-
GEBIET DER ERFINDUNG
-
Die vorliegende Erfindung betrifft allgemein Brennstoffzellen und insbesondere eine Membranelektrodenanordnung für PEM-Brennstoffzellen gemäß dem Oberbegriff des Anspruchs 1, wie sie beispielsweise aus der
WO 2006/020412 A2 bekannt geworden ist.
-
HINTERGRUND DER ERFINDUNG
-
Brennstoffzellen sind bei vielen Anwendungen als eine Energiequelle verwendet worden. Beispielsweise sind Brennstoffzellen zur Verwendung in elektrischen Fahrzeugantriebsanlagen als Ersatz für Verbrennungsmotoren vorgeschlagen worden. Bei Brennstoffzellen vom Protonenaustauschmembran-(PEM)-Typ wird Wasserstoff an die Anode der Brennstoffzelle geliefert und Sauerstoff als das Oxidationsmittel an die Kathode geliefert. PEM-Brennstoffzellen umfassen eine Membranelektrodenanordnung (MEA) mit einer dünnen protonendurchlässigen, nicht elektrisch leitenden Festpolymerelektrolytmembran, die auf einer ihrer Seiten den Anodenkatalysator und auf der entgegengesetzten Seite den Kathodenkatalysator aufweist. Die MEA ist schichtartig zwischen einem Paar elektrisch leitender Elemente angeordnet, die manchmal als die Gasdiffusionsmediumkomponenten bezeichnet werden und die: (1) als Stromkollektoren für die Anode und die Kathode dienen; (2) geeignete Öffnungen darin zur Verteilung der gasförmigen Reaktanden der Brennstoffzelle über die Oberflächen der jeweiligen Anoden- und Kathodenkatalysatoren enthalten; (3) Produktwasserdampf oder flüssiges Wasser von der Elektrode an Strömungsfeldkanäle entfernen; (4) zur Wärmeabweisung wärmeleitend sind; und (5) eine mechanische Festigkeit besitzen. Der Begriff „Brennstoffzelle“ wird typischerweise dazu verwendet, abhängig vom Kontext entweder eine einzelne Zelle oder eine Vielzahl von Zellen (beispielsweise einen Stapel) zu bezeichnen. Gewöhnlich wird eine Vielzahl einzelner Zellen miteinander gebündelt, um einen Brennstoffzellenstapel zu bilden, und werden gewöhnlich in Reihe angeordnet. Jede Zelle in dem Stapel umfasst die vorher beschriebene MEA, und jede derartige MEA liefert ihr Spannungsinkrement.
-
In PEM-Brennstoffzellen ist Wasserstoff (H2) der Anodenreaktand (d.h. Brennstoff), und Sauerstoff ist der Kathodenreaktand (d.h. Oxidationsmittel). Der Sauerstoff kann entweder in reiner Form (O2) oder als Luft (einer Mischung aus O2 und N2) vorliegen. Die Festpolymerelektrolyte bestehen typischerweise aus Ionentauscherharzen, wie perfluorierter Sulfonsäure. Die Anode / Kathode umfasst typischerweise fein geteilte katalytische Partikel, die oftmals auf Kohlenstoffpartikeln getragen und mit einem protonenleitenden Harz gemischt sind. Die katalytischen Partikel sind typischerweise teure Edelmetallpartikel. Diese Membranelektrodenanordnungen sind relativ teuer herzustellen und erfordern für einen effektiven Betrieb bestimmte Bedingungen, die ein richtiges Wassermanagement wie auch eine richtige Befeuchtung sowie eine Steuerung katalysatorschädigender Bestandteile, wie Kohlenmonoxid (CO), umfassen.
-
Beispiele der Technologie in Verbindung mit Brennstoffzellensystemen vom PEM-Typ und anderen damit in Verbindung stehenden Typen können unter Bezugnahme auf die gemeinsam übertragenen U.S. Patente
US 3,985,578 A von Witherspoon et al.;
US 5,272,017 A von Swathirajan et al.;
US 5,624,769 A von Li et al.;
US 5,776,624 A von Neutzler;
US 6,103,409 A von DiPierno Bosco et al.;
US 6,277,513 B1 von Swathirajan et al.;
US 6,350,539 B1 von Woods, III et al.;
US 6,372,376 B1 von Fronk et al.;
US 6,376,111 B1 von Mathias et al.;
US 6,521,381 B1 von Vyas et al.;
US 6,524,736 B1 von Sompalli et al.;
US 6,528,191 B1 von Senner;
US 6,566,004 B1 von Fly et al.;
US 6,630,260 B2 von Forte et al.;
US 6,663,994 B1 von Fly et al.;
US 6,740,433 B2 von Senner;
US 6,777,120 B2 von Nelson et al.;
US 6,793,544 B2 von Brady et al.;
US 6,794,068 B2 von Rapaport et al.;
US 6,811,918 B2 von Blunk et al.;
US 6,824,909 B2 von Mathias et al.; U.S. Patentanmeldung
US 2004/0229087 A1 von Senner et al.;
US 2005/0026012 A1 von O'Hara;
US 2005/0026018 A1 von O'Hara et al.; und
US 2005/0026523 A1 von O'Hara et al. gefunden werden, wobei die gesamten Beschreibungen von allen hier ausdrücklich durch Bezugnahme eingeschlossen sind.
-
An dem Elektrodenrand einer MEA einer PEM-Brennstoffzelle ist typischerweise eine Protonenbarriere erforderlich, um eine Beständigkeit gegenüber einem chemischen Abbau der Membran sicherzustellen, wie auch eine Fasereindringung des Gasdiffusionsmediums in freiliegende Bereiche der Membran zu verhindern. Zu diesem Zweck sind viele Aufbauten betrachtet worden. Beispiele dieser Aufbauten umfassen: (1) in Bezug auf den Katalysator: Randabschnitte von Katalysatorschichten, die mit einem niedrig viskosen Polymer getränkt sind (beispielsweise 100 % Feststoffen, wie, jedoch nicht darauf beschränkt, Epoxidharz, Polydimethylsiloxan (PDMS), Phenolharz, Polyurethan, Polyvinylacetat und Alkydharz) und/oder die Verwendung einer vergiftenden katalytischen Reaktion, beispielsweise einem selektiven Vergiften, um einen funktionalen Gradienten zu bilden (beispielsweise Platin von dem Katalysator an dem Rand zu entfernen); (2) in Bezug auf die Membran: selektives Vernetzen, um Sulfonsäure anzubinden (beispielsweise BA(OH)2-Vernetzung), selektive Desulfonierung eines Abschnitts der Membran benachbart den Randabschnitten der Katalysatorschichten und/oder selektive Sulfonierung in dem aktiven Bereich; (3) in Bezug auf die Unterdichtung (d.h. an der Schnittstelle zwischen Katalysatorschicht und Membran): Verwendung eines heißgepressten Polyimidfilms mit 3 Mikrometern, Verwendung eines Epoxidharz-gebundenen Polymerfilms (beispielsweise Epoxidharz im B-Zustand auf Seiten, um eine Verbindung während des Heißpressens zuzulassen) und/oder Verwendung einer anorganischen Schicht, wie einer intermetallischen Verbindung oder einer metallisierten Schicht (beispielsweise direkt auf der Membran oder auf den Polymerfilm aufgebracht); in Bezug auf die Unterdichtung (d.h. an der Schnittstelle zwischen Diffusionsmedium und Katalysatorschicht): Verwendung eines Lösemittelsiebdrucks auf dem Diffusionsmedium (beispielsweise Polyvinylidenchlorid-(PVDC)- Polyacrylonitril- (PAN)- Copolymer), Verwendung von Heißschmelzfilmen, die zwischen das Diffusionsmedium und die Katalysatorschicht aufgebracht sind und/oder Tränken der Katalysatorschicht; und (5) in Bezug auf die Unterdichtung (d.h. an der Mitte der Membran): Verwendung eines Polyimid/ Perfluorkohlenwasserstoffsulfonsäure-(PFSA)-Membranbilaminats und/oder Verwendung einer polyimidverstärkten Membran.
-
Unglücklicherweise sind diese Typen von Protonenbarrierestrukturen ziemlich schwierig und teuer herzustellen und haben keine vollständig zufrieden stellenden Ergebnisse ergeben. Demgemäß besteht ein Bedarf nach neuen und verbesserten Randkonstruktionen, insbesondere für ePTFE-verstärkte Membranen für PEM-Brennstoffzellen, wobei die Konstruktionen an dem Elektrodenrand der MEA der PEM-Brennstoffzelle eine Protonenbarriere bereitstellen, um eine Beständigkeit gegenüber einem chemischen Abbau der Membran bereitzustellen.
-
ZUSAMMENFASSUNG DER ERFINDUNG
-
Gemäß einer ersten Ausführungsform ist eine Membranelektrodenanordnung vorgesehen, die umfasst: (1) ein erstes und zweites Elektrodenelement, die voneinander beabstandet sind und einander gegenüberliegen, wobei das erste Elektrodenelement einen ersten Randabschnitt aufweist, wobei das zweite Elektrodenelement einen zweiten Randabschnitt aufweist; (2) eine Membranschicht, die vollflächig zwischen dem ersten und zweiten Elektrodenelement angeordnet ist; (3) eine Verstärkungsschicht, die vollflächig in der Membranschicht angeordnet ist; und (4) eine protonenimpermeable Schicht, die in der Verstärkungsschicht angeordnet ist, wobei die protonenimpermeable Schicht sich entlang eines Abschnitts der Verstärkungsschicht parallel zu dem ersten und zweiten Randabschnitt erstreckt.
-
Gemäß einer ersten alternativen Ausführungsform ist eine Membranelektrodenanordnung vorgesehen, die umfasst: (1) ein erstes und zweites Elektrodenelement, die voneinander beabstandet sind und einander gegenüberliegen, wobei das erste Elektrodenelement einen ersten Randabschnitt aufweist, wobei das zweite Elektrodenelement einen zweiten Randabschnitt aufweist; (2) eine Ionomermembranschicht, die vollflächig zwischen dem ersten und zweiten Elektrodenelement angeordnet ist; (3) eine Verstärkungsschicht aus expandiertem Polytetrafluorethylen, die vollflächig in der Membranschicht angeordnet ist; und (4) eine protonenimpermeable Schicht, die in der Verstärkungsschicht angeordnet ist, wobei sich die protonenimpermeable Schicht entlang eines Abschnitts der Verstärkungsschicht aus expandiertem Polytetrafluorethylen parallel zu dem ersten und zweiten Randabschnitt erstreckt.
-
Gemäß einer zweiten alternativen Ausführungsform ist eine Membranelektrodenanordnung vorgesehen, die umfasst: (1) ein erstes und zweites Elektrodenelement, die voneinander beabstandet sind und einander gegenüberliegen, wobei das erste Elektrodenelement einen ersten Randabschnitt aufweist, wobei das zweite Elektrodenelement einen zweiten Randabschnitt aufweist; (2) eine Ionomermembranschicht, die vollflächig zwischen dem ersten und zweiten Elektrodenelement angeordnet ist, wobei sich die Ionomermembranschicht parallel zu dem ersten und zweiten Randabschnitt erstreckt; (3) eine Verstärkungsschicht aus expandiertem Polytetrafluorethylen, die vollflächig in der Ionomermembranschicht angeordnet ist; und (4) eine protonenimpermeable Schicht, die in der Verstärkungsschicht aus expandiertem Polytetrafluorethylen angeordnet ist, wobei die protonenimpermeable Schicht aus einem Material besteht, das aus der Gruppe gewählt ist, die umfasst: Epoxidharze im B-Zustand, Phenole im B-Zustand, Heißschmelzthermoplaste, Duroplaste oder Thermoplaste, die aus flüssiger Dispersion gegossen sind, und Kombinationen daraus, wobei sich die protonenimpermeable Schicht entlang eines Abschnitts der Verstärkungsschicht aus expandiertem Polytetrafluorethylen parallel zu dem ersten und zweiten Randabschnitt von einem Punkt vor dem Start des ersten und zweiten Randabschnitts zu einem Punkt nach dem Ende des ersten und zweiten Randabschnitts erstreckt.
-
Weitere Anwendungsgebiete der vorliegenden Erfindung werden aus der nachfolgenden detaillierten Beschreibung offensichtlich.
-
Figurenliste
-
Die vorliegende Erfindung wird aus der detaillierten Beschreibung und den begleitenden Zeichnungen besser verständlich, in welchen:
- 1 eine schematische Ansicht einer Membranelektrodenanordnung gemäß den allgemeinen Lehren der vorliegenden Erfindung ist; und
- 2 eine perspektivische Ansicht einer Vorrichtung zum Aufbringen einer flüssigen Dispersion aus protonenimpermeablem Polymer auf eine ePTFE-Ionomermembran gemäß den allgemeinen Lehren der vorliegenden Erfindung ist.
-
DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSFORMEN
-
Bezug nehmend auf 1 ist eine schematische Ansicht einer Membranelektrodenanordnung 10 gemäß den allgemeinen Lehren der vorliegenden Erfindung gezeigt. Die Membranelektrodenanordnung 10 weist zwei voneinander beabstandete und einander gegenüberliegende Elektrodenschichten 12 bzw. 14 auf, wie Kathoden- und/oder Anodenschichten. Die Elektrodenschichten 12 bzw. 14 sind mit Randabschnitten 12a bzw. 14a versehen.
-
Zwischen den Elektrodenschichten 12 und 14 ist eine Membranschicht 16 angeordnet, wie, jedoch nicht darauf beschränkt, eine Ionomermembranschicht. Eine Verstärkungsschicht 18, wie, jedoch nicht darauf beschränkt, ePTFE, ist in der Membranschicht 16 angeordnet und von dem Ionomermaterial der Membranschicht 16 durchtränkt. Die Verstärkungsschicht 18 weist einen getränkten Abschnitt 18a auf, wobei die Verstärkungsschicht 18 benachbart der Randabschnitte 12a bzw. 14a der Elektrodenschichten 12 bzw. 14 mit einem protonenimpermeablen Polymer getränkt ist. Gemäß einem Aspekt der vorliegenden Erfindung erstreckt sich der getränkte Abschnitt 18a von einem Punkt vor dem Beginn der Randabschnitte 12a bzw. 14a und erstreckt sich entlang der Verstärkungsschicht 18 an dem Ende der Randabschnitte 12a bzw. 14a vorbei, wie in 1 detailliert gezeigt ist.
-
Bei einer nicht beschränkenden Ausführungsform erstreckt sich der getränkte Abschnitt 18a zumindest über eine Distanz von etwa der Dicke der Membranschicht 16 von den Randabschnitten 12a und 14a zwischen den Elektrodenschichten 12 und 14 und bevorzugt von etwa dem Dreifachen der Dicke der Membranschicht 16. Durch Bereitstellung des getränkten Abschnitts 18a zwischen den Elektrodenschichten 12 und 14 über eine gewisse Distanz von den Randabschnitten 12a und 14a kann der Abbau des Polymers in der Membranschicht 16 aus Hydroxylen, die durch die elektrochemische Reaktion erzeugt werden, reduziert werden. Bei solchen Membranen, die Hydroxyl vermindernde Additive aufweisen, kann die Ausdehnung des getränkten Abschnitts 18a zwischen den Elektrodenschichten 12 und 14 begrenzt werden.
-
Das protonenimpermeable Polymer kann aus Materialien bestehen, die aus der Gruppe gewählt sind, die umfasst: Epoxidharze im B-Zustand, Phenole im B-Zustand, Heißschmelzthermoplaste, Duroplaste oder Thermoplaste, die aus flüssiger Dispersion gegossen sind, und Kombinationen daraus.
-
Die vorliegende Erfindung sieht viele Vorteile gegenüber dem Stand der Technik vor, einschließlich, jedoch nicht darauf beschränkt: (1) reduzierte mechanische Singularitäten an der Schnittstelle; (2) geringere Kosten (Material und Herstellung); (3) leichtere Herstellung; (4) reduzierte Dickenänderung an dem Rand; und (5) reduziertes Risiko einer Delaminierung.
-
Bezug nehmend auf 2 ist eine perspektivische Ansicht einer Vorrichtung 100 zum Aufbringen einer flüssigen Dispersion eines protonenimpermeablen Polymers auf eine ePTFE-Ionomermembran gemäß den allgemeinen Lehren der vorliegenden Erfindung gezeigt.
-
Ein plasmabehandelter ePTFE-Film 102 ist als ein Vorläufer vorgesehen. Es können auch andere Oberflächenaktivierungsverfahren für den Film 102 anstatt der Plasmabehandlung verwendet werden, einschließlich, jedoch nicht darauf beschränkt, Koronabehandlung, Natriumnaphthalatätzen, etc., möglicherweise in Verbindung mit Anhaftungsunterstützern, Kopplungsmitteln oder oberflächenaktiven Mitteln. Auch kann ein beliebiger geeigneter kompatibler Verstärkungsfilm anstelle des ePTFE verwendet werden. Der Film 102 besitzt typischerweise eine Dicke von 6 µm, obwohl auch andere Dicken bei der Ausführung der vorliegenden Erfindung verwendet werden können. Der Film 102 wird durch ein Paar von Walzen 104 bzw. 106 zugeführt, die dazu dienen, ein protonenimpermeables Polymer, wie oben beschrieben ist, auf die Oberfläche des Films 102 aufzubringen. Es sei angemerkt, dass das protonenimpermeable Polymer durch verschiedene Prozesse aufgebracht werden kann, einschließlich, jedoch nicht darauf beschränkt, Tiefdruck, Siebdruck, Verteilen, Tampondruck und/oder dergleichen.
-
Auf diese Art und Weise wird der Grenzabschnitt 108 des Films 102 mit einem protonenimpermeablen Polymer imprägniert. Der somit behandelte und imprägnierte ePTFE-verstärkte Film 102 kann dann dazu verwendet werden, eine herkömmliche PFSA-Membran oder eine beliebige andere kohlenwasserstoffbasierte Membran herzustellen.