理装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475804A1 (fr) * 1980-02-12 1981-08-14 Lewiner Jacques Perfectionnements aux nappes composites constitutives de transducteurs electromecaniques et aux transducteurs equipes de telles nappes
JPS58153468A (ja) 1982-03-05 1983-09-12 Sharp Corp テレビジヨン受像機の番組予約装置
JPS58153468U (ja) * 1982-04-08 1983-10-14 株式会社フジクラ フレキシブルプリント基板
AU572615B2 (en) * 1983-12-27 1988-05-12 Sony Corporation Electrically conductive adhesive sheet circuit board and electrical connection structure
JPS6268265A (ja) 1985-09-19 1987-03-28 Kawasaki Steel Corp 金属帯の表面疵研削方法
JPS6268265U (de) * 1985-10-18 1987-04-28
US4990948A (en) * 1986-12-27 1991-02-05 Canon Kabushiki Kaisha Flexible printed circuit board
US5159751A (en) * 1990-02-05 1992-11-03 Motorola, Inc. Method of manufacturing electronic module assembly
US5103375A (en) * 1990-02-05 1992-04-07 Motorola, Inc. Electronic module assembly and method of manufacture
JP2875076B2 (ja) * 1990-11-29 1999-03-24 三井化学株式会社 フレキシブル配線基板
JP2801487B2 (ja) * 1992-04-30 1998-09-21 シャープ株式会社 パネルの実装構造および実装方法並びに樹脂供給硬化方法
US5428190A (en) * 1993-07-02 1995-06-27 Sheldahl, Inc. Rigid-flex board with anisotropic interconnect and method of manufacture
DE4341103C1 (de) * 1993-12-02 1995-01-12 Harting Elektronik Gmbh Elektrischer Steckverbinder
US6259035B1 (en) * 1995-06-27 2001-07-10 Orga Kartensysteme Gmbh Chip card
JPH09331153A (ja) * 1996-06-11 1997-12-22 Toshiba Chem Corp 多層フレキシブル配線板の製造方法
ATE244981T1 (de) * 1999-05-31 2003-07-15 Tyco Electronics Logistics Ag Intelligentes leistungsmodul
FI112644B (fi) * 2000-11-10 2003-12-31 Vaisala Oyj Pintamikromekaaninen absoluuttipaineanturi ja menetelmä sen valmistamiseksi
DE10206818A1 (de) * 2002-02-18 2003-08-28 Infineon Technologies Ag Elektronisches Bauteil mit Klebstoffschicht und Verfahren zur Herstellung derselben
DE20221189U1 (de) * 2002-09-19 2005-05-19 Ruwel Ag Leiterplatte mit mindestens einem starren Bereich und mindestens einem flexiblen Bereich
JP2004140018A (ja) * 2002-10-15 2004-05-13 Denso Corp 多層基板の製造方法、多層基板、及びそれを用いたモバイル機器
WO2004077898A2 (en) * 2003-02-26 2004-09-10 Wavezero Inc. Methods and devices for connecting and grounding an emi shield to a printed circuit board
WO2004093505A2 (en) * 2003-04-15 2004-10-28 Wavezero, Inc. Emi shielding for electronic component packaging
US20040232535A1 (en) * 2003-05-22 2004-11-25 Terry Tarn Microelectromechanical device packages with integral heaters
DE10345257B4 (de) * 2003-09-29 2008-10-02 Infineon Technologies Ag Chipkarte mit Kontaktfelder und Verfahren zum Herstellen solcher Kontaktfelder
JP3722223B2 (ja) * 2003-10-27 2005-11-30 セイコーエプソン株式会社 半導体装置及びその製造方法、電子モジュール並びに電子機器
US7176600B2 (en) * 2003-12-18 2007-02-13 Palo Alto Research Center Incorporated Poling system for piezoelectric diaphragm structures
CN101095277A (zh) * 2004-03-12 2007-12-26 斯里国际 机械超常材料
JP4536430B2 (ja) * 2004-06-10 2010-09-01 イビデン株式会社 フレックスリジッド配線板
JP2006019636A (ja) * 2004-07-05 2006-01-19 Renesas Technology Corp 半導体装置
US20060040091A1 (en) * 2004-08-23 2006-02-23 Bletsos Ioannis V Breathable low-emissivity metalized sheets
TW200638811A (en) * 2004-09-21 2006-11-01 Ibiden Co Ltd Flexible printed wiring board
JP4306590B2 (ja) * 2004-11-05 2009-08-05 セイコーエプソン株式会社 電気光学装置及び電子機器
US7274107B2 (en) * 2005-01-21 2007-09-25 Infineon Technologies Ag Semiconductor device
JP4588474B2 (ja) * 2005-02-04 2010-12-01 株式会社フジクラ 照明装置及び照明用光源の実装方法
JP4534972B2 (ja) * 2005-03-30 2010-09-01 エプソンイメージングデバイス株式会社 電気光学装置、及び電子機器
JP2006342238A (ja) 2005-06-08 2006-12-21 Kyocera Chemical Corp 熱硬化性接着シート、銅張積層板及びフレキシブルプリント配線板
JP4095082B2 (ja) * 2005-08-31 2008-06-04 Tdk株式会社 磁気ヘッドアッセンブリのフレキシブル配線板
US7388756B1 (en) * 2006-12-12 2008-06-17 The Boeing Company Method and system for angled RF connection using a flexible substrate
KR20090070916A (ko) * 2007-12-27 2009-07-01 삼성전기주식회사 반도체 장치 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720106C2 (de) 1997-05-16 2001-03-15 Telefunken Microelectron Vorrichtung zur Aufnahme von elektrischen Bauteilen
US20040244191A1 (en) 2001-10-25 2004-12-09 Bruce Orr Method of fabrication of micro-devices
US20040118595A1 (en) 2002-12-06 2004-06-24 Flammer Jeffrey D. Rigid-flex circuit board system
US20040145874A1 (en) 2003-01-23 2004-07-29 Stephane Pinel Method, system, and apparatus for embedding circuits
DE102004028211A1 (de) 2004-06-09 2005-12-29 Robert Bosch Gmbh Streßoptimierte Leiterplatte
JP2006231174A (ja) 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 有機物処理装置

Also Published As

Publication number Publication date
JP2011523223A (ja) 2011-08-04
DE102008028300A1 (de) 2009-12-24
US9035189B2 (en) 2015-05-19
US20110214905A1 (en) 2011-09-08
WO2009150133A1 (de) 2009-12-17

Similar Documents

Publication Publication Date Title
DE102008028300B4 (de) Leiterplatte mit flexiblem Bereich und Verfahren zur Herstellung
DE102012112058B4 (de) MEMS-Bauelement und Verfahren zur Verkapselung von MEMS-Bauelementen
DE102012221002A1 (de) Abwinkelbare und/oder abgewinkelte Leiterplattenstruktur mit zumindest zwei Leiterplattenabschnitten und Verfahren zu deren Herstellung
DE112005000952T5 (de) Elektronik-Modul und Verfahren zur Herstellung desselben
EP2287916A2 (de) Verfahren zum Kontaktieren und Gehäusen von integrierten Schaltungen
WO2010028884A2 (de) Verkapselung, mems sowie verfahren zum verkapseln
DE102013208814A1 (de) Integrierter Drehraten- und Beschleunigungssensor und Verfahren zur Herstellung eines integrierten Drehraten- und Beschleunigungssensor
DE102013217349A1 (de) Mikromechanische Sensoranordnung und entsprechendes Herstellungsverfahren
WO2008025725A1 (de) Hermetisch dichtes verschliessen und elektrisches kontaktieren einer mikroelektro-mechanischen struktur und damit hergestelltes mikrosystem (mems)
WO2009150087A2 (de) Systemträger für elektronische komponente und verfahren für dessen herstellung
DE102013213073A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelementes
WO2002061833A2 (de) Substrat für ein elektrisches bauelement und verfahren zur herstellung
WO2008104324A1 (de) Verfahren zum einbinden von chips in kavitäten von leiterplatten
DE102010042987A1 (de) Verfahren zum Herstellen einer elektrischen Schaltung und elektrische Schaltung
DE102006060533A1 (de) Verfahren zur Herstellung einer ersten Schicht mit einer elektrischen Leitung und Anordnung mit einer Kontaktschicht
AT13436U1 (de) Verfahren zur integration eines bauteils in eine leiterplatte oder ein leiterplatten-zwischenprodukt sowie leiterplatte oder leiterplatten-zwischenprodukt
EP1105942B1 (de) Kontaktiervorrichtung, insbesondere zum ankontaktieren von elektrischen bauelementen und schaltungsträgern, sowie verfahren zu deren herstellung
DE102010061782A1 (de) Verfahren zum Herstellen eines mikromechanischen Bauelements
DE102015207857A1 (de) Thermoelektrische Vorrichtung sowie Herstellungsverfahren derselben
DE10141571A1 (de) Verfahren zur Herstellung von dreidimensional aufgebauten integrierten Schaltungen und mehrschichtige Schaltungsanordnung
EP2340693B1 (de) Verfahren zum herstellen einer elektrischen schaltungsanordnung
EP2778119B1 (de) Sensor und Verfahren zum Herstellen einer flexiblen Lötverbindung zwischen einem Sensor und einer Leiterplatte
DE102012220323A1 (de) Bauteil und Verfahren zu dessen Herstellung
EP3110748B1 (de) Verfahren zur herstellung eines bauteils und bauteil
DE102017208628A1 (de) Verfahren zum herstellen einer elektrischen verbindung, elektrische kontaktanordnung und elektrische verbinderanordnung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SNAPTRACK, INC., SAN DIEGO, US

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

R082 Change of representative

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: SNAPTRACK, INC., SAN DIEGO, US

Free format text: FORMER OWNER: TDK ELECTRONICS AG, 81671 MUENCHEN, DE

R082 Change of representative

Representative=s name: WAGNER & GEYER PARTNERSCHAFT MBB PATENT- UND R, DE