DE102007017757B4 - Oszillierendes innen eingreifendes Planetengetriebesystem - Google Patents

Oszillierendes innen eingreifendes Planetengetriebesystem Download PDF

Info

Publication number
DE102007017757B4
DE102007017757B4 DE102007017757A DE102007017757A DE102007017757B4 DE 102007017757 B4 DE102007017757 B4 DE 102007017757B4 DE 102007017757 A DE102007017757 A DE 102007017757A DE 102007017757 A DE102007017757 A DE 102007017757A DE 102007017757 B4 DE102007017757 B4 DE 102007017757B4
Authority
DE
Germany
Prior art keywords
oscillating
eccentric body
planetary gear
toothed gear
gear system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102007017757A
Other languages
English (en)
Other versions
DE102007017757A1 (de
Inventor
Takashi Haga
Yo Tsurumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of DE102007017757A1 publication Critical patent/DE102007017757A1/de
Application granted granted Critical
Publication of DE102007017757B4 publication Critical patent/DE102007017757B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion

Abstract

Oszillierendes innen eingreifendes Planetengetriebesystem (110), welches ein innen verzahntes Zahnrad (122), ein außen verzahntes Zahnrad (118, 120), welches innen mit dem innen verzahnten Zahnrad (122) in Eingriff steht, und einen Exzenterkörper aufweist, der an einer Exzenterkörperwelle befestigt ist, wobei das System 110 so konfiguriert ist, dass das innen verzahnte Zahnrad (122) oder das außen verzahnte Zahnrad (118, 120) oszillierend von dem Exzenterkörper (114, 116) gedreht wird, der auf der Exzenterkörperwelle (112) befestigt ist, dadurch gekennzeichnet, dass es Folgendes aufweist: ein eine Gleitbewegung erleichterndes Glied (134, 136), welches zwischen einem Außenumfang (114A, 116A) des Exzenterkörpers (114, 116) und dem innen verzahnten Zahnrad (122) oder dem außen verzahnten Zahnrad (118, 120) angeordnet Ist, egal welches oszillierend gedreht wird; und dass das eine Gleitbewegung erleichternde Glied (134, 136) und die Exzenterkörperwellenlager (138, 139), um die Exzenterkörperwelle (112) zu tragen, jeweils die gleichen Hauptkörperglieder, das heißt Roll- bzw. Wälzelemente, mit...

Description

  • Hintergrund der Erfindung
  • 1. Gebiet der Erfindung
  • Die vorliegende Erfindung bezieht sich auf ein oszillierendes innen eingreifendes Planetengetriebesystem.
  • 2. Beschreibung der verwandten Technik
  • Ein oszillierendes innen eingreifendes Planetengetriebesystem wird weithin verwendet, welches ein innen verzahntes Zahnrad und ein außen verzahntes Zahnrad hat, welches in das innen verzahnte Zahnrad eingreift. Das Getriebesystem ist so konfiguriert, dass das innen verzahnte Zahnrad oder das außen verzahnte Zahnrad oszillierend durch einen Exzenterkörper gedreht wird, der an einer Exzenterkörperwelle ausgeformt ist.
  • Beispielsweise ist ein Planetengetriebesystem, das in 2 gezeigt ist, in dem offen gelegten japanischen Patent mit der Veröffentlichungsnummer JP 2000-065162 A offenbart. Dieses Planetengetriebesystem 10 weist eine Eingangswelle 12, erste und zweite Exzenterkörper 14 und 16, erste und zweite außen verzahnte Zahnräder 18 und 20, ein innen verzahntes Zahnrad 22, einen Relativdrehungsausgabemechanismus K, und erste und zweite Tragflansche 24 und 26 auf, die als ein Ausgangselement dienen. In diesem Fall sind die zwei ersten und zweiten außen verzahnten Zahnräder 18 und 20 Seite an Seite in axialer Richtung angeordnet, um eine Steigerung der Übertragungskapazität zu erreichen.
  • Aus dem Dokument DE 10 2004 058 551 B4 ist ein Getriebe bekannt mit mindestens einem Rad mit Innenverzahnung und mit mindestens einem in Bezug auf das Rad drehbar gelagerten Ausgangskörper sowie einer Eingangswelle mit mindestens einem exzentrischen Abschnitt mit einer Exzentrizität (e), auf dem ein mit der Innenverzahnung kämmendes Rad mit Außenverzahnung drehbar gelagert ist, wobei bei zwei Ausgangskörpern mindestens ein Rad zwischen den Ausgangskörpern angeordnet ist, sowie einer zwischen dem Rad und dem Ausgangskörper angeordneten Einrichtung, welche die Planetenbewegung des Rades in eine Rotationsbewegung des Ausgangskörpers transformiert.
  • Aus US 5 655 985 A ist ein Getriebesystem zum Übertragen von Drehbewegungen bekannt, wobei das Getriebesystem ein Zahnrad mit einer Innenverzahnung aufweist, die mit einer externen Verzahnung wenigstens eines Antriebszahnrads und mit einem langsam drehenden Wellenschaft in Eingriff steht.
  • Das Dokument JP 2000-065 158 A zeigt ein Getriebe mit einem Gehäuse, einem außen verzahnten Zahnrad und einer Vielzahl von exzentrischen Wellen, die an einem Rand des außen verzahnten Zahnrads angeordnet sind.
  • Die Eingangswelle 12 ist eine hohle Welle mit einem hohlen Teil 12H mit großem Durchmesser und ist in einem radial mittigen Teil des Planetengetriebesystems 10 angeordnet. Die Eingangswelle 12 dient auch als eine Exzenterkörperwelle, und jeder der ersten und zweiten Exzenterkörper 14 und 16 ist integral mit dem Außenumfang der Eingangswelle 12 ausgeformt. Die Exzenterphasen der ersten und zweiten Exzenterkörper 14 und 16 sind relativ zueinander um 180 Grad verschoben.
  • Die rollenförmigen ersten und zweiten eine Gleitbewegung erleichternden Glieder 34 und 36 sind zwischen den Außenumfängen der ersten und zweiten Exzenterkörper 14 und 16 bzw. der ersten und zweiten außen verzahnten Zahnräder 18 und 20. Die Eingangswelle (Exzenterkörperwelle) 12 wird durch die ersten und zweiten Tragflansche 24 und 26 durch Kegelrollenlager (Exzenterkörperwellenlager) 38 und 39 getragen.
  • Der Relativdrehungsausgabemechanismus K wird durch erste und zweite innere Achsen- bzw. Bolzenlöcher 40 und 42 eingerichtet, die in den ersten und zweiten außen verzahnten Zahnrädern 18 bzw. 20 ausgeformt sind, weiter durch einen inneren Bolzen 44, der durch die inneren Achsen- bzw. Bolzenlöcher 40 und 42 läuft, und eine innere Rolle 43.
  • Wenn die Eingangswelle 12 durch einen (nicht gezeigten) Motor gedreht wird, werden die ersten und zweiten Exzenterkörper 14 und 16 exzentrisch integral mit der Eingangswelle 12 gedreht. Während die Eingangswelle 12 sich um eine Umdrehung dreht, oszillieren die außen verzahnten Zahnräder 18 und 20, die jeweils auf den Exzenterkörpern 14 und 16 montiert sind, um einen Zyklus. Daher wird jedes der ersten und zweiten außen verzahnten Zahnräder 18 und 20 relativ zu dem stationären innen verzahnten Zahnrad 22 um eine Größe gedreht, die der Differenz der Anzahl der Zähne vom innen verzahnten Zahnrad 22 entspricht. Die Relativdrehung wird aus der Seite von einem der ersten und zweiten Tragflansche 24 und 26 als reduzierte Drehzahlausgabe durch die ersten und zweiten inneren Achsen- bzw. Bolzenlöcher 40 und 42, die innere Rolle 43 und den inneren Bolzen 44 ausgegeben (den Relativdrehungsausgabemechanismus K).
  • Aufgabe der Erfindung ist es, für solche Planetengetriebesysteme eine Verbesserung der grundlegenden Leistung und der Verringerung der Kosten zu erreichen. Daher ist es ein Ziel der vorliegenden Erfindung, eine solche Anforderung zu erfüllen.
  • Zusammenfassung der Erfindung
  • Verschiedene beispielhafte Ausführungsbeispiele dieser Erfindung sehen ein oszillierendes innen eingreifendes Planetengetriebesystem vor, welches ein innen verzahntes Zahnrad bzw. Hohlrad und ein außen verzahntes Zahnrad hat, welches innen mit dem innen verzahnten Zahnrad in Eingriff ist und so konfiguriert ist, dass das innen verzahnte Zahnrad oder das außen verzahnte Zahnrad oszillierend durch einen Exzenterkörper gedreht wird, der auf einer Exzenterkörperwelle ausgeformt ist. Um die vorangegangenen Probleme zu lösen, weist das System Folgendes auf:
    Ein eine Gleitbewegung erleichterndes Glied, welches zwischen einem Außenumfang des Exzenterkörpers und dem innen verzahnten Zahnrad oder dem außen verzahnten Zahnrad angeordnet ist, egal welches oszillierend gedreht wird; und ein Exzenterkörperwellenlager zum Tragen der Exzenterkörperwelle. Weiterhin hat das eine Gleitbewegung erleichternde Glied eine Konfiguration, die die Gleiche ist, wie jene des Exenterkörperwellenlagers.
  • Das oszillierende innen eingreifende Planetengetriebesystem muss so konfiguriert sein, dass das oszillierende Zahnrad (das oszillierende innen verzahnte oder außen verzahnte Zahnrad) sanft auf dem Außenumfang des Exzenterkörpers gleiten kann. Daher kommt eine gewisse Art eines die Gleitbewegung erleichternden Gliedes oft zwischen den Exzenterkörper und das oszillierende Zahnrad.
  • Die erforderliche Funktion des eine Gleitbewegung erleichternden Gliedes (beispielsweise wieviel Drehmoment aufgebracht wird, wieviel Schub- bzw. Axialbelastung aufgebracht wird, o. ä.) weicht von jener des Exzenterkörperwellenlagers ab, welches die Exzenterkörperwelle trägt. Herkömmlicherweise werden diese Glieder unabhängig von vollständig anderen Gesichtspunkten aus konstruiert, und die besten Komponenten basierend auf der vernünftigsten Kostenberechnung werden für jedes der Glieder eingesetzt.
  • Jedoch wird bei der vorliegenden Erfindung die gleiche Konfiguration absichtlich sowohl für das die Gleitbewegung erleichternde Glied als auch für das Exzenterkörperwellenlager eingesetzt. Wie er hier verwendet wird, bezieht sich der Ausdruck „gleiche Konfiguration” auf diese Hauptkörperglieder (Roll- bzw. Wälzelemente), um die Funktionen der Lager zu realisieren, die gemeinsame Spezifikationen haben, d. h. die Gleichen sind.
  • Wenn die gleiche Konfiguration für sowohl für das die Gleitbewegung erleichternde Glied als auch für das Exzenterkörperwellenlager eingesetzt wird, erscheint es offensichtlich, dass die Produktqualität des die Gleitbewegung erleichternden Gliedes unnötigerweise hoch bezüglich des Gesichtspunktes der Qualität ist. Jedoch kann die Anwendung eines qualitativ hochwertigen die Gleitbewegung erleichternden Gliedes in diesem Teil vorteilhafte Effekte bezüglich der Verringerung des Energieverlustes und der Verbesserung der Drehungsqualität einschließlich einer Verringerung von Schwingungen und Geräuschen in dem gesamten System auf einem kaum vorstellbaren Niveau bieten. Darüber hinaus wird ein Vorteil dahingehend erreicht, dass solche vorteilhaften Effekte für eine lange Zeitperiode aufrechterhalten werden können (weil die Haltbarkeit des die Gleitbewegung erleichternden Gliedes verbessert wird).
  • Zusätzlich dazu wird die Anzahl der Komponenten verringert, da nur eine Art eines Wälzelementes eingesetzt wird, und somit wird die Last des Komponentenlagerhaltungsmanagements und der Montagesteuerung verringert, wodurch die Gesamtkosten eher verringert werden können. Wenn die Arten (Formen) der Wälzelemente die Gleichen sind, wird daher auch der (später beschriebene) Vorteil erreicht, dass eine einfachere Auslegung beispielsweise bei einem Verfahren zur Montage oder Positionierung der Komponenten einsetzt werden kann.
  • Während die grundlegende Leistung verbessert wird, kann weiterhin eine Kostenverringerung erreicht werden.
  • Kurze Beschreibung der Zeichnungen
  • 1 ist eine vertikale Querschnittsansicht, die ein Beispiel eines innen eingreifenden Planetengetriebesystems eines Ausführungsbeispiels der vorliegenden Erfindung veranschaulicht; und
  • 2 ist eine vertikale Querschnittsansicht, die ein Beispiel eines herkömmlichen innen eingreifenden Planetengetriebesystems veranschaulicht.
  • Detaillierte Beschreibung der bevorzugten Ausführungsbeispiele
  • Im Folgenden wird ein Beispiel eines Ausführungsbeispiels der vorliegenden Erfindung im Detail mit Bezugnahme auf die Zeichnungen beschrieben.
  • 1 ist eine vertikale Querschnittsansicht, die der 2 entspricht und ein Planetengetriebesystem eines Beispiels eines Ausführungsbeispiels der vorliegenden Erfindung veranschaulicht.
  • Als erstes wird eine kurze Beschreibung dargelegt. Ein Planetengetriebesystem 110 weist eine Eingangswelle 112, erste und zweite Exzenterkörper 114 und 116, erste und zweite außen verzahnte Zahnräder 118 und 120, ein innen verzahntes Zahnrad bzw. Hohlrad 122, einen Relativdrehungsausgabemechanismus K und erste und zweite Tragflansche 124 und 126 auf, die als ein Ausgabeelement dienen. Um eine Steigerung der Übertragungskapazität zu erreichen, sind in diesem Fall die zwei ersten und zweiten außen verzahnten Zahnräder 118 und 120 Seite an Seite in axialer Richtung angeordnet.
  • Die Eingangswelle 112 ist eine hohle Welle, die einen hohlen Teil 112H hat und Leistung durch ein Ausgangsglied auf der Seite eines (nicht gezeigten) Motors übertragen kann, der auf der rechten Seite des Planetengetriebesystems 110 in 1 angeordnet ist und durch eine Schraube (wobei nur ein Schraubenloch 113 veranschaulicht ist). Die Eingangswelle 112 ist in einem radial mittigen Teil des gesamten Systems angeordnet und dient auch als eine Exzenterkörperwelle. Weiterhin wird die Eingangswelle 112 durch die ersten und zweiten Tragflansche 124 und 126 durch Exzenterkörperwellenlager 138 und 139 getragen.
  • Die Exzenterkörperwellenlager 138 und 139 sind Nadellager. Die ersten und zweiten Tragflansche 124 und 126 dienen auch als die Außenringe der Exzenterkörperwellenlager 138 bzw. 139, und die Eingangswelle (Exzenterkörperwelle) 112 dient als deren innerer Ring. Das heißt, in den Exzenterkörperwellenlagern 138 und 139 berühren Nadeln (nadelartige Walzen) 138N und 139N, die Hauptkörperglieder (Wälzelemente) sind, direkt die Eingangswelle (Exzenterkörperwelle) 112 und die ersten und zweiten Tragflansche 124 bzw. 126.
  • Die ersten und zweiten Exzenterkörper 114 und 116 sind integral mit dem Außenumfang der Eingangswelle 112 ausgeformt, die auch als die Exzenterkörperwelle dient. Jeweilige Mitten Oe1 und Oe2 der Außenumfänge 114A und 116A der Exzenterkörper 114 und 116 sind exzentrisch zur Wellenmitte Oi der Eingangswelle 112 um eine vorbestimmte Größe ΔE1. Die Exzenterphasen der Exzenterkörper 114 und 116 sind relativ zueinander um 180 Grad verschoben.
  • Die ersten und zweiten außen verzahnten Zahnräder 118 und 120 sind an den Außenumfängen 114A und 116A der ersten und zweiten Exzenterkörper 114, und 116 durch eine Gleitbewegung erleichternde Glieder 134 bzw. 136 befestigt. Die eine Gleitbewegung erleichternden Glieder 134 und 136 sind auch Nadellager. Die ersten und zweiten außen verzahnten Zahnräder 118 und 120 dienen auch als die Lageraußenringe der eine Gleitbewegung erleichternden Glieder 134 bzw. 136 und die ersten und zweiten Exzenterkörper 114 und 116, die mit der Eingangswelle (Exzenterkörperwelle) integriert sind, dienen auch als deren innerer Ring. Das heißt, auch die eine Gleitbewegung erleichternden Glieder 134 und 136, die Nadeln (nadelartige Walzen) 134N und 136N, die Hauptkörperglieder (Wälzelemente) sind, stehen direkt in Kontakt mit den ersten und zweiten Exzenterkörpern 114 und 116 und den ersten und zweiten außen verzahnten Zahnrädern 118 und 120.
  • Die Nadeln 134N und 136N, die als die Wälzelemente der eine Gleitbewegung erleichternden Glieder 134 bzw. 136 dienen, sind aus der gleichen Komponente aufgebaut wie jene der Nadeln 138N und 139N, die als die Wälzelemente der Exzenterkörperwellenlager 138 bzw. 139 dienen.
  • Die außen verzahnten Zahnräder 118 und 120 haben erste und zweite Achsen- bzw. Bolzenlöcher 140 bzw. 142, die durch die außen verzahnten Zahnräder 118 und 120 laufen. Ein innerer Bolzen 144 mit einer inneren Walze 143, die lose auf seinen Außenumfang gepasst ist, läuft durch die ersten und zweiten Bolzenlöcher 140 und 142. Der innere Bolzen bzw. Planetenbolzen 144 ist in jeden der ersten und zweiten Tragflansche bzw. Planetenträger 124 und 126 gepasst. Der Relativdrehungsausgabemechanismus K wird durch die lose Passstruktur eingerichtet, die aus den inneren Bolzenlöchern 140 und 142 und dem inneren Bolzen 144 gebildet wird (die innere Walze 143).
  • Jedes der ersten und zweiten außen verzahnten Zahnräder 118 und 120 greift in innere Zähne (Bolzen) 122A ein, die von dem einzelnen innen verzahnten Zahnrad 122 gehalten werden. Das innen verzahnte Zahnrad 122 ist mit einem Gehäuse 127 integriert.
  • Die ersten und zweiten Tragflansche 124 und 126 werden durch das Gehäuse 127 durch ringförmige Lager 146 bzw. 148 getragen, und sie sind durch eine Trägerschraube 150 mit einem Abstandshalter 149 integriert, der dazwischen liegt. Die ersten und zweiten Tragflansche 124 und 126 dienen als die Übertragungsflächen (Innenringe) der ringförmigen Lager 146 bzw. 148. Somit werden die Flansche 124 und 126 einer Abschreckung bzw. Härtung unterworfen, um diese Übertragungsflächen zu formen. Wenn eine Abschreckung für die Übertragungsflächen für die Nadeln 138N und 139N zur gleichen Zeit ausgeführt wird, kann eine Verringerung der Herstellungskosten und der Herstellungszeit erreicht werden. Beim vorliegenden Ausführungsbeispiel dient der zweite Tragflansch 126 als eine Ausgangswelle für eine (nicht gezeigte) passende Maschine.
  • Ein erster Stufenteil 124A ist in dem ersten Tragflansch 124 ausgeformt, und ein zweiter Stufenteil 126A ist in dem zweiten Tragflansch 126 ausgeformt. Die eine Gleitbewegung erleichternden Glieder 134 und 136 und die Exzenterkörperwellenlager 138 und 139 sind so montiert, dass sie in axialer Richtung benachbart zueinander sind. Insbesondere werden die Nadeln 138N und 139N, die als die Wälzelemente der Exzenterkörperwellenlager 138 bzw. 139 dienen, und die Nadeln 134N und 136N die als die Wälzelemente der eine Gleitbewegung erleichternden Glieder 134 bzw. 136 dienen, gegen eine Gleitbewegung eingeschränkt und in der axialen Richtung durch Schubscheiben bzw. Axialscheiben 160 und 162 positioniert. Die Axialscheiben 160 und 162 sind an den axial äußersten Endteilen befestigt, d. h. an einem Endteil 138No der Nadel 138N, und an einem Endteil 139No der Nadel 139N. Hier sind zwei Axialscheiben 160 und zwei Axialscheiben 162 in axialer Richtung angeordnet. Ein Spalt S1 ist zwischen den Axialscheiben 160 und dem ersten Stufenteil 124A des ersten Tragflansches 124 vorgesehen und ein Spalte S2 ist zwischen den Axialscheiben 162 und dem zweiten Stufenteil 126A des zweiten Tragflansches 126 vorgesehen. Nur durch die obige Konfiguration können sowohl die eine Gleitbewegung erleichternden Glieder 134 und 136 als auch die Exzenterkörperwellenlager 138 und 139 gleichmäßig eine Axiallast aufnehmen. Die Paare der Axialscheiben 160 und 162 werden eingesetzt und angeordnet, um bessere Gleitcharakteristiken zu erhalten.
  • Es wird nun eine Beschreibung bezüglich der Wirkung des Planetengetriebesystems 110 dargelegt.
  • Wenn die Eingangswelle 112 zur Drehung durch einen (nicht gezeigten) Motor angetrieben wird, werden die ersten und zweiten Exzenterkörper 114 und 116 exzentrisch integral mit der Eingangswelle 112 (mit gegenseitig gegenüberliegenden Phasen) gedreht. In diesem Fall werden die ersten und zweiten außen verzahnten Zahnräder 118 und 120 an den Außenumfängen 114A und 116A der ersten und zweiten Exzenterkörper 114 und 116 durch die eine Gleitbewegung erleichternden Glieder 134 bzw. 136 befestigt. Während die Eingangswelle 112 sich um eine Drehung dreht, oszilliert daher jedes der ersten und zweiten außen verzahnten Zahnräder 118 und 120 um einen Zyklus. Daher wird jedes der ersten und zweiten außen verzahnten Zahnräder 118 und 120 relativ zu dem stationären innen verzahnten Zahnrad 122 um eine Größe gedreht, die der Differenz der Anzahl der Zähne vom innen verzahnten Zahnrad 122 entspricht. Die Relativdrehung wird aus den Seiten der ersten und zweiten Tragflansche 124 und 126 durch die ersten und zweiten Bolzenlöcher 140 und 142 und den inneren Bolzen 144 den Relativdrehungsausgabemechanismus K ausgegeben. Auf diese Weise kann eine Verringerung der Drehzahl erreicht werden, die einem Drehzahlreduktionverhältnis, wie folgt, entspricht: (Differenz der Anzahl der Zähne zwischen dem innen verzahnten Zahnrad 122 und den ersten und zweiten außen verzahnten Zahnrädern 118 und 120)/(Anzahl der Zähne der ersten und zweiten außen verzahnten Zahnräder 118 und 120). Die reduzierte Drehzahlausgabe wird zu einer dazu passenden Maschine auf der Seite des zweiten Tragflansches 126 geliefert.
  • In diesem Fall wird ein Nadellager für jedes der eine Gleitbewegung erleichternden Glieder 134 und 136 und der Exzenterkörperwellenlager 138 und 139 eingesetzt. Da nicht jedes Nadellager mit irgendeinem extra dafür vorgesehenen inneren und äußeren Ring versehen ist und nur aus einem Wälzelement zusammengesetzt ist, d. h. der Nadeln (Nadelkranz) 134N, 136N, 138N oder 139N, ist weiterhin dessen radiale Höhe (Dicke) H1 klein. Wenn die Außenabmessung d1 des Planetengetriebesystems 110 die Gleiche ist wie jene des herkömmlichen Systems, kann daher der hohle Teil 112H mit dem größeren Innendurchmesser d1 hergestellt werden. Anders gesagt, wenn der Innendurchmesser d1 des hohlen Teils 112H der gleiche ist wie jener eines herkömmlichen Systems, kann die äußere Abmessung d1 des Planetengetriebesystems 110 kleiner als beim herkömmlichen System gemacht werden.
  • Weiterhin sind die Exzenterkörperwellenlager 138 und 139 und die eine Gleitbewegung erleichternden Glieder 134 und 136 gegen Gleiten eingeschränkt und sind in axialer Richtung durch die Druckscheiben bzw. Axialscheiben 160 und 162 positioniert. Das heißt, die axial äußersten Endteile, d. h. der Endteil 138No der Nadel bzw. des Nadellagers 138N und der Endteil 139No der Nadel bzw. des Nadellagers 139N sind gegen Gleiten eingeschränkt und sind in axialer Richtung durch die Axialscheiben 160 bzw. die Axialscheiben 162 positioniert. Auch wenn die Druck- bzw. Axiallast von der Eingangswelle 112 in irgendeiner axialen Richtung aufgebracht wird, können daher sowohl die eine Gleitbewegung erleichternden Glieder 134 und 136 als auch die Exzenterkörperwellenlager 138 und 139 gleichmäßig die Axiallast aufnehmen. Da nur die äußersten Endteile des Satzes von vier Lagern 138, 139, 134 und 136 von den Axialscheiben 160 und 162 gehalten werden, ist weiterhin die Konfiguration einfach. Zusätzlich sind die Axialscheiben 160 und 162 so dazwischen angeordnet, dass der Spalt S1 zwischen den Axialscheiben 160 und dem ersten Stufenteil 124A des ersten Tragflansches 124 vorgesehen ist, und dass der Spalt S2 zwischen den Axialscheiben 162 und dem zweiten Stufenteil 126A des zweiten Tragflansches 126 vorgesehen ist. Daher kommen die Nadeln 134N, 136N, 138N und 139N nicht stark in Gegenwirkung miteinander in axialer Richtung, und somit wird zu jedem Zeitpunkt eine sehr sanfte Drehung oder Oszillation sichergestellt.
  • Im obigen Ausführungsbeispiel ist jedes der Exzenterkörperwellenlager 138 und 139 und der eine Gleitbewegung erleichternden Glieder 134 und 136 aus einem Nadellager zusammengesetzt, welches keine extra dafür vorgesehenen inneren und äußeren Ringe hat, insbesondere um den Innendurchmesser d1 des hohlen Teils 112H der Eingangswelle 112 so groß wie möglich zu machen. Jedoch ist bei der vorliegenden Erfindung die Art der Exzenterkörperwellenlager und der eine Gleitbewegung erleichternden Glieder nicht insbesondere auf ein Nadellager eingeschränkt. Weiterhin können die Lager Komponenten haben, die ausschließlich für die inneren und äußeren Ringe ausgelegt sind.
  • Darüber hinaus ist die Eingangswelle (die Exzenterkörperwelle) nicht notwendigerweise eine hohle Welle mit einem hohlen Teil. Die vorliegende Erfindung ist beispielsweise auf eine volle Welle anwendbar.
  • Die vorliegende Erfindung ist auch auf ein innen verzahntes oszillierendes innen eingreifendes Planetengetriebesystem anwendbar, bei dem ein innen verzahntes Zahnrad um einen Exzenterkörper oszilliert, und die gleichen Effekte können auch in diesem Fall erreicht werden.
  • Die vorliegende Erfindung ist auf innen eingreifende Planetengetriebesysteme für irgendeine Anwendung gerichtet.
  • Die Offenbarung der japanischen Patentanmeldung Nr. 2006-112885 , eingereicht am 17. April 2006, einschließlich der Beschreibung, der Zeichnung und der Ansprüche ist hier durch Bezugnahme in ihrer Gesamtheit aufgenommen.

Claims (8)

  1. Oszillierendes innen eingreifendes Planetengetriebesystem (110), welches ein innen verzahntes Zahnrad (122), ein außen verzahntes Zahnrad (118, 120), welches innen mit dem innen verzahnten Zahnrad (122) in Eingriff steht, und einen Exzenterkörper aufweist, der an einer Exzenterkörperwelle befestigt ist, wobei das System 110 so konfiguriert ist, dass das innen verzahnte Zahnrad (122) oder das außen verzahnte Zahnrad (118, 120) oszillierend von dem Exzenterkörper (114, 116) gedreht wird, der auf der Exzenterkörperwelle (112) befestigt ist, dadurch gekennzeichnet, dass es Folgendes aufweist: ein eine Gleitbewegung erleichterndes Glied (134, 136), welches zwischen einem Außenumfang (114A, 116A) des Exzenterkörpers (114, 116) und dem innen verzahnten Zahnrad (122) oder dem außen verzahnten Zahnrad (118, 120) angeordnet Ist, egal welches oszillierend gedreht wird; und dass das eine Gleitbewegung erleichternde Glied (134, 136) und die Exzenterkörperwellenlager (138, 139), um die Exzenterkörperwelle (112) zu tragen, jeweils die gleichen Hauptkörperglieder, das heißt Roll- bzw. Wälzelemente, mit einer gemeinsamen Spezifikation beinhalten.
  2. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 1, dadurch gekennzeichnet, dass das eine Gleitbewegung erleichternde Glied (134, 136) und das Exzenterkörperwellenlager (138, 139) jeweils ein Nadellager aufweisen.
  3. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 2, dadurch gekennzeichnet, dass die Exzenterkörperwelle (112) auch als ein innerer Ring des Nadellagers dient.
  4. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das oszillierend gedrehte Zahnrad (118, 120) und ein Tragglied (124, 126) zum Tragen des Exzenterkörperwellenlagers (138, 139) auch als jeweilige äußere Ringe der Nadellager dienen.
  5. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass es weiter eine Axialscheibe (160, 162) aufweist, um das Nadellager dagegen einzuschränken, in axialer Richtung zu gleiten, wobei die Axialscheibe (160, 162) (an einem axial äußersten Endteil des Nadellagers (138N, 139N)) so angeordnet ist dass ein Spalt (S1, S2) zwischen der Axialscheibe (160, 162) und einer axial inneren Oberfläche vorgesehen ist, die an einem Tragglied (124, 126) vorgesehen ist, um das Exzenterkorperwellenlager (138, 139) zu tragen.
  6. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 4, dadurch gekennzeichnet, dass das Tragglied (124, 126) drehbar von einem Gehäuse (127) durch ein Lager (146, 148) getragen wird und auch als ein innerer Ring des Lagers (146, 148) dient.
  7. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 5, dadurch gekennzeichnet, dass eine axiale Position der Axialscheibe (160, 162) durch das Tragglied (124, 126) bestimmt wird, welches das Exzenterkörperwellenlager (138, 139) trägt.
  8. Oszillierendes innen eingreifendes Planetengetriebesystem (110) nach Anspruch 7, dadurch gekennzeichnet, dass eine Vielzahl der Axialscheiben (160, 162) gestapelt ist und in axialer Richtung angeordnet ist.
DE102007017757A 2006-04-17 2007-04-16 Oszillierendes innen eingreifendes Planetengetriebesystem Active DE102007017757B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-112885 2006-04-17
JP2006112885A JP4818787B2 (ja) 2006-04-17 2006-04-17 揺動内接噛合遊星歯車装置

Publications (2)

Publication Number Publication Date
DE102007017757A1 DE102007017757A1 (de) 2008-01-24
DE102007017757B4 true DE102007017757B4 (de) 2012-06-14

Family

ID=38605489

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007017757A Active DE102007017757B4 (de) 2006-04-17 2007-04-16 Oszillierendes innen eingreifendes Planetengetriebesystem

Country Status (6)

Country Link
US (1) US7819770B2 (de)
JP (1) JP4818787B2 (de)
KR (1) KR101186125B1 (de)
CN (1) CN101059163A (de)
DE (1) DE102007017757B4 (de)
TW (1) TW200801372A (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343669B1 (ko) * 2006-06-13 2013-12-20 나부테스코 가부시키가이샤 감속 기어 변속기
JP5202985B2 (ja) 2008-02-19 2013-06-05 住友重機械工業株式会社 減速機
KR100866102B1 (ko) * 2008-05-20 2008-10-30 주식회사 티트론 전위감속기의 출력축 지지구조
JP5121696B2 (ja) * 2008-12-29 2013-01-16 住友重機械工業株式会社 減速装置
JP5270462B2 (ja) * 2009-06-15 2013-08-21 ナブテスコ株式会社 偏心揺動型歯車装置および偏心揺動型歯車装置におけるクランク軸の組み付け方法
JP5283591B2 (ja) 2009-09-03 2013-09-04 住友重機械工業株式会社 単純遊星歯車減速機のシリーズ
JP5440326B2 (ja) * 2010-03-30 2014-03-12 株式会社ジェイテクト 変速歯車装置およびその製造方法
WO2012063555A1 (ja) * 2010-11-10 2012-05-18 株式会社ジェイテクト 遊星歯車減速機
JP5822392B2 (ja) * 2011-12-15 2015-11-24 住友重機械工業株式会社 偏心揺動型減速機
JP6028386B2 (ja) * 2012-05-08 2016-11-16 株式会社ジェイテクト 減速機構及びこれを備えたモータ回転力伝達装置
KR101293238B1 (ko) * 2012-10-04 2013-08-09 서울대학교산학협력단 외부가진에 의한 전기접점의 안정성 테스터
JP5961520B2 (ja) * 2012-10-10 2016-08-02 住友重機械工業株式会社 偏心揺動型の減速装置
JP6441070B2 (ja) * 2014-12-25 2018-12-19 ナブテスコ株式会社 減速機の設計方法
JP6542530B2 (ja) * 2014-12-25 2019-07-10 ナブテスコ株式会社 減速機群及び減速機群の設計方法
JP6543463B2 (ja) * 2014-12-25 2019-07-10 ナブテスコ株式会社 減速機群及び減速機群の設計方法
JP6446260B2 (ja) * 2014-12-25 2018-12-26 ナブテスコ株式会社 減速機群、減速機及び減速機の設計方法
JP6479613B2 (ja) * 2015-09-03 2019-03-06 住友重機械工業株式会社 偏心揺動型の歯車装置
US10683911B2 (en) 2016-06-01 2020-06-16 SunDrive Technologies, LLC Dual function gearbox, gearbox system and method
JP6803273B2 (ja) * 2017-03-15 2020-12-23 株式会社ニッセイ 差動減速機
JP6838849B2 (ja) * 2017-10-16 2021-03-03 株式会社ミツバ 減速機構及び減速機付モータ
JP6898876B2 (ja) 2018-02-28 2021-07-07 住友重機械工業株式会社 偏心揺動型減速装置
CN108488326A (zh) * 2018-04-25 2018-09-04 深圳市领略数控设备有限公司 多曲轴摆线针轮减速机
JP6585271B2 (ja) * 2018-11-29 2019-10-02 ナブテスコ株式会社 減速機群、減速機及び減速機の設計方法
JP7345248B2 (ja) 2018-12-20 2023-09-15 住友重機械工業株式会社 歯車装置
CN110594362B (zh) * 2019-09-25 2024-04-09 温州市日康机械科技厂 一种摆线针轮减速机构
JP7273782B2 (ja) * 2020-08-31 2023-05-15 美的集団股▲フン▼有限公司 内接噛合遊星歯車装置、車輪装置及び車両
JP2022135326A (ja) 2021-03-05 2022-09-15 住友重機械工業株式会社 偏心揺動型減速装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655985A (en) * 1992-12-31 1997-08-12 Herstek; Jozef Gear system, particularly multisatellite gear system
JP2000065162A (ja) * 1998-08-24 2000-03-03 Teijin Seiki Co Ltd 減速機
JP2000065158A (ja) * 1998-08-21 2000-03-03 Sumitomo Heavy Ind Ltd 内歯揺動型内接噛合遊星歯車装置
DE102004058551B4 (de) * 2004-12-03 2007-04-19 Spinea S.R.O. Getriebe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US768574A (en) * 1903-05-12 1904-08-23 Vietts L Rice Antifriction-bearing.
DE3131612A1 (de) * 1981-08-10 1983-02-24 Zahnräderfabrik Renk AG, 8900 Augsburg Getriebe zur positionierung von sonnenenergie-kollektoren
GB2138098A (en) * 1983-03-18 1984-10-17 Coop Goizper S Planetary torque wrench
US4697477A (en) * 1984-09-19 1987-10-06 Barr Harold B Continuously variable transmission
FR2571462A2 (fr) * 1984-10-08 1986-04-11 Durand Francois Reducteur planetaire avec deux excentriques doubles
US4841810A (en) * 1986-07-31 1989-06-27 Lew Hyok S Dual orbiting gear planetary drive
EP0291052B1 (de) * 1987-05-14 1993-02-03 Sumitomo Heavy Industries, Ltd Planetengetriebesystem
JPH07293557A (ja) * 1994-04-27 1995-11-07 Nippon Seiko Kk 遊星歯車用回転支持装置
JP4201448B2 (ja) 1999-12-28 2008-12-24 住友重機械工業株式会社 内接噛合遊星歯車構造を採用した変速機のシリーズ
JP2002310162A (ja) * 2001-04-11 2002-10-23 Ntn Corp 保持器付きころ装置およびこれを用いた遊星歯車装置
JP2006046596A (ja) * 2004-08-06 2006-02-16 Sumitomo Heavy Ind Ltd 遊星歯車減速装置
US7258643B2 (en) * 2004-10-12 2007-08-21 Epi- Energy, Ltd. Device for actuating a reciprocating recovery means for underground fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655985A (en) * 1992-12-31 1997-08-12 Herstek; Jozef Gear system, particularly multisatellite gear system
JP2000065158A (ja) * 1998-08-21 2000-03-03 Sumitomo Heavy Ind Ltd 内歯揺動型内接噛合遊星歯車装置
JP2000065162A (ja) * 1998-08-24 2000-03-03 Teijin Seiki Co Ltd 減速機
DE102004058551B4 (de) * 2004-12-03 2007-04-19 Spinea S.R.O. Getriebe

Also Published As

Publication number Publication date
DE102007017757A1 (de) 2008-01-24
TW200801372A (en) 2008-01-01
US7819770B2 (en) 2010-10-26
JP4818787B2 (ja) 2011-11-16
TWI373576B (de) 2012-10-01
US20070243967A1 (en) 2007-10-18
JP2007285396A (ja) 2007-11-01
KR20070102951A (ko) 2007-10-22
KR101186125B1 (ko) 2012-09-27
CN101059163A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
DE102007017757B4 (de) Oszillierendes innen eingreifendes Planetengetriebesystem
DE60204713T2 (de) Ein verbessertes stufenloses getriebe
DE60029662T2 (de) Zykloidengetriebe und Planeten-Reibradgetriebe
DE102008009759B4 (de) Oszillierendes innen eingreifendes Planetengetriebesystem und Verfahren zur Herstellung einer Exzenterkörperwelle
DE102010004043B4 (de) Untersetzungsvorrichtung
EP3371482B1 (de) Getriebe mit anlaufscheibe
DE102013002314B4 (de) Untersetzungsgetriebe der exzentrisch umlaufenden Bauart
DE10217343A1 (de) Drehzahlreduktionsgetriebe
DE112012002738T5 (de) Stufenlos veränderbares Getriebe vom Viergelenk-Verbindungstyp
DE19938057A1 (de) Getriebevorrichtung, die ein flexibles Zahnrad verwendet
EP2522881B1 (de) Getriebe zur Übertragung eines Drehmoments
DE102007015289B4 (de) Oszillierendes innen eingreifendes Planetenradreduktionsgetriebe
DE102009059785A1 (de) Untersetzungsvorrichtung bzw. Verzögerungsvorrichtung
DE10133230A1 (de) Wellengetriebeeinheit
EP3322908B1 (de) Getriebe mit anlaufscheibe zur axialen sicherung von wälzkörpern eines lagers
DE112013004516B4 (de) Exzenterrotationszahnrad-Vorrichtung
DE102008019886A1 (de) Exzentrische oszillatorische Drehzahlreduktionsvorrichtung
WO2017101920A1 (de) Getriebevorrichtung und antriebseinheit mit einer getriebevorrichtung
EP2255104B1 (de) Getriebe
WO2015154766A1 (de) Anlaufscheibenanordnung eines planetengetriebes
EP1819942B1 (de) Getriebe
EP3483473A1 (de) Getriebe
WO2010009697A1 (de) Antriebsanordnung für ein stufenlos verstellbares getriebe eines kraftfahrzeuges
WO2015036401A1 (de) Nockenwellenversteller
DE102004043077B4 (de) Vorrichtung zum Erzeugen einer umlaufenden Verformung eines elastischen Getrieberinges

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120915