DE102006056578A1 - Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche - Google Patents

Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche Download PDF

Info

Publication number
DE102006056578A1
DE102006056578A1 DE102006056578A DE102006056578A DE102006056578A1 DE 102006056578 A1 DE102006056578 A1 DE 102006056578A1 DE 102006056578 A DE102006056578 A DE 102006056578A DE 102006056578 A DE102006056578 A DE 102006056578A DE 102006056578 A1 DE102006056578 A1 DE 102006056578A1
Authority
DE
Germany
Prior art keywords
substrate
layer
nanostructure
thin layer
etching process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006056578A
Other languages
English (en)
Inventor
Peter Munzert
Ulrike Dr. Schulz
Michael Scheler
Norbert Dr. Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102006056578A priority Critical patent/DE102006056578A1/de
Priority to EP07846367.6A priority patent/EP2083991B8/de
Priority to CN2007800439229A priority patent/CN101588912B/zh
Priority to PCT/DE2007/002151 priority patent/WO2008064663A1/de
Priority to KR1020097013716A priority patent/KR101430561B1/ko
Priority to JP2009538587A priority patent/JP5268931B2/ja
Publication of DE102006056578A1 publication Critical patent/DE102006056578A1/de
Priority to US12/474,008 priority patent/US20090261063A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Bei dem erfindungsgemäßen Verfahren zur Erzeugung einer Nanostruktur (6) an einer Oberfläche eines Substrats (1) aus einem Kunststoff mit einem Plasmaätzprozess wird eine dünne Schicht (2) auf das Kunststoffsubstrat (1) aufgebracht und anschließend der Plasmaätzprozess durchgeführt. Durch die mit dem Verfahren erzeugte Nanostruktur (6) wird insbesondere die Reflexion der Oberfläche des Kunststoffsubstrats (1) vermindert.

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.
  • Aus der Patentschrift DE 102 41 708 B4 ist ein Verfahren zur Reduzierung der Reflexion von Kunststoffsubstraten bekannt, bei dem an einer Oberfläche eines Substrats aus einem Kunststoff mittels eines Plasmaätzprozesses eine Nanostruktur erzeugt wird. Dabei wird die Nanostruktur durch Beschuss der Substratoberfläche mit energiereichen Ionen, welche mittels einer Plasma-Ionenquelle erzeugt werden, hergestellt.
  • Es hat sich herausgestellt, dass die Herstellung einer derartigen reflexionsmindernden Nanostruktur auf einigen Kunststoffen nur vergleichsweise schwer möglich ist, insbesondere nur mit vergleichsweise langen Ätzzeiten bei dem Plasmaätzprozess.
  • Aus der Druckschrift DE 102 41 708 B4 geht ferner hervor, dass die Dauer des Plasmaätzprozesses bei einem Substrat aus PMMA nicht mehr als 300 s betragen sollte, während zum Beispiel für das Polymer CR39 erst bei einer Behandlungszeit von etwa 500 s eine gute Entspiegelungswirkung erzielt wird.
  • Die unterschiedliche Behandlungszeit für verschiedene Kunststoffsubstrate erschwert die gleichzeitige Entspiegelung von Kunststoffsubstraten aus verschiedenen Materialien in einem Arbeitsgang in der gleichen Vakuumkammer.
  • Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Erzeugung einer Nanostruktur an einer Oberfläche eines Substrats aus einem Kunststoff mit einem Plasmaätzprozess anzugeben. Insbesondere soll das verbesserte Verfahren die Herstellung von Nanostrukturen mit vergleichsweise geringem Aufwand auf einer Vielzahl von Kunststoffen ermöglichen, wobei sich die erforderliche Behandlungszeit bei der Durchführung des Plasmaätzprozesses bei verschiedenen Substratmaterialien vorteilhaft nicht wesentlich voneinander unterscheidet.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Bei dem erfindungsgemäßen Verfahren zur Erzeugung einer Nanostruktur an einer Oberfläche eines Substrats aus einem Kunststoff mit einem Plasmaätzprozess wird eine dünne Schicht auf das Kunststoffsubstrat aufgebracht und anschließend der Plasmaätzprozess durchgeführt.
  • Es hat sich herausgestellt, dass sich Nanostrukturen zur Reflexionsminderung durch das Aufbringen einer dünnen Schicht vor der Durchführung des Plasmaätzprozesses auch auf Kunststoffsubstraten herstellen lassen, bei denen dies mit einem herkömmlichen Plasmaätzprozess nur schwer möglich ist oder vergleichsweise lange Behandlungszeiten erforderlich sind. Weiterhin hat sich vorteilhaft herausgestellt, dass sich die erforderliche Behandlungszeit für die Durchführung des Plasmaätzprozesses im Vergleich zu einem herkömmlichen Plasmaätzprozess verkürzt. Ein weiterer Vorteil des Verfahrens besteht darin, dass sich die erforderliche Dauer des Plasmaätzprozesses bei Substraten aus verschiedenen Kunststoffen vorteilhaft nur unwesentlich oder gar nicht voneinander unterscheidet. Dies ermöglicht die gleichzeitige Entspiegelung mehrerer Kunststoffsubstrate aus verschiedenen Kunststoffen in einem Arbeitgang in der gleichen Vakuumkammer.
  • Die dünne Schicht, die vor der Durchführung des Plasmaätzprozesses auf das Kunststoffsubstrat aufgebracht wird, ist bevorzugt eine Oxidschicht, eine Nitridschicht oder eine Fluoridschicht. Insbesondere kann es sich bei der dünnen Schicht um eine Siliziumoxid-, Siliziumnitrid-, Titanoxid- oder Magnesiumfluoridschicht handeln.
  • Die Dicke der dünnen Schicht beträgt bevorzugt 2 nm oder weniger, besonders bevorzugt 1,5 nm oder weniger. Unter der Dicke der dünnen Schicht ist im Rahmen der Erfindung eine mittlere Schichtdicke zu verstehen, falls es sich bei der dünnen Schicht um eine nicht-kontinuierliche, insbesondere um eine inselförmige Schicht, handelt.
  • Das Aufbringen der dünnen Schicht erfolgt bevorzugt durch ein PVD (Physical Vapor Deposition)-Verfahren, insbesondere durch Sputtern oder Vakuumbedampfung. Beispielsweise kann eine dielektrische Oxid- oder Nitridschicht durch reaktives Sputtern, insbesondere Magnetronsputtern, von einem metallischen Target hergestellt werden.
  • Alternativ zum Aufbringen der dünnen Schicht mittels eines Vakuumbeschichtungsverfahrens kann die dünne Schicht auf der Oberfläche des Kunststoffsubstrats auch durch den Abrieb einer gummiartigen Schicht, ähnlich wie bei dem Abrieb eines Radiergummis, oder durch das Aufbringen und nachfolgendes Abreißen eines Klebebands erzeugt werden.
  • Der Plasmaätzprozess, der zur Bildung der reflexionsmindernd wirkenden Nanostruktur führt, wird vorzugsweise unmittelbar nach dem Aufbringen der dünnen Schicht durchgeführt. Die Durchführung des Plasmaätzprozesses erfolgt vorteilhaft mittels eines Plasmas, das Sauerstoff enthält. Ein geeigneter Plasmaätzprozess ist an sich aus der Patentschrift DE 10241708 B4 , deren Offenbarungsgehalt diesbezüglich hiermit durch Referenz aufgenommen wird, bekannt.
  • Das erfindungsgemäße Verfahren ist insbesondere bei Kunststoffsubstraten anwendbar, die Polycarbonat, ein Cycloolefin-Polymer, Polyethersulfon, Polyetherimid, Polyamid, PET, PMMA oder CR39 enthalten.
  • Dabei wird im Vergleich zu einem herkömmlichen Plasmaätzprozess, der ohne das vorherige Aufbringen einer dünnen Schicht erfolgt, eine Reduzierung der erforderlichen Behandlungszeit erzielt. Bevorzugt beträgt die Dauer des Plasmaätzprozesses 400 s oder weniger, besonders bevorzugt sogar 300 s oder weniger.
  • Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Erzeugung einer Nanostruktur auf mehreren Kunststoffsubstraten aus verschiedenen Kunststoffen gleichzeitig. Dies ist möglich, da sich die erforderliche Behandlungszeit zur Erzielung der bestmöglichen Entspiegelung bei verschiedenen Kunststoffen nicht oder nur unwesentlich voneinander unterscheidet.
  • Die mit dem Verfahren erzeugte Nanostruktur erstreckt sich vorteilhaft von der Oberfläche des Kunststoffsubstrats aus bis in eine Tiefe von 50 nm oder mehr in das Kunststoffsubstrat hinein. Besonders bevorzugt beträgt die Tiefe der Nanostruktur von der Oberfläche des Kunststoffsubstrats aus zwischen einschließlich 50 nm und 200 nm.
  • Das Kunststoffsubstrat kann bei dem erfindungsgemäßen Verfahren insbesondere ein optisches Element oder eine transparente Abdeckung sein, bei dem die Reflexion der Oberfläche vermindert werden soll. Bei einer weiteren bevorzugten Ausführungsform der Erfindung ist das Kunststoffsubstrat eine Kunststofffolie. Es hat sich herausgestellt, dass mit dem Verfahren auch vergleichsweise große Flächen mit einer Nanostruktur versehen werden können, insbesondere Flächen mit einer Größe von 50 cm × 50 cm oder mehr. Es können deshalb auch großflächige Folien mit einer Nanostruktur versehen werden können.
  • Durch die mit dem Verfahren erzeugte Nanostruktur wird bevorzugt die Reflexion der Oberfläche des Kunststoffsubstrats vermindert.
  • Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine transparente Schutzschicht auf die Nanostruktur aufgebracht. Die transparente Schutzschicht schützt die die erzeugte Nanostruktur vor äußeren Einwirkungen, insbesondere vor mechanischen Beschädigungen, die beispielsweise bei der Reinigung der Oberfläche auftreten könnten.
  • Die Dicke der transparenten Schutzschicht wird vorzugsweise derart gewählt, dass einerseits die Nanostruktur ausreichend vor äußeren Einflüssen geschützt ist, andererseits aber die reflexionsmindernde Wirkung nicht verloren geht. Besonders bevorzugt beträgt die Dicke der transparenten Schutzschicht zwischen einschließlich 10 nm und einschließlich 50 nm.
  • Besonders geeignet zur Ausbildung einer transparenten Schutzschicht ist ein Siliziumoxid, insbesondere SiO2.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den 1 bis 4 näher erläutert.
  • Es zeigen:
  • 1 eine schematische grafische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens anhand von Zwischenschritten,
  • 2 eine schematische grafische Darstellung eines weiteren Verfahrensschritts bei einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens,
  • 3 die Transmission in Abhängigkeit von der Wellenlänge bei einem mit dem erfindungsgemäßen Verfahren behandelten Kunststoffsubstrat aus Zeonex® im Vergleich zu einem unbehandelten Kunststoffsubstrat aus Zeonex®, und
  • 4 die Transmission in Anhängigkeit von der Wellenlänge bei einem mit dem erfindungsgemäßen Verfahren behandelten Kunststoffsubstrat aus Ultrason® im Vergleich zu einem unbehandelten Kunststoffsubstrat aus Ultrason®.
  • Gleiche oder gleichwirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. Die Figuren sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente zur Verdeutlichung übertrieben groß dargestellt sein.
  • Wie in 1 dargestellt, wird bei einem ersten Zwischenschritt eines erfindungsgemäßen Verfahrens eine dünne Schicht 2 auf ein Kunststoffsubstrat 1 aufgebracht. Das Kunststoffsubstrat weist vorzugsweise Polycarbonat, ein Cycloolefin-Polymer, Polyethersulfon, Polyetherimid, Polyamid, PET, PMMA oder CR39 auf. Insbesondere die Kunststoffe aus der Gruppe der Cycloolefin-Polymere, Polyethersulfone, Polyetherimide oder Polyamide können mit dem erfindungsgemäßen Verfahren im Vergleich zu einem herkömmlichen Plasmaätzverfahren mit vergleichsweise kurzen Ätzzeiten mit einer reflexionsmindernden Nanostruktur versehen werden. Vorteilhaft wird aber auch bei Kunststoffen wie PMMA oder CR39 eine Verkürzung der Prozessdauer gegenüber einem herkömmlichen Plasmaätzverfahren erzielt.
  • Die dünne Schicht 2, die auf das Kunststoffsubstrat 1 aufgebracht wird, ist vorzugsweise eine Oxidschicht, eine Nitridschicht oder eine Fluoridschicht. Insbesondere sind dünne Schichten aus TiO2, SiO2, MgF2 oder aus einem Siliziumnitrid geeignet.
  • Bei der dünnen Schicht 2 handelt es sich vorzugsweise um eine inselförmige Schicht, das heißt um eine Schicht, deren Wachstum derart im Anfangsstadium unterbrochen wurde, dass die Schicht noch nicht zu einer kontinuierlichen Schicht zusammengewachsen ist.
  • Die dünne Schicht 2 weist bevorzugt eine Dicke von 2 nm oder weniger, besonders bevorzugt von 1,5 nm oder weniger auf. Unter der Dicke der dünnen Schicht 2 wird dabei, da es sich bei der dünnen Schicht 2 insbesondere um eine inselförmige Schicht handeln kann, eine über die Oberfläche des Kunststoffsubstrats 1 gemittelte Dicke verstanden. Die mittlere Dicke der dünnen Schicht 2 kann beim Aufwachsen beispielsweise mit einem kalibrierten Schwingquarzmesssystem bestimmt werden, wobei die mittlere Schichtdicke aus der auf das Substrat aufgebrachten Masse berechnet wird. Die mittlere Dicke der inselförmigen dünnen Schicht entspricht der Dicke einer geschlossenen gleichmäßig dicken Schicht, die die gleiche Masse wie die tatsächlich aufgebrachte inselförmige Schicht aufweist.
  • Das Aufbringen der dünnen Schicht 2 auf das Kunststoffsubstrat 1 erfolgt beispielsweise durch Vakuumbedampfung aus einer Verdampfungsquelle 3. Insbesondere kann es sich bei der Verdampfungsquelle 3 um eine Elektronenstrahlverdampfungsquelle oder um eine thermische Verdampfungsquelle handeln. Alternativ können auch andere PVD-Verfahren zum Aufbringen der dünnen Schicht 2 eingesetzt werden. Insbesondere ist das Aufbringen durch Sputtern, zum Beispiel durch reaktives Magnetronsputtern, geeignet. Das Aufbringen der dünnen Schicht 2 mittels Sputterns hat den Vorteil, dass auch vergleichsweise große Flächen eines Kunststoffsubstrats 1 homogen mit der dünnen Schicht 2 beschichtet werden können. Beispielsweise ist es möglich, auch größere Kunststoffsubstrate mit einer Größe von beispielsweise 50 cm × 50 cm oder mehr zu beschichten.
  • Nach dem Aufbringen der dünnen Schicht 2 auf das Kunststoffsubstrat 1 wird ein Plasmaätzprozess zur Erzeugung einer Nanostruktur an der Oberfläche des Kunststoffsubstrats 1 durchgeführt. Zur Erzeugung des Plasmas wird beispielsweise eine Plasmaionenquelle 4 eingesetzt. Insbesondere kann es sich bei dem Plasma um ein Argonplasma handeln, dem Sauerstoff zugeführt wird. In dem Plasma 5 werden hochenergetische Ionen zum Substrat hin beschleunigt und erzeugen auf diese Weise die Nanostruktur. Eine geeignete Plasmaionenquelle 4 und zur Durchführung des Plasmaätzprozesses geeignete Betriebsparameter sind beispielsweise aus der Druckschrift DE 10241708 B4 bekannt und werden daher an dieser Stelle nicht näher erläutert. Anstelle dieser im Stand der Technik beschriebenen Plasmaionenquelle, die typischerweise in Vakuumbedampfungsanlagen zur thermischen und/oder Elektronenstrahlverdampfung eingesetzt wird, kann der Plasmaätzprozess auch mit anderen Plasmaquellen durchgeführt werden. Zum Beispiel ist auch eine Hochfrequenz-Plasmaquelle geeignet, die als Ätzstation in einer Sputteranlage angeordnet sein kann.
  • Es hat sich vorteilhaft herausgestellt, dass sich die erforderliche Dauer des Plasmaätzprozesses durch das vorherige Aufbringen der dünnen Schicht 2 im Vergleich zu dem in der zuvor genannten Druckschrift beschriebenen Verfahren vorteilhaft verkürzt. Insbesondere kann die Dauer des Plasmaätzprozesses 400 s oder weniger, bevorzugt 300 s oder weiniger, betragen. Die Dauer des Ätzprozesses kann anhand von Messungen der spektralen Transmission von Proben, die mit verschiedenen Ätzzeiten behandelt wurden, optimiert werden. Bei einer zu kurzen Ätzzeit kann eine unerwünschte Verschiebung des Reflexionsminimums zu einer kürzeren Wellenlänge hin erfolgen, während bei zu langen Ätzzeiten Streulichtverluste in der Nanostruktur auftreten.
  • Durch den Plasmaätzprozess wird an der Oberfläche des Kunststoffsubstrats 1 die Nanostruktur 6 erzeugt. Die zuvor aufgebrachte dünne Schicht 2 kann bei dem Plasmaätzprozess ganz oder teilweise von der Oberfläche des Kunststoffsubstrats 1 abgetragen werden. Die Nanostruktur 6 erstreckt sich vorzugsweise von der Oberfläche des Kunststoffsubstrats 1 bis in eine Tiefe von mehr als 50 nm in das Substrat hinein. Besonders bevorzugt erstreckt sich die Nanostruktur 6 sogar bis in eine Tiefe von 100 nm oder mehr in das Substrat hinein. In lateraler Richtung betragen die Strukturgrößen der Nanostruktur vorzugsweise 70 nm oder weniger, das heißt es wird ein vergleichsweise großes Aspektverhältnis erzielt.
  • Bei einer bevorzugten Ausführungsform der Erfindung wird, wie in 2 dargestellt ist, nach der Erzeugung der Nanostruktur 6 an der Oberfläche des Kunststoffsubstrats 1 eine transparente Schutzschicht 7 auf die Nanostruktur 6 aufgebracht. Durch die transparente Schutzschicht 7 wird die Nanostruktur 6 vor äußeren Einflüssen, insbesondere vor einer mechanischen Beschädigung geschützt. Insbesondere wird dadurch die Gefahr vermindert, dass die Nanostruktur bei einer Reinigung der Oberfläche des Kunststoffsubstrats 1 beschädigt wird.
  • Es wurde festgestellt, dass die transparente Schutzschicht 7 die Nanostruktur 6 nur bei sehr geringen Schichtdicken von weniger als 10 nm nachbildet. Bei größeren Schichtdicken bildet sich eine geschlossene Schicht aus, die die Nanostruktur ausreichend vor mechanischen Beschädigungen z.B. beim Abwischen der Oberfläche schützt. Dabei wird die reflexionsmindernde Wirkung der erzeugten Nanostruktur 6 durch die dünne transparente Schicht nicht oder nur unwesentlich beeinträchtigt, wenn die Schichtdicke 50 nm, besonders bevorzugt 40 nm, nicht übersteigt. Bevorzugt weist die transparente Schutzschicht daher eine Dicke zwischen einschließlich 10 nm und einschließlich 50 nm auf.
  • Um die reflexionsmindernde Wirkung der Nanostruktur 6 nicht zu beeinträchtigen, ist es weiterhin vorteilhaft, wenn die transparente Schutzschicht einen geringen Brechungsindex aufweist. Bevorzugt ist die transparente Schutzschicht eine SiO2-Schicht.
  • Wenn eine transparente Schutzschicht 7 auf die Nanostruktur 6 aufgebracht wird, ist es vorteilhaft, wenn die Dauer des vorherigen Ätzprozesses kürzer als bei dem Verfahren ohne nachträgliches Aufbringen einer Schutzschicht gewählt wird. Vorzugsweise beträgt die Dauer des Ätzprozesses bei dieser Ausführungsform der Erfindung 200 s oder weniger.
  • Aufgrund der reflexionsmindernden Wirkung der Nanostruktur 6 ist das erfindungsgemäße Verfahren insbesondere für Kunststoffsubstrate 1 geeignet, bei denen eine Reflexion von einfallender Strahlung unerwünscht ist, beispielsweise bei transparenten Abdeckungen von Displays oder bei optischen Elementen.
  • Insbesondere kann das erfindungsgemäße Verfahren auch für großflächige Kunststoffsubstrate 1 verwendet werden, beispielsweise für großflächige Abdeckungen von optischen Anzeigeelementen oder zur Entspiegelung von Kunststofffolien.
  • In 3 ist die gemessene Transmission eines beidseitig mit dem erfindungsgemäßen Verfahren behandelten Kunststoffsubstrats aus Zeonex® (Kurve 9) im Vergleich zu einem unbehandelten Zeonex®-Substrat (Kurve 8) dargestellt. Die Messkurven 8, 9 verdeutlichen, dass insbesondere die Transmission im sichtbaren Spektralbereich durch die Erzeugung von Nanostrukturen an beiden gegenüberliegenden Oberflächen des Kunststoffsubstrats mit dem erfindungsgemäßen Verfahren erheblich verbessert werden kann.
  • Das bei diesem Ausführungsbeispiel verwendete Kunststoffsubstrat aus Zeonex® zeichnet sich durch eine vergleichsweise gute Wärmeformbeständigkeit, beispielsweise im Vergleich zu PMMA, aus und ist insbesondere bis zu einer Temperatur von etwa 125 °C einsetzbar. Die dargestellte Transmissionsmessung (Kurve 9) wurde an einer Probe mit 55 mm Durchmesser und einer Dicke von 1 mm durchgeführt, die beidseitig mittels des erfindungsgemäßen Verfahrens mit einer Nanostruktur versehen wurde. Zur Herstellung der Nanostruktur wurde in einer Vakuumbedampfungsanlage APS904 (Leibold Optics) eine dünne TiO2-Schicht mittels Elektronenstrahlverdampfung auf das Kunststoffsubstrat abgeschieden. Dies kann beispielsweise bei einem Prozessdruck von etwa 1 × 10–5 mbar erfolgen. Die TiO2-Schicht wurde mit einer Dicke von etwa 1,25 nm bei einer Aufdampfrate von 0,03 nm/s abgeschieden, wobei die Schichtdicke während des Aufwachsens mittels eines kalibrierten Schwingquarzmesssystems detektiert wurde. Das Aufwachsen der dünnen Schicht erfolgte auf ein unbehandeltes Substrat, insbesondere wurde vor dem Aufwachsen der dünnen Schicht keine Plasmavorbehandlung durchgeführt.
  • Die Erzeugung der Nanostruktur mittels eines Plasmaätzprozesses erfolgte mittels einer in die Vakuumbedampfungsanlage eingebauten Plasmaionenquelle ohne eine zwischenzeitige Unterbrechung des Vakuumzyklus. Zur Durchführung des Ätzvorgangs wurden Argon mit einer Flussrate von 14 sccm und Sauerstoff mit einer Flussrate von 30 sccm in die Vakuumkammer eingelassen. Die Plasmaionenquelle wurde mit einer EIAS-Spannung, die ein Maß für die Energie der am Substratträger auftreffenden Ar-Ionen ist, von 120 V und einem Entladestrom von 50 A betrieben. Der Ätzprozess wurde mit diesen Prozessparametern mit einer Dauer von 300 s durchgeführt. Es hat sich herausgestellt, dass bei längeren Ätzzeiten Streulichtverluste in der mit der Nanostruktur versehenen Probe auftreten, während bei kürzeren Ätzzeiten noch nicht die bestmögliche Reflexionsminderung im sichtbaren Spektralbereich erzielt wird.
  • In 3 ist die gemessene Transmission in Abhängigkeit von der Wellenlänge für ein unbehandeltes (Kurve 10) und ein mit dem erfindungsgemäßen Verfahren behandeltes (Kurve 11) Kunststoffsubstrat aus dem Polyethersulfon Ultrason® E2010 dargestellt. Bei diesem Polymer handelt es sich um ein Thermoplast mit einer vergleichsweise hohen Wärmeformbeständigkeit bis in einen Temperaturbereich von über 200 °C. Es zeichnet sich durch einen vergleichsweise hohen Brechungsindex von n = 1,65 aus, der für viele optische Anwendungen vorteilhaft ist, jedoch an einer Grenzfläche zur Luft zu nachteilig hohen Reflexionsverlusten führen kann.
  • Die gemessenen Transmissionskurven 10 und 11 verdeutlichen, dass die Transmission der bei dem Ausführungsbeispiel verwendeten 1,5 mm dicken Probe aus Ultrason® insbesondere im sichtbaren Spektralbereich durch die Behandlung mit dem erfindungsgemäßen Verfahren erhöht werden konnte, wobei beispielsweise bei einer Wellenlänge von 550 nm eine Steigerung der Transmission von mehr als 10 % erzielt wurde.
  • Zur Herstellung der Probe wurde eine Silizium-Nitridschicht mit einer Dicke von etwa 1 nm auf das Kunststoffsubstrat abgeschieden. Die Abscheidung der dünnen Silizium-Nitridschicht erfolgte in einer Magnetron-Sputteranlage durch reaktives DC-Sputtern bei einer Leistung von 300 W in einem Ar/N2-Plasma von einem Si-Target, wobei Argon mit einer Flussrate von 10 sccm und Stickstoff mit einer Flussrate von 15 sccm in die Vakuumkammer eingelassen wurden.
  • Die Erzeugung der Nanostruktur erfolgte mit einem Ätzvorgang, der ohne vorherige Unterbrechung des Vakuumzyklus in einer Ätzstation der Sputteranlage durchgeführt wurde. Das Ätzen erfolgte in einem Argon/Sauerstoffplasma. Dabei wurde ein Hochfrequenz-Plasma mit einer Frequenz von 13,56 MHz und einer Plasmaleistung von 100 W eingesetzt, wobei Argon mit einer Flussrate von 10 sccm und Sauerstoff mit einer Flussrate von 20 sccm in die Vakuumkammer eingeleitet wurden. Wie bei dem zuvor dargestellten Ausführungsbeispiel hat sich herausgestellt, dass die Ätzzeit zur Erzielung der bestmöglichen Reflexionsverminderung etwa 300 s beträgt.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (20)

  1. Verfahren zur Erzeugung einer Nanostruktur (6) an einer Oberfläche eines Substrats (1) aus einem Kunststoff mit einem Plasmaätzprozess, dadurch gekennzeichnet, dass eine dünne Schicht (2) auf das Substrat (1) aufgebracht wird und nachfolgend der Plasmaätzprozess durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die dünne Schicht (2) eine Oxidschicht, eine Nitridschicht oder eine Fluoridschicht ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die dünne Schicht (2) Siliziumoxid, Siliziumnitrid, Titanoxid oder Magnesiumfluorid enthält.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dünne Schicht (2) eine mittlere Dicke von 2 nm oder weniger aufweist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dünne Schicht (2) durch Sputtern oder Vakuumbedampfung aufgebracht wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dünne Schicht (2) durch Abrieb einer gummiartigen Schicht oder durch das Aufbringen und Abreißen eines Klebebands aufgebracht wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dünne Schicht (2) eine inselförmige Schicht ist.
  8. verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat (1) ein Polycarbonat, ein Cycloolefin-Polymer, ein Polyethersulfon, ein Polyetherimid, ein Polyamid, PET, PMMA oder CR39 enthält.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer des Plasmaätzprozesses 400 s oder weniger beträgt.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erzeugung der Nanostruktur (6) auf mehreren Substraten (1) aus verschiedenen Kunststoffen gleichzeitig in derselben Vakuumkammer durchgeführt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Nanostruktur (6) von der Oberfläche des Substrats (1) aus bis in eine Tiefe von 50 nm oder mehr in das Substrat (1) hinein erstreckt.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass sich die Nanostruktur (6) von der Oberfläche des Substrats (1) aus bis in eine Tiefe zwischen 50 nm und 200 nm in das Substrat (1) hinein erstreckt.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat (1) ein optisches Element ist.
  14. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat (1) eine transparente Abdeckung einer optischen Anzeigevorrichtung ist.
  15. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Substrat (1) eine Kunststofffolie ist.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nanostruktur die Reflexion des Substrats (1) vermindert.
  17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine transparente Schutzschicht (7) auf die Nanostruktur (6) aufgebracht wird.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die transparente Schutzschicht (7) eine Dicke zwischen einschließlich 10 nm und einschließlich 50 nm aufweist.
  19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die transparente Schutzschicht (7) eine SiO2-Schicht ist.
  20. Verfahren nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass die Dauer des Plasmaätzprozesses 200 s oder weniger beträgt.
DE102006056578A 2006-11-30 2006-11-30 Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche Withdrawn DE102006056578A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102006056578A DE102006056578A1 (de) 2006-11-30 2006-11-30 Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche
EP07846367.6A EP2083991B8 (de) 2006-11-30 2007-11-28 Verfahren zur herstellung einer nanostruktur an einer kunststoffoberfläche
CN2007800439229A CN101588912B (zh) 2006-11-30 2007-11-28 在塑料表面上产生纳米结构的方法
PCT/DE2007/002151 WO2008064663A1 (de) 2006-11-30 2007-11-28 Verfahren zur herstellung einer nanostruktur an einer kunststoffoberfläche
KR1020097013716A KR101430561B1 (ko) 2006-11-30 2007-11-28 플라스틱 기판 표면 상에 나노 구조물을 제조하기 위한 방법
JP2009538587A JP5268931B2 (ja) 2006-11-30 2007-11-28 プラスチック表面にナノ構造を製造する方法
US12/474,008 US20090261063A1 (en) 2006-11-30 2009-05-28 Method for Producing a Nanostructure on a Plastic Surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006056578A DE102006056578A1 (de) 2006-11-30 2006-11-30 Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche

Publications (1)

Publication Number Publication Date
DE102006056578A1 true DE102006056578A1 (de) 2008-06-05

Family

ID=39198257

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006056578A Withdrawn DE102006056578A1 (de) 2006-11-30 2006-11-30 Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche

Country Status (7)

Country Link
US (1) US20090261063A1 (de)
EP (1) EP2083991B8 (de)
JP (1) JP5268931B2 (de)
KR (1) KR101430561B1 (de)
CN (1) CN101588912B (de)
DE (1) DE102006056578A1 (de)
WO (1) WO2008064663A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064663A1 (de) 2006-11-30 2008-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung einer nanostruktur an einer kunststoffoberfläche
WO2011109284A1 (en) * 2010-03-03 2011-09-09 3M Innovative Properties Company Composite multilayered structure with nanostructured surface
WO2011109287A1 (en) * 2010-03-03 2011-09-09 3M Innovative Properties Company Coated polarizer with nanostructured surface and method for making the same.
EP2379442A2 (de) * 2008-12-30 2011-10-26 3M Innovative Properties Company Verfahren zur herstellung nanostrukturierter oberflächen
CN102325719A (zh) * 2008-12-30 2012-01-18 3M创新有限公司 纳米结构化制品和制备纳米结构化制品的方法
WO2013045111A1 (de) 2011-09-28 2013-04-04 Leybold Optics Gmbh Verfahren und vorrichtung zur erzeugung einer reflektionsmindernden schicht auf einem substrat
DE102012100294A1 (de) * 2012-01-13 2013-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Kunststoffsubstrats mit einer Lackschicht und Kunststoffsubstrat mit einer Lackschicht
EP2416185A3 (de) * 2010-08-02 2013-12-11 Hoya Lens Manufacturing Philippines Inc. Optischer Artikel und Verfahren zur Herstellung des optischen Artikels
CN104671198A (zh) * 2015-02-03 2015-06-03 天津大学 一种利用电子束诱导方式制备条纹型微纳皱纹结构的方法
DE102018108053A1 (de) 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikrostrukturierter Gegenstand

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1006618B (el) * 2008-06-13 2009-12-03 Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων (Εκεφε) "Δημοκριτος" Μεθοδος για την κατασκευη περιοδικων δομων σε πολυμερη με διεργασιες πλασματος
KR101915868B1 (ko) 2008-12-30 2018-11-06 쓰리엠 이노베이티브 프로퍼티즈 컴파니 반사방지 용품 및 이의 제조 방법
KR100931896B1 (ko) * 2009-08-13 2009-12-16 제이엠아이 주식회사 Led조명등용 보호패널과 그 제조방법
JP5438245B2 (ja) * 2010-05-03 2014-03-12 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造の作製方法
DE102011013822A1 (de) * 2011-03-14 2012-09-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Modifizierung einer Oberfläche eines Substrats durch Ionenbeschuss
KR20130027852A (ko) * 2011-09-08 2013-03-18 씨제이제일제당 (주) 나노구조의 소수성 표면을 갖는 식품용기 및 그의 제조방법
JP5840448B2 (ja) 2011-10-12 2016-01-06 株式会社タムロン 反射防止膜及び反射防止膜の製造方法
KR101447531B1 (ko) * 2012-09-05 2014-10-08 한국과학기술원 이산화티탄층의 물에 대한 습윤성을 조정하는 방법
DE102014105939B4 (de) 2014-04-28 2019-08-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Entspiegelungsschicht auf einer Silikonoberfläche und optisches Element
DE102014113097A1 (de) * 2014-09-11 2016-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Reduzieren der Schmutzhaftung an einem Substrat
KR101976564B1 (ko) * 2017-09-13 2019-05-10 한국기계연구원 이온빔을 이용한 나노 주름 구조가 형성된 폴리머 및 이의 제조방법
KR101977256B1 (ko) * 2017-09-13 2019-05-13 한국기계연구원 폴리머의 밀도에 따른 나노구조 형성방법
CN112654730A (zh) 2018-08-31 2021-04-13 株式会社Lg化学 用于装饰元件的膜的制造方法
KR102507549B1 (ko) * 2018-08-31 2023-03-07 주식회사 엘지화학 장식 부재의 제조방법 및 장식 부재
CN111257974B (zh) 2018-11-30 2022-05-10 大立光电股份有限公司 微型光学镜头、取像装置及电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374158A (en) * 1979-11-14 1983-02-15 Toray Industries, Inc. Process for producing transparent shaped article having enhanced anti-reflective effect
DE10241708A1 (de) * 2002-09-09 2004-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Reduzierung der Grenzflächenreflexion von Kunststoffsubstraten sowie derart modifiziertes Substrat und dessen Verwendung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2536013A1 (de) * 1975-08-13 1977-03-03 Bosch Gmbh Robert Verfahren zur verbesserung der haltbarkeit von aus siliciumoxiden bestehenden schutzschichten
US4222838A (en) * 1978-06-13 1980-09-16 General Motors Corporation Method for controlling plasma etching rates
JPS56108879A (en) * 1978-11-01 1981-08-28 Minnesota Mining & Mfg Article having fine interface structure and method
US4340276A (en) * 1978-11-01 1982-07-20 Minnesota Mining And Manufacturing Company Method of producing a microstructured surface and the article produced thereby
JP2534260B2 (ja) * 1987-05-26 1996-09-11 ホ−ヤ株式会社 反射防止膜を有する光学部材の製造方法
US5312514A (en) * 1991-11-07 1994-05-17 Microelectronics And Computer Technology Corporation Method of making a field emitter device using randomly located nuclei as an etch mask
US5389195A (en) * 1991-03-07 1995-02-14 Minnesota Mining And Manufacturing Company Surface modification by accelerated plasma or ions
US5494743A (en) * 1992-08-20 1996-02-27 Southwall Technologies Inc. Antireflection coatings
DE19642419A1 (de) * 1996-10-14 1998-04-16 Fraunhofer Ges Forschung Verfahren und Beschichtungszusammensetzung zur Herstellung einer Antireflexionsbeschichtung
US6246459B1 (en) * 1998-06-10 2001-06-12 Tyco Electronics Corporation Assembly including an active matrix liquid crystal display module and having plural environmental seals
JP2001272505A (ja) * 2000-03-24 2001-10-05 Japan Science & Technology Corp 表面処理方法
JP2003347149A (ja) * 2002-05-23 2003-12-05 Nitto Denko Corp 金属転写シート、金属転写シートの製造方法およびセラミックコンデンサの製造方法
JP4505670B2 (ja) * 2003-08-29 2010-07-21 株式会社ニコン 透過型光学素子の製造方法
CN1283445C (zh) * 2004-03-19 2006-11-08 中国科学院化学研究所 改变固体薄膜材料表面浸润性的方法
US7170666B2 (en) * 2004-07-27 2007-01-30 Hewlett-Packard Development Company, L.P. Nanostructure antireflection surfaces
US7268431B2 (en) 2004-12-30 2007-09-11 Advantech Global, Ltd System for and method of forming via holes by use of selective plasma etching in a continuous inline shadow mask deposition process
DE102006056578A1 (de) 2006-11-30 2008-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Nanostruktur an einer Kunststoffoberfläche

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374158A (en) * 1979-11-14 1983-02-15 Toray Industries, Inc. Process for producing transparent shaped article having enhanced anti-reflective effect
DE10241708A1 (de) * 2002-09-09 2004-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Reduzierung der Grenzflächenreflexion von Kunststoffsubstraten sowie derart modifiziertes Substrat und dessen Verwendung

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064663A1 (de) 2006-11-30 2008-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung einer nanostruktur an einer kunststoffoberfläche
EP2379442A4 (de) * 2008-12-30 2014-02-26 3M Innovative Properties Co Verfahren zur herstellung nanostrukturierter oberflächen
EP2379442A2 (de) * 2008-12-30 2011-10-26 3M Innovative Properties Company Verfahren zur herstellung nanostrukturierter oberflächen
CN102325719A (zh) * 2008-12-30 2012-01-18 3M创新有限公司 纳米结构化制品和制备纳米结构化制品的方法
CN106185793A (zh) * 2008-12-30 2016-12-07 3M创新有限公司 纳米结构化制品和制备纳米结构化制品的方法
WO2011109284A1 (en) * 2010-03-03 2011-09-09 3M Innovative Properties Company Composite multilayered structure with nanostructured surface
WO2011109287A1 (en) * 2010-03-03 2011-09-09 3M Innovative Properties Company Coated polarizer with nanostructured surface and method for making the same.
CN102822253A (zh) * 2010-03-03 2012-12-12 3M创新有限公司 具有纳米结构化表面的复合材料多层结构
CN102822253B (zh) * 2010-03-03 2014-06-25 3M创新有限公司 具有纳米结构化层的复合材料
EP2416185A3 (de) * 2010-08-02 2013-12-11 Hoya Lens Manufacturing Philippines Inc. Optischer Artikel und Verfahren zur Herstellung des optischen Artikels
US8789944B2 (en) 2010-08-02 2014-07-29 Hoya Lens Manufacturing Philippines Inc. Optical article and optical article production method
JP2014530297A (ja) * 2011-09-28 2014-11-17 ライボルト オプティクス ゲゼルシャフトミット ベシュレンクテル ハフツングLeybold Optics GmbH 基板上に反射低減層を生成するための方法および装置
WO2013045111A1 (de) 2011-09-28 2013-04-04 Leybold Optics Gmbh Verfahren und vorrichtung zur erzeugung einer reflektionsmindernden schicht auf einem substrat
US9589768B2 (en) 2011-09-28 2017-03-07 Leybold Optics Gmbh Method and apparatus for producing a reflection-reducing layer on a substrate
DE102012100294A1 (de) * 2012-01-13 2013-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Kunststoffsubstrats mit einer Lackschicht und Kunststoffsubstrat mit einer Lackschicht
DE102012100294B4 (de) 2012-01-13 2018-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Kunststoffsubstrats mit einer Lackschicht und Kunststoffsubstrat mit einer Lackschicht
CN104671198A (zh) * 2015-02-03 2015-06-03 天津大学 一种利用电子束诱导方式制备条纹型微纳皱纹结构的方法
DE102018108053A1 (de) 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikrostrukturierter Gegenstand
WO2019193174A1 (de) 2018-04-05 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Mikrostrukturierter gegenstand

Also Published As

Publication number Publication date
EP2083991A1 (de) 2009-08-05
EP2083991B1 (de) 2013-09-18
CN101588912B (zh) 2012-03-21
US20090261063A1 (en) 2009-10-22
JP5268931B2 (ja) 2013-08-21
EP2083991B8 (de) 2014-01-08
KR20090094355A (ko) 2009-09-04
CN101588912A (zh) 2009-11-25
KR101430561B1 (ko) 2014-08-14
WO2008064663A1 (de) 2008-06-05
JP2010511079A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
EP2083991B1 (de) Verfahren zur herstellung einer nanostruktur an einer kunststoffoberfläche
EP2118691B1 (de) Verfahren zur herstellung eines optischen elements mit einer reflexionsmindernden antibeschlagsschicht
DE10241708B4 (de) Verfahren zur Reduzierung der Grenzflächenreflexion von Kunststoffsubstraten sowie derart modifiziertes Substrat und dessen Verwendung
EP0529268A2 (de) Harte Entspiegelungsschicht für Kunststofflinsen
DE102008018866A1 (de) Reflexionsminderndes Interferenzschichtsystem und Verfahren zu dessen Herstellung
DE69907506T2 (de) Dünnfilm aus hafniumoxid und verfahren zum aufbringen
WO2009074146A2 (de) Verfahren zur herstellung einer reflexionsmindernden schicht und optisches element mit einer reflexionsmindernden schicht
EP2735018A1 (de) Verfahren und vorrichtung zur herstellung partikelarmer schichten auf substraten
EP2761643B1 (de) Verfahren und vorrichtung zur erzeugung einer reflektionsmindernden schicht auf einem substrat
EP1786945B1 (de) Verfahren zur herstellung eines strahlungsabsorbierenden optischen elements
EP2279283A1 (de) Verfahren zur herstellung eines mehrkomponentigen, polymer- und metallhaltigen schichtsystems, vorrichtung und beschichteter gegenstand
DE3112604A1 (de) Verfahren zum herstellen eines amorphen siliciumfilmes
WO2002004374A2 (de) Reflexionsmindernde beschichtung
WO2002094458A2 (de) Verfahren zur herstellung eines beschichteten kunststoffkörpers
DE102008028540A1 (de) Verfahren zum Abscheiden einer Gradientenschicht auf einem Kunststoffsubstrat sowie Kunststoffsubstrat mit einer Gradientenschicht
EP3559710B1 (de) Verfahren zur herstellung eines reflexionsmindernden schichtsystems
EP2686371B1 (de) Verfahren zur modifizierung einer oberfläche eines substrats durch ionenbeschuss
DE102005015631B4 (de) Verfahren zur Herstellung eines reflexionsvermindernden Kratzschutzschichtsystems für Kunststoffe
DE10201492B4 (de) Optisches Schichtsystem
DE102012100294B4 (de) Verfahren zur Herstellung eines Kunststoffsubstrats mit einer Lackschicht und Kunststoffsubstrat mit einer Lackschicht
DE10342401A1 (de) Herstellen von Verbundmaterialien mit einer Morphologie-beeinflussenden Schicht
DE102016100914B4 (de) Verfahren zur Herstellung einer porösen Brechzahlgradientenschicht
EP3181721B1 (de) Verfahren zum herstellen eines schichtverbundes bestehend aus einer kunststofffolie und einer darauf abgeschiedenen schicht
WO1998033847A1 (de) Verfahren zur modifizierung von substratoberflächen aus polymeren oder copolymeren mit methacrylatanteil
DE1948141A1 (de) Optisches Element mit Antireflexueberzug

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R120 Application withdrawn or ip right abandoned
R120 Application withdrawn or ip right abandoned

Effective date: 20141024