DE10056378A1 - Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte - Google Patents

Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Info

Publication number
DE10056378A1
DE10056378A1 DE2000156378 DE10056378A DE10056378A1 DE 10056378 A1 DE10056378 A1 DE 10056378A1 DE 2000156378 DE2000156378 DE 2000156378 DE 10056378 A DE10056378 A DE 10056378A DE 10056378 A1 DE10056378 A1 DE 10056378A1
Authority
DE
Germany
Prior art keywords
metal
isocyanates
composite elements
iii
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000156378
Other languages
English (en)
Inventor
Edmund Stadler
Juergen Mertes
Heinz Forster
Matthias Hefner
Peter Reinerth
Thomas Sandbank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE2000156378 priority Critical patent/DE10056378A1/de
Priority to US10/416,641 priority patent/US20040038042A1/en
Priority to AU2002217017A priority patent/AU2002217017A1/en
Priority to EP01996458A priority patent/EP1345762A1/de
Priority to PCT/EP2001/013023 priority patent/WO2002040265A1/de
Publication of DE10056378A1 publication Critical patent/DE10056378A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Verbundelemente, die folgende Schichtstruktur aufweisen: DOLLAR A (i) 2 bis 20 mm Metall, DOLLAR A (ii) 10 bis 300 mm Polyisocyanat-Polyadditionsprodukte erhältlich durch Umsetzung von (a) Isocyanaten mit (b) Polymerpolyen als gegenüber Isocyanaten reaktiven Verbindungen, DOLLAR A (iii) 2 bis 20 mm Metall.

Description

Die Erfindung betrifft Verbundelemente, die folgende Schicht­ struktur aufweisen:
  • a) 2 bis 20 mm, bevorzugt 2 bis 10 mm, besonders bevorzugt 5 mm bis 10 mm Metall,
  • b) 10 bis 300 mm, bevorzugt 10 bis 100 mm Polyisocyanat- Polyadditionsprodukte erhältlich durch Umsetzung von (a) Isocyanaten mit (b) Polymerpolyen als gegenüber Iso­ cyanaten reaktiven Verbindungen,
  • c) 2 bis 20 mm, bevorzugt 2 bis 10 mm, besonders bevorzugt 5 mm bis 10 mm Metall.
Des weiteren bezieht sich die Erfindung auf Verfahren zur Her­ stellung dieser Verbundelemente und deren Verwendung.
Für Konstruktion von Schiffen, beispielsweise Schiffsrümpfen und Laderaumabdeckungen, Brücken, Dächern oder Hochhäusern müssen Konstruktionsteile verwendet werden, die erheblichen Belastungen durch äußere Kräfte standhalten können. Derartige Konstruktions­ teile bestehen aufgrund dieser Anforderungen üblicherweise aus Metallplatten oder Metallträgern, die durch eine entsprechende Geometrie oder geeignete Verstrebungen verstärkt sind. So beste­ hen Schiffsrümpfe von Tankschiffen aufgrund von erhöhten Sicher­ heitsnormen üblicherweise aus einem inneren und einem äußeren Rumpf, wobei jeder Rumpf aus 15 mm dicken Stahlplatten, die durch ca. 2 m lange Stahlverstrebungen miteinander verbunden sind, auf­ gebaut ist. Da diese Stahlplatten erheblichen Kräften ausgesetzt sind, werden sowohl die äußere, als auch die innere Stahlhülle durch aufgeschweißte Verstärkungselemente versteift. Nachteilig an diesen klassischen Konstruktionsteilen wirken sich sowohl die erheblichen Mengen an Stahl aus, die benötigt werden, als auch die zeit- und arbeitsintensive Herstellung. Zudem weisen derar­ tige Konstruktionsteile ein erhebliches Gewicht auf, wodurch sich eine geringere Tonnage der Schiffe und ein erhöhter Treibstoff­ bedarf ergibt. Zusätzlich, sind solche klassischen Konstruktions­ elemente auf der Basis von Stahl sehr pflegeintensiv, da sowohl die äußeren Oberfläche, als auch die Oberflächen der Stahlteile zwischen der äußeren und inneren Hülle regelmäßig gegen Korrosion geschützt werden müssen.
Als Ersatz für die Stahlkonstruktionen sind SPS-Elemente (Sand­ wich-plate-system) bekannt, die einen Verbund aus Metall und Kunststoff beinhalten. Durch die Haftung des Kunststoffs an den zwei Metallschichten entstehen Verbundelemente mit außerordentli­ chen Vorteilen gegenüber bekannten Stahl Konstruktionen. Derar­ tige SPS-Elemente sind bekannt aus den Schriften DE-A 198 25 083, DE-A 198 25 085, DE-A 198 25 084, DE-A 198 25 087 und DE-A 198 35 727 Verbesserungspotential bezüglich der Herstellung dieser Verbundelemente besteht insbesondere darin, die Reaktions­ wärme bei der Herstellung des Kunststoffes zwischen den Metall­ schichten und insbesondere die damit verbundene Ausdehnung des Systems sowie den anschließenden Schrumpf bei und nach der Abküh­ lung zu kontrollieren. Dabei sollte weder die Haftung des Kunst­ stoff es an den Metallschichten noch die Materialeigenschaften merklich verschlechtert werden.
Der vorliegenden Erfindung lag daher die Idee zugrunde neue Verbundelemente zu entwickeln, die sowohl während der Herstellung des Kunststoffes als auch insbesondere nach der Abkühlung und dem damit verbundenen Schrumpf von (ii) eine hervorragende Haftung von (ii) zu (i) und (iii) aufweisen. Dabei sollten die herge­ stellten Verbundelemente großen Belastungen durch äußere Kräfte standhalten und beispielsweise im Schiff-, Brücken- oder Hoch­ hausbau Verwendung finden können. Die zu entwickelnden Konstruk­ tionsteile, auch Verbundelemente genannt, sollen als Ersatz für bekannte Stahlkonstruktionen dienen und insbesondere Vorteile hinsichtlich Gewicht, Herstellungsprozeß und Wartungsintensität aufweisen.
Diese Aufgabe wurde erfindungsgemäß durch die eingangs beschrie­ benen Verbundelemente gelöst.
Gerade der Einsatz von Polymerpolyolen kann den Schrumpf des Polyisocyanat-Polyadditionsproduktes, beispielsweise des Polyure­ thans deutlich vermindern und somit zu einer verbesserten Haftung von (ii) an (i) und (iii) führen. Gegebenenfalls können als wei­ tere Maßnahmen, den Schrumpf zu verringern, bevorzugt Treibmittel (f) und/oder Gase (c) eingesetzt werden.
Bevorzugt sind Verbundelemente, die folgende Schichtstruktur auf­ weisen:
  • a) 2 bis 20 mm, bevorzugt 5 bis 10 mm Metall,
  • b) 10 bis 300 mm, bevorzugt 10 bis 100 mm Polyisocyanat- Polyadditionsprodukte mit einer Dichte von 350 bis 1100 kg/m3 erhältlich durch Umsetzung von (a) Isocyanaten mit (b) Polymerpolyolen als gegenüber Isocyanaten reak­ tiven Verbindungen in Gegenwart von (f) Treibmitteln und/ oder 1 bis 50 Volumen-%, bezogen auf das Volumen der Polyisocyanat-Polyadditionsprodukte, mindestens eines Gases (c) sowie gegebenenfalls (d) Katalysatoren und/oder (e) Hilfs- und/oder Zusatzstoffen,
  • c) 2 bis 20 mm, bevorzugt 5 bis 10 mm Metall.
Als Polymerpolyole können allgemein aus der Polyurethanchemie bekannte Verbindungen eingesetzt werden.
Die Polymerpolyole sind auch als Polymer-polyetherole, Pfropf- oder Graft-polyetherole in der Literatur allgemein bekannt, die organische Vinyl-Polymere als Füllstoffe enthalten. Bei Graft- Polyetherolen handelt es sich um stabile Dispersionen von üblicherweise festen Vinyl-Polymeren, beispielsweise Styrol- Acrylnitril-Copolymeren, deren Homopolymeren oder auch anderen Vinyl-Monomeren wie z. B. Vinylacetat, Vinylchlorid oder Acryl­ säureester, in einem üblichen Carrier-Polyetherol, z. B. den an späterer Stelle beschriebenen Polyetherpolyolen. Die Herstellung der Graft-polyetherole erfolgt in der Regel nach bekannten Ver­ fahren, beispielsweise durch in-situ Polymerisation der/des Vinyl-Monomeren im Carrier-Polyol, so dass ein Graft-polyetherol neben dem unmodifizierten Carrier-Polyol und den Vinyl-Polymeren auch Pfropfcopolymerisate, d. h. mit Vinyl-Polymer modifiziertes Carrier-Polyol, enthält. Das Pfropfcopolymerisat dient als Emul­ gator zur Stabilisierung der Carrierpolyol/Vinylpolymer-Disper­ sion.
Die Viskosität der Graft-polyetherpolyole steigt mit dem Gehalt an Vinyl-Polymer relativ rasch an. Der maximale Anteil an Vinyl- Polymer im Carrier-Polyol beträgt daher bevorzugt etwa 60 Gew.-%, typischerweise jedoch zwischen 10 und 50 Gew.-% und vorzugsweise zwischen 30-45 Gew.-%, jeweils bezogen auf das Gesamtgewicht.
Als Carrier-Polyole können difunktionelle, trifunktionelle und auch höherfunktionelle Polyoxypropylen-polyetherole bzw. Polyoxy­ propylen-polyoxyethylen-polyetherole mit einer Molmasse zwischen 1000 und 10000 g/mol, vorzugsweise mit einer Molmasse zwischen 2000 und 8000 g/mol eingesetzt werden. Typischerweise werden als Carrierpolyole einsetzt: Glyzerin (Gly) und/oder Trimethylol­ propan (TMP)-Propylenoxid (PO) oder Gly(bzw. TMP)-PO/Ethylenoxid (EO) oder Gly(bzw. TMP)-PO-EO oder Gly (bzw. TMP)-PO/EO-EO oder Gly(bzw. TMP)-PO/EO-PO.
Bevorzugt werden als Polymerpolyole Styrol-Acrylnitril-Pfropf­ polyole eingesetzt, insbesondere reaktive Graft-polyetherpolyole mit einer Hydroxylzahl von 15 bis 50 mg KOH/g, bevorzugt 20 bis 30 mg KOH/g, insbesondere 25 mg KOH/g, bevorzugt hergestellt aus einem Glycerin gestarteten Polyoxypropylen-polyoxyethylen-polyol als Carrierpolyol, und einem Feststoffgehalt von 25 bis 35 Gew.-%, bevorzugt 30 bis 33 Gew.-%, bestehend aus einem Styrol/Acrylnitril-Copolymer (z. B. Lupranol® 4100 der BASF Aktiengesellschaft), oder auch reaktive Graft-polyetherpolyole mit einer Hydroxylzahl von 15 bis 25 mg KOH/g, bevorzugt 17 bis 21 mg KOH/g, bevorzugt hergestellt aus einem Glycerin gestarteten Polyoxypropylen-polyoxyethylen-polyol als Carrierpolyol und einem Feststoffgehalt von 40 bis 50 Gew.-%, bevorzugt 45 Gew.-%, beste­ hend aus einem Styrol/Acrylnitril-Copolymer (z. B. Lupranol® 4800 der BASF Aktiengesellschaft).
Die dargestellten Polymerpolyole können als alleinige gegenüber Isocyanaten reaktive Verbindungen verwendet werden oder in Mischung mit allgemein bekannten gegenüber Isocyanaten reaktiven Verbindungen, die an späterer Stelle dargestellt werden. Bevor­ zugt beträgt der Anteil an den Polymerpolyolen 10 bis 100 Gew.-%, besonders bevorzugt 30 bis 80 Gew.-%, jeweils bezogen auf das Gewicht aller gegenüber Isocyanaten reaktiven Verbindungen (b).
Der Einsatz dieser Polymerpolyole weist gegenüber anorganischen Füllstoffen folgende Vorteile auf:
  • - einfachere Herstellung der füllstoffhaltigen Formulierung (Einrühren des Füllstoffs)
  • - stabile Dispersion (kein Absetzen des Füllstoffs)
  • - kein starker Viskositätsanstieg bei hohen Füllstoffkonzen­ trationen, d. h. das System ist einfacher zu verarbeiten und weist bessere Fließfähigkeit auf
  • - keine starke Dichtezunahme des Elastomers
Die Polyisocyanat-Polyadditionsprodukte (ii) der erfindungsgemäß hergestellten Verbundelemente weisen bevorzugt ein Elastizitäts­ modul von < 275 MPa im Temperaturbereich von -40 bis +90°C (nach DIN 53457), eine Adhäsion zu (i) und (iii) von < 4 MPa (nach DIN 53530), eine Dehnung von < 30% im Temperaturbereich von -40 bis +90°C (nach DIN 53504), eine Zugfestigkeit von < 20 MPa (nach DIN 53504) und eine Druckfestigkeit von < 20 MPa (nach DIN 53421) auf.
Die erfindungsgemäßen Verbundelemente weisen neben hervorragenden mechanischen Eigenschaften insbesondere den Vorteil auf, daß auch Verbundelemente mit sehr großen Abmessungen zugänglich sind. Der­ artige Verbundelemente, die erhältlich sind durch Herstellung eines Kunststoffes (ii) zwischen zwei Metallplatten (i) und (iii), waren bislang aufgrund des Schrumpfes des Kunststoffes (ii) während und nach seiner Umsetzung nur eingeschränkt zugänglich. Aufgrund des Schrumpfes des Kunststoffes (ii), beispielsweise der Polyisocyanat-Polyadditionsprodukte, erfolgt eine teilweise Ablösung des Kunststoffes (ii) von den Metall­ platten (i) und/oder (iii). Gerade eine möglichst vollständige und sehr gute Haftung des Kunststoffes (ii) an den Metallplatten (i) und/oder (iii) ist aber für die mechanischen Eigenschaften eines solchen Verbundelementes von besonderer Bedeutung.
Die Herstellung der erfindungsgemäßen Verbundelemente kann man derart durchführen, daß man zwischen (i) und (iii) Polyisocyanat- Polyadditionsprodukte (ii), üblicherweise Polyurethane, die gege­ benenfalls Harnstoff- und/oder Isocyanuratstrukturen aufweisen können, durch Umsetzung von (a) Isocyanaten mit (b) Polymerpoly­ olen bevorzugt in Gegenwart von Treibmitteln (f) und bevorzugt 1 bis 50 Volumen-%, bezogen auf das Volumen der Polyisocyanat-Poly­ additionsprodukte, mindestens eines Gases (c) sowie besonders bevorzugt (d) Katalysatoren und/oder (e) Hilfs- und/oder Zusatz­ stoffen herstellt, die an (i) und (iii) haften.
Bevorzugt wird die Umsetzung in einer geschlossenen Form durchge­ führt, d. h. (i) und (iii) befinden sich bei der Befüllung mit den Ausgangskomponenten zur Herstellung von (ii) in einer Form, die nach der vollständigen Eintragung der Ausgangskomponenten ver­ schlossen wird. Nach der Umsetzung der Ausgangskomponenten zur Herstellung von (ii) kann das Verbundelement entformt werden.
Bevorzugt kann man die Oberflächen von (i) und/oder (iii), an die (ii) nach der Herstellung der Verbundelemente haftet, mit Sand oder Stahlkugeln bestrahlen. Dieses Sandstrahlen kann nach üblichen Verfahren erfolgen. Beispielsweise kann man die Oberflä­ chen unter hohem Druck mit üblichem Sand bestrahlen und damit beispielsweise reinigen und Aufrauhen. Geeignete Apparaturen für eine solche Behandlung sind kommerziell erhältlich.
Durch diese Behandlung der Oberflächen von (i) und (iii), die nach der Umsetzung von (a) mit (b) in Kontakt mit (ii) stehen, führt zu einer deutlich verbesserten Haftung von (ii) an (i) und (iii). Das Sandstrahlen wird bevorzugt direkt vor der Einbringung der Komponenten zur Herstellung von (ii) in den Raum zwischen (i) und (iii) durchgeführt. Die Oberflächen von (i) und (iii), an die (ii) haften soll, sind bevorzugt frei von anorganischen und/oder organischen Stoffen, die eine Haftung vermindern, beispielsweise Ölen und Fetten oder allgemein als Formtrennmitteln bekannten Stoffen.
Nach der bevorzugten Behandlung der Oberflächen von (i) und (iii) werden diese Schichten bevorzugt in geeigneter Anordnung, bei­ spielsweise parallel zueinander, fixiert. Der Abstand wird üblicherweise so gewählt, daß der Raum zwischen (i) und (iii) eine Dicke von 10 bis 100 mm aufweist. Die Fixierung von (i) und (iii) kann beispielsweise durch Abstandshalter erfolgen. Die Rän­ der des Zwischenraumes können bevorzugt derart abgedichtet wer­ den, daß der Raum zwischen (i) und (iii) zwar mit (a), (b) und (f) sowie gegebenenfalls (d) und/oder (e) und/oder (c) gefüllt werden kann, ein Herausfließen dieser Komponenten aber verhindert wird. Das Abdichten kann mit üblichen Kunststoff- oder Metall­ folien und/oder Metallplatten, die auch als Abstandshalter dienen können, erfolgen.
Die Schichten (i) und (iii) können bevorzugt als übliche Metall­ platten, beispielsweise Stahlplatten, mit den erfindungsgemäßen Dicken eingesetzt werden.
Die Befüllung des Raumes zwischen (i) und (iii) kann sowohl in vertikaler Ausrichtung von (i) und (iii), als auch in horizonta­ ler Ausrichtung von (i) und (iii) erfolgen.
Das Befüllen des Raumes zwischen (i) und (iii) mit (a) und (b) sowie gegebenenfalls den weiteren Ausgangsstoffen kann mit übli­ chen Fördereinrichtungen, bevorzugt kontinuierlich, durchgeführt werden, beispielsweise mit Hoch- und Niederdruckmaschinen, vor­ zugsweise Hochdruckmaschinen.
Die Förderleistung kann in Abhängigkeit des zu befüllenden Volu­ mens variiert werden. Um eine homogene Durchhärtung von (ii) zu gewährleisten, wird die Förderleistung und Fördereinrichtung der­ art gewählt, daß der zu befüllende Raum innerhalb von 0,5 bis 20 min mit den Komponenten zur Herstellung von (ii) gefüllt wer­ den kann.
Als Schichten (i) und (iii), üblicherweise Platten, können üb­ liche Metalle verwendet werden, beispielsweise Eisen, üblicher Stahl, alle Arten von veredeltem Stahl, Aluminium und/oder Kupfer.
Sowohl (i) als auch (ii) können beschichtet, beispielsweise grun­ diert, lackiert und/oder mit üblichen Kunststoffen beschichtet bei der Herstellung der erfindungsgemäßen Verbundelemente einge­ setzt werden. Bevorzugt werden (i) und (iii) unbeschichtet und besonders bevorzugt beispielsweise durch übliches Sandstrahlen gereinigt eingesetzt.
Die Herstellung der Polyisocyanat-Polyadditionsprodukten (ii), üblicherweise Polyurethan- und gegebenenfalls Polyisocyanurat­ produkten, insbesondere Polyurethanelastomeren, durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindungen gegebenenfalls in Gegenwart von (f), (d) Kataly­ satoren und/oder (e) Hilfsmitteln und/oder Zusatzstoffen und/oder (c) ist vielfach beschrieben worden.
Die Ausgangsstoffe (a), (b), (c), (d), (e) und (f) in dem erfindungsgemäßen Verfahren werden im Folgenden beispielhaft beschrieben:
Als Isocyanate (a) kommen die an sich bekannten aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Iso­ cyanate, bevorzugt Diisocyanate in Frage, die gegebenenfalls nach allgemein bekannten Verfahren biuretisiert und/oder isocyanurati­ siert worden sein können. Im einzelnen seien beispielhaft genannt: Alkylendiisocyanate mit 4 bis 12 Kohlenstoffatomen im Alkylenrest, wie 1,12-Dodecandiisocyanat, 2-Ethyl-tetramethylen­ diisocyanat-1,4, 2-Methylpentamethylendiisocyanat-1,5, Tetra­ methylendiisocyanat-1,4, Lysinesterdiisocyanate (LDI), Hexa­ methylendiisocyanat-1,6 (HDI), Cyclohexan-1,3- und/oder 1,4-di­ isocyanat, 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie die entsprechenden Isomerengemische, 4,4'-, 2,2'- und 2,4'-Dicyclo­ hexylmethandiisocyanat sowie die entsprechenden Isomerengemische, 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI). 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 4,4'-, 2,4'- und/ oder 2,2'-Diphenylmethandiisocyanat (MDI), Polyphenylpolymethy­ len-polyisocyanate und/oder Mischungen enthaltend mindestens zwei der genannten Isocyanate. Außerdem können Ester-, Harnstoff-, Allophanat-, Carbodiimid-, Uretdion- und/oder Urethangruppen ent­ haltende Di- und/oder Polyisocyanate in dem erfindungsgemäßen Verfahren eingesetzt werden. Bevorzugt werden 2,4'-, 2,2'- und/ oder 4,4'-MDI und/oder Polyphenylpolymethylen-polyisocyanate ein­ gesetzt, besonders bevorzugt Mischungen enthaltend Polyphenyl­ polymethylen-polyisocyanate und mindestens eines der MDI-Isomere.
Als (b) gegenüber Isocyanaten reaktive Verbindungen können gegebenenfalls zusätzlich den erfindungsgemäßen Polymerpolyolen beispielsweise Verbindungen eingesetzt werden, die als gegenüber Isocyanaten reaktive Gruppen Hydroxyl-, Thiol- und/oder primäre und/oder sekundäre Aminogruppen aufweisen und üblicherweise ein Molekulargewicht von 60 bis 10000 g/mol aufweisen, z. B. Polyole ausgewählt aus der Gruppe der Polyetherpolyalkohole, Polyester­ polyalkohole, Polythioether-polyole, hydroxylgruppenhaltigen Polyacetale und hydroxylgruppenhaltigen aliphatischen Poly­ carbonate oder Mischungen aus mindestens zwei der genannten Poly­ ole. Diese Verbindungen weisen üblicherweise eine Funktionalität gegenüber Isocyanaten von 2 bis 6 und ein Molekulargewicht von 400 bis 8000 auf und sind dem Fachmann allgemein bekannt.
Beispielsweise kommen als Polyetherpolyalkohole, die nach bekann­ ter Technologie durch Anlagerung von Alkylenoxiden, beispiels­ weise Tetrahydrofuran, 1,3-Propylenoxid, 1,2- bzw. 2,3-Butylen­ oxid, Styroloxid und vorzugsweise Ethylenoxid und/oder 1,2-Pro­ pylenoxid an übliche Startersubstanzen erhältlich sind. Als Star­ tersubstanzen können beispielsweise bekannte aliphatische, arali­ phatische, cycloaliphatische und/oder aromatische Verbindungen eingesetzt werden, die mindestens eine, bevorzugt 2 bis 4 Hydroxylgruppen und/oder mindestens eine, bevorzugt 2 bis 4 Ami­ nogruppen enthalten. Beispielsweise können als Startersubstanzen Ethandiol, Diethylenglykol, 1,2- bzw. 1,3-Propandiol, 1,4-Butan­ diol, 1,5-Pentandiol, 1,6-Hexandiol, 1,7-Heptandiol, Glycerin, Trimethylolpropan, Neopentylglykol, Zucker, beispielsweise Saccharose, Pentaerythrit, Sorbitol, Ethylendiamin, Propandiamin, Neopentandiamin, Hexamethylendiamin, Isophorondiamin, 4,4'-Diaminodicyclohexylmethan, 2-(Ethylamino)ethylamin, 3-(Methylamino)propylamin, Diethylentriamin, Dipropylentriamin und/oder N,N'-Bis(3-aminopropyl)-ethylendiamin eingesetzt werden.
Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugt werden Alkylenoxide verwendet, die zu primären Hydroxylgruppen in dem Polyol führen. Besonders bevorzugt werden als Polyole solche eingesetzt, die zum Abschluß der Alkoxylierung mit Ethylenoxid alkoxyliert wurden und damit primäre Hydroxylgruppen aufweisen.
Geeignete Polyesterpolyole können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise ali­ phatischen Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen, und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlen­ stoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden. Die Polyesterpolyole besitzen vorzugsweise eine Funktio­ nalität von 2 bis 4, insbesondere 2 bis 3, und ein Molekularge­ wicht von 480 bis 3000, vorzugsweise 600 bis 2000 und insbeson­ dere 600 bis 1500.
Die Verwendung von Polyetherpolyalkoholen bietet erhebliche Vor­ teile durch eine verbesserte Stabilität der Polyisocyanat-Poly­ additionsprodukte gegen eine hydrolytische Spaltung und aufgrund der geringeren Viskosität, jeweils im Vergleich mit Polyester­ polyalkoholen. Die verbesserte Stabilität gegen Hydrolyse ist insbesondere bei einem Einsatz im Schiffbau vorteilhaft. Die ge­ ringere Viskosität der Polyetherpolyalkohole und der Reaktionsmi­ schung zur Herstellung von (ii) enthaltend die Polyetherpolyalko­ hole ermöglicht eine schnellere und einfachere Befüllung des Rau­ mes zwischen (i) und (iii) mit der Reaktionsmischung zur Herstel­ lung der Verbundelemente. Aufgrund der erheblichen Abmessungen insbesondere von Konstruktionsteilen im Schiffbau sind niedrig­ viskose Flüssigkeiten von erheblichem Vorteil.
Als gegenüber Isocyanaten reaktive Verbindungen sind des weiteren Substanzen geeignet, die ein Kohlenwasserstoffgerüst mit 10 bis 40 Kohlenstoffatomen und 2 bis 4 gegenüber Isocyanaten reaktive Gruppen aufweisen. Unter dem Ausdruck Kohlenwasserstoffgerüst ist eine ununterbrochene Abfolge von Kohlenstoffatomen zu verstehen, die nicht wie beispielsweise im Falle von Ethern mit Sauerstoff­ atomen unterbrochen ist. Als solche Substanzen, im Folgenden auch als (b3) bezeichnet, können beispielsweise Rizinusöl und deren Derivate eingesetzt werden.
Als gegenüber Isocyanaten reaktive Verbindungen können des weite­ ren zusätzlich zu den genannten Verbindungen mit einem üblichen Molekulargewicht von 400 bis 8000 gegebenenfalls Diole und/oder Triole mit Molekulargewichten von 60 bis < 400 als Kettenver­ längerungs- und/oder Vernetzungsmittel bei dem erfindungsgemäßen Verfahren eingesetzt werden. Zur Modifizierung der mechanischen Eigenschaften, z. B. der Härte, kann sich jedoch der Zusatz von Kettenverlängerungsmitteln, Vernetzungsmitteln oder gegebenen­ falls auch Gemischen davon als vorteilhaft erweisen. Die Ketten­ verlängerungs- und/oder Vernetzungsmittel weisen vorzugsweise ein Molekulargewicht von 60 bis 300 auf. In Betracht kommen bei­ spielsweise aliphatische, cycloaliphatische und/oder aralipha­ tische Diole mit 2 bis 14, vorzugsweise 4 bis 10 Kohlenstoff­ atomen, wie z. B. Ethylenglykol, Propandiol-1,3, Decandiol-1,10, o-, m-, p-Dihydroxycyclohexan, Diethylenglykol, Dipropylenglykol und vorzugsweise Butandiol-1,4, Hexandiol-1,6 und Bis-(2-hydroxy­ ethyl)-hydrochinon, Triole, wie 1,2,4-, 1,3,5-Trihydroxy-cyclo­ hexan, Glycerin und Trimethylolpropan, niedermolekulare hydroxyl­ gruppenhaltige Polyalkylenoxide auf Basis Ethylen- und/oder 1,2-Propylenoxid und den vorgenannten Diolen und/oder Triolen als Startermoleküle und/oder Diamine wie z. B. Diethyltoluendiamin und/oder 3,5-Dimethylthio-2,4-toluenediamin.
Sofern zur Herstellung der Polyisocyanat-Polyadditionsprodukten Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon Anwendung finden, kommen diese zweckmäßigerweise in einer Menge von 0 bis 30 Gew.-%, vorzugsweise von 1 bis 30 Gew.-%, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Iso­ cyanaten reaktiven Verbindungen (b), zum Einsatz.
Außerdem können als (b) aliphatische, araliphatische, cycloali­ phatische und/oder aromatische Carbonsäuren zur Optimierung des Härtungsverlaufes bei der Herstellung von (ii) eingesetzt werden. Beispiele für solche Carbonsäuren sind Ameisensäure, Essigsäure, Bernsteinsäure, Oxalsäure, Malonsäure, Glutarsäure, Adipinsäure, Zitronensäure, Benzoesäure, Salicylsäure, Phenylessigsäure, Phthalsäure, Toluolsulfonsäure, Derivate der genannten Säuren, Isomere der genannten Säuren und beliebigen Mischungen der genannten Säuren. Der Gewichtsanteil dieser Säuren kann 0 bis 5 Gew.-%, bevorzugt 0,2 bis 2 Gew.-%, bezogen auf das Gesamtge­ wicht von (b), betragen.
Mit dem Einsatz von Amin-gestarteten Polyetherpolyalkoholen kann zudem das Durchhärteverhalten von der Reaktionsmischung zur Her­ stellung von (ii) verbessert werden. Bevorzugt werden die Verbin­ dungen (b), wie auch die anderen Komponenten zur Herstellung von (ii), mit einem möglichst geringen Gehalt an Wasser eingesetzt, um die Bildung von Kohlendioxid durch Reaktion des Wassers mit Isocyanatgruppen zu vermeiden.
Als Komponente (c) zur Herstellung von (ii) können allgemein bekannte Verbindungen eingesetzt werden, die einen Siedepunkt bei einem Druck von 1 bar von kleiner (d. h. bei niedrigeren Tempera­ turen als) -50°C aufweisen, beispielsweise Luft, Kohlendioxid, Stickstoff, Helium und/oder Neon. Bevorzugt wird Luft eingesetzt. Die Komponente (c) ist bevorzugt gegenüber der Komponente (a), besonders bevorzugt gegenüber den Komponenten (a) und (b) inert, d. h. eine Reaktivität des Gases gegenüber (a) und (b) ist kaum, bevorzugt nicht nachzuweisen. Der Einsatz des Gases (c) unter­ scheidet sich grundlegend von dem Einsatz üblicher Treibmittel zur Herstellung von geschäumten Polyurethanen. Während übliche Treibmittel (f) flüssig eingesetzt werden oder im Falle der gas­ förmigen physikalischen Treibmittel in der Polyol-Komponente bis zu einem geringen Prozentsatz löslich sind) und während der Um­ setzung entweder aufgrund der Wärmeentwicklung verdampfen oder aber im Falle des Wassers aufgrund der Reaktion mit den Isocya­ natgruppen gasförmiges Kohlendioxid entwickeln, wird in der vor­ liegenden Erfindung die Komponente (c) bevorzugt bereits gasförmig als Aerosol beispielsweise in der Polyolkomponente einge­ setzt.
Als Katalysatoren (d) können allgemein bekannte Verbindungen ein­ gesetzt werden, die die Reaktion von Isocyanaten mit den gegen­ über Isocyanaten reaktiven Verbindungen stark beschleunigen, wo­ bei vorzugsweise ein Gesamtkatalysatorgehalt von 0,001 bis 15 Gew.-%, insbesondere 0,02 bis 6 Gew.-%, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reak­ tiven Verbindungen, verwendet wird. Beispielsweise können fol­ gende Verbindungen verwendet werden: Triethylamin, Tributylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexyl­ amin, N,N,N',N'-Tetramethyl-diamino-diethylether, Bis-(dimethyl­ aminopropyl)-harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclo­ hexylmorpholin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'- Tetramethylbutandiamin, N,N,N',N'-Tetramethylhexandiamin-1,6, Pentamethyldiethylentriamin, Dimethylpiperazin, N-Dimethylamino­ ethylpiperidin, 1,2-Dimethylimidazol, 1-Azabicyclo-(2,2,0)-octan, 1,4-Diazabicyclo-(2,2,2)-octan (Dabco) und Alkanolaminverbin­ dungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyl-diethanolamin, Dimethylaminoethanol, 2-(N,N-Dimethylami­ noethoxy)ethanol, N,N',N"-Tris-(dialkylaminoalkyl)hexahydrotri­ azine, z. B. N,N',N"-Tris-(dimethylaminopropyl)-s-hexahydrotria­ zin, Eisen(II)-Chlorid, Zinkchlorid, Bleioctoat und vorzugsweise Zinnsalze, wie Zinndioctoat, Zinndiethylhexoat, Dibutylzinndi­ laurat und/oder Dibutyldilaurylzinnmercaptid, 2,3-Dimethyl- 3,4,5,6-tetrahydropyrimidin, Tetraalkylammoniumhydroxide, wie Tetramethylammoniumhydroxid, Alkalihydroxide, wie Natrium­ hydroxid, Alkalialkoholate, wie Natriummethylat und Kaliumiso­ propylat, und/oder Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen.
Es hat sich als sehr vorteilhaft erwiesen, die Herstellung von (ii) in Gegenwart von (d) durchzuführen, um die Reaktion zu be­ schleunigen.
Der Reaktionsmischung zur Herstellung der Polyisocyanat-Polyaddi­ tionsprodukte (ii) können gegebenenfalls (e) Hilfsmittel und/oder Zusatzstoffe einverleibt werden. Genannt seien beispielsweise Füllstoffe, oberflächenaktive Substanzen, Farbstoffe, Pigmente, Flammschutzmittel, Hydrolyseschutzmittel, fungistatische, bakte­ riostatisch wirkende Substanzen und Schaumstabilisatoren.
Als oberflächenaktive Substanzen kommen z. B. Verbindungen in Be­ tracht, welche zur Unterstützung der Homogenisierung der Aus­ gangsstoffe dienen und gegebenenfalls auch geeignet sind, die Struktur der Kunststoffe zu regulieren. Genannt seien beispielsweise Emulgatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z. B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z. B. Alkali- oder Ammo­ niumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure und Ricinolsäure. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-%, bezogen auf 100 Gew.-% der insgesamt eingesetzten gegenüber Isocyanaten reak­ tiven Verbindungen (b), angewandt.
Geeignete Flammschutzmittel sind beispielsweise Trikresyl­ phosphat, Tris-(2-chlorethyl)phosphat, Tris-(2-chlorpropyl)- phosphat, Tris(1,3-dichlorpropyl)phosphat, Tris-(2,3-dibrom­ propyl)phosphat, Tetrakis-(2-chlorethyl)-ethylendiphosphat, Dimethylmethanphosphonat, Diethanolaminomethylphosphonsäure­ diethylester sowie handelsübliche halogenhaltige Flammschutz­ polyole. Außer den bereits genannten halogensubstituierten Phos­ phaten können auch anorganische oder organische Flammschutz­ mittel, wie roter Phosphor, Aluminiumoxidhydrat, Antimontrioxid, Arsenoxid, Ammoniumpolyphosphat und Calciumsulfat, Blähgraphit oder Cyanursäurederivate, wie z. B. Melamin, oder Mischungen aus mindestens zwei Flammschutzmitteln, wie z. B. Ammoniumpolyphos­ phaten und Melamin sowie gegebenenfalls Maisstärke oder Ammonium­ polyphosphat, Melamin und Blähgraphit und/oder gegebenenfalls aromatische Polyester zum Flammfestmachen der Polyisocyanat-poly­ additionsprodukte verwendet werden. Im allgemeinen hat es sich als zweckmäßig erwiesen, 5 bis 50 Gew.-%, vorzugsweise 5 bis 25 Gew.-%, der genannten Flammschutzmittel, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reak­ tiven Verbindungen, zu verwenden.
Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorgani­ schen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Be­ schichtungsmittel usw. zu verstehen. Im einzelnen seien beispiel­ haft genannt: anorganische Füllstoffe wie silikatische Minera­ lien, beispielsweise Schichtsilikate wie Antigorit, Serpentin, Hornblenden, Amphibole, Chrisotil und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide und Eisenoxide, Metallsalze, wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmium­ sulfid und Zinksulfid, sowie Glas u. a.. Vorzugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzipitate aus Bariumsulfat und Aluminiumsilikat sowie natürliche und syn­ thetische faserförmige Mineralien wie Wollastonit, Metall- und Glasfasern geringer Länge. Als organische Füllstoffe kommen beispielsweise in Betracht: Kohle, Melamin, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbon­ säureestern und insbesondere Kohlenstoffasern. Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische ver­ wendet werden.
Bevorzugt setzt man bei der Herstellung von (ii) 10 bis 70 Gew.-% Füllstoffe, bezogen auf das Gewicht von (ii), als (e) Hilfs- und/ oder Zusatzstoffe ein. Als Füllstoffe verwendet man bevorzugt Talkum, Kaolin, Calziumcarbonat, Schwerspat, Glasfasern und/oder Mikroglaskugeln. Die Größe der Partikel der Füllstoffe ist bevor­ zugt so zu wählen, daß das Eintragen der Komponenten zur Herstel­ lung von (ii) in den Raum zwischen (i) und (iii) nicht behindert wird. Besonders bevorzugt weisen die Füllstoffe Partikelgrößen von < 0,5 mm auf.
Die Füllstoffe werden bevorzugt in Mischung mit der Polyol­ komponente bei der Umsetzung zur Herstellung der Polyisocyanat- Polyadditionsprodukte eingesetzt.
Bevorzugt werden zur Herstellung von (ii) als (e) übliche Schaum­ stabilisatoren eingesetzt, die kommerziell erhältlich und dem Fachmann allgemein bekannt sind, beispielsweise allgemein be­ kannte Polysiloxan-Polyoxyalkylen-Blockcopolymere, z. B. Tegostab 2219 der Firma Goldschmidt. Der Anteil an diesen Schaumstabili­ satoren bei der Herstellung von (ii) beträgt bevorzugt 0,001 bis 10 Gew.-%, besonders bevorzugt 0,01 bis 10 Gew.-%, insbesondere 0,01 bis 2 Gew.-%, bezogen auf das Gewicht der zur Herstellung von (ii) eingesetzten Komponenten (b), (e) und gegebenenfalls (d). Der Einsatz dieser Schaumstabilisatoren bewirkt, das die Komponente (c) in der Reaktionsmischung zur Herstellung von (ii) stabilisiert wird.
Als Treibmittel (f) können aus der Polyurethanchemie allgemein bekannte Treibmittel eingesetzt werden, beispielsweise physikali­ sche und/oder chemische Treibmittel. Derartige physikalische Treibmittel weisen im allgemeinen einen Siedepunkt bei einem Druck von 1 bar von größer (d. h. bei höheren Temperaturen als) -50°C auf. Beispiele für physikalische Treibmittel sind z. B. FCKW, HFCKW, HFKW, aliphatische Kohlenwasserstoffe, cycloaliphatische Kohlenwasserstoffe, jeweils beispielsweise mit 4 bis 6 Kohlen­ stoffatomen oder Gemische dieser Stoffe, beispielsweise Trichlor­ fluormethan (Siedepunkt 24°C), Chlordifluormethan (Siedepunkt -40.8°C), Dichlorfluorethan (Siedepunkt 32°C), Chlordifluorethan (Siedepunkt -9.2°C), Dichlortrifluorethan (Siedepunkt 27.1°C), Tetrafluorethan (Siedepunkt -26.5°C), Hexafluorbutan (Siedepunkt 24.6°C), iso-Pentan (Siedepunkt 28°C), n-Pentan (Siedepunkt 36°C), Cyclopentan (Siedepunkt 49°C).
Als chemische Treibmittel, d. h. Treibmittel die aufgrund einer Reaktion, beispielsweise mit Isocyanatgruppen, gasförmige Pro­ dukte bilden, kommen beispielsweise Wasser, Hydratwasser haltige Verbindungen, Carbonsäuren, tert.-Alkohole, z. B. t-Butanol, Carb­ amate, beispielsweise die in der Schrift EP-A 1000955, insbeson­ dere auf den Seiten 2, Zeilen 5 bis 31 sowie Seite 3, Zeilen 21 bis 42 beschrieben Carbamate, Carbonate, z. B. Ammoniumcarbonat und/oder Ammoniumhydrogencarbonat und/oder Guanidincarbamat in Betracht.
Bevorzugt werden als Treibmittel (f) Wasser und/oder Carbamate eingesetzt.
Bevorzugt werden die Treibmittel (f) in einer Menge eingesetzt, die ausreicht, um die bevorzugte Dichte von (ii) zu erhalten. Dies kann mit einfachen Routineexperimenten, die dem Fachmann allgemein geläufig sind, ermittelt werden. Besonders bevorzugt werden die Treibmittel (f) in einer Menge von 0,05 bis 10 Gew.-%, insbesondere von 0,1 bis 5 Gew.-%, jeweils bezogen auf das Ge­ samtgewicht der Polyisocyanat-Polyadditionsprodukte, eingesetzt.
Das Gewicht von (ii) entspricht per Definition dem Gewicht der zur Herstellung von (ii) eingesetzten Komponenten (a), (b) und (c) sowie gegebenenfalls (d) und/oder (e).
Zur Herstellung der erfindungsgemäßen Polyisocyanat-Polyadditi­ onsprodukte werden die Isocyanate und die gegenüber Isocyanaten reaktiven Verbindungen in solchen Mengen zur Umsetzung gebracht, daß das Äquivalenzverhältnis von NCO-Gruppen der Isocyanate (a) zur Summe der reaktiven Wasserstoffatome der gegenüber Isocya­ naten reaktiven Verbindungen (b) und gegebenenfalls (f) 0,85 bis 1,25 : 1, vorzugsweise 0,95 bis 1,15 : 1 und insbesondere 1 bis 1,05 : 1, beträgt. Falls (ii) zumindest teilweise Isocyanurat­ gruppen gebunden enthalten, wird üblicherweise ein Verhältnis von NCO-Gruppen zur Summe der reaktiven Wasserstoffatome von 1,5 bis 60 : 1, vorzugsweise 1,5 bis 8 : 1, angewandt.
Die Polyisocyanat-Polyadditionsprodukte werden üblicherweise nach dem one shot-Verfahren oder nach dem Prepolymerverfahren, bei­ spielsweise mit Hilfe der Hochdruck- oder Niederdruck-Technik hergestellt.
Als besonders vorteilhaft hat es sich erwiesen, nach dem Zwei­ komponentenverfahren zu arbeiten und die gegenüber Isocyanaten reaktiven Verbindungen (b), gegebenenfalls die Treibmittel (f) und gegebenenfalls die Katalysatoren (d) und/oder Hilfs- und/oder Zusatzstoffe (e) in der Komponente (A) zu vereinigen und bevor­ zugt innig miteinander zu vermischen und als Komponente (B) die Isocyanate (a) zu verwenden.
Die Komponente (c) kann der Reaktionsmischung enthaltend (a), (b) und gegebenenfalls (f), (d) und/oder (e) zugeführt werden, und/ oder den einzelnen, bereits beschriebenen Komponenten (a), (b), (A) und/oder (B). Die Komponente, die mit (c) gemischt wird, liegt üblicherweise flüssig vor. Bevorzugt wird die Komponenten in die Komponente (b) gemischt.
Das Mischen der entsprechenden Komponente mit (c) kann nach all­ gemein bekannten Verfahren erfolgen. Beispielsweise kann (c) durch allgemein bekannte Beladungseinrichtungen, beispielsweise Luftbeladungseinrichtungen, bevorzugt unter Druck, beispielsweise aus einem Druckbehälter oder durch einen Kompressor komprimiert, z. B. durch eine Düse der entsprechenden Komponente zugeführt wer­ den. Bevorzugt erfolgt eine weitgehende Durchmischung der ent­ sprechende Komponenten mit (c), so daß Gasblasen von (c) in der üblicherweise flüssigen Komponente bevorzugt eine Größe von 0,0001 bis 10, besonders bevorzugt 0,0001 bis 1 mm aufweisen.
Der Gehalt an (c) in der Reaktionsmischung zur Herstellung von (ii) kann in der Rücklaufleitung der Hochdruckmaschine mit allge­ mein bekannten Meßgeräten über die Dichte der Reaktionsmischung bestimmt werden. Die Gehalt an (c) in der Reaktionsmischung kann über eine Kontrolleinheit bevorzugt automatisch auf der Grundlage dieser Dichte reguliert werden. Die Komponentendichte kann wäh­ rend der üblichen Zirkulation des Materials in der Maschine auch bei sehr niedriger Zirkulationsgeschwindigkeit online bestimmt und reguliert werden.
Das Sandwichelement kann beispielsweise hergestellt werden, indem man den zwischen (i) und (iii) mit den Ausgangskomponenten zur Herstellung von (ii) zu befüllenden Raum mit Ausnahme von einer Zuleitung und Ableitung für die Ausgangskomponenten abdichtet, und die Ausgangskomponenten (a), (b) und gegebenenfalls (c), (d), (f) und/oder (e) bevorzugt gemischt über die Zuleitung, bevorzugt mit einer üblichen Hochdruckmaschine, in den Raum zwischen (i) und (iii) füllt.
Die Ausgangskomponenten werden üblicherweise bei einer Temperatur von 0 bis 100°C, vorzugsweise von 20 bis 60°C, gemischt und wie bereits beschrieben in den Raum zwischen (i) und (iii) einge­ bracht. Die Vermischung kann mechanisch mittels eines Rührers oder einer Rührschnecke, bevorzugt aber durch das bei Hochdruck­ maschinen übliche Gegenstromprinzip erfolgen, bei dem A- und B- Komponenten-Strahl sich im Mischkopf unter jeweils hohem Druck treffen und vermischen, wobei der Strahl einer jeden Komponente auch geteilt sein kann. Die Reaktionstemperatur, d. h. die Temperatur, bei die Umsetzung erfolgt, beträgt üblicherweise < 20°C, bevorzugt 50 bis 150°C.
Die nach dem erfindungsgemäßen Verfahren herstellbaren, erfin­ dungsgemäßen Verbundelemente weisen folgende Vorteile gegenüber bekannten Konstruktionen auf:
  • - Der Einsatz der Polymerpolyole bewirkt einen geringeren Schrumpf bei der Abkühlung des Systems nach der Umsetzung im Vergleich zu Polyurethanen. Damit wird eine bessere Haftung zu (i) und (iii) erreicht, da ein Ablösen bei der Abkühlung vermieden wird.
  • - Aufgrund des bevorzugten Einsatzes von (c) und/oder (f) kann zusätzlich ein Schrumpf von (ii) und damit eine Beeinträchti­ gung der Haftung von (ii) an (i) und (iii) vermieden werden.
Entsprechend finden die erfindungsgemäß erhältlichen Verbundele­ mente Verwendung vor allem in Bereichen, in denen Konstruktions­ elemente benötigt werden, die großen Kräften standhalten, bei­ spielsweise als Konstruktionsteile im Schiffbau, z. B. in Schiffs­ rümpfen, beispielsweise Schiffsdoppelrümpfe mit einer äußeren und einer inneren Wand, und Laderaumabdeckungen, Laderaumtrennwänden, Ladeklappen oder in Bauwerken, beispielsweise Brücken oder als Konstruktionselemente im Hausbau, insbesondere in Hochhäusern.
Die erfindungsgemäßen Verbundelemente sind nicht mit klassischen Sandwichelementen zu verwechseln, die als Kern einen Polyurethan- und/oder Polyisocyanurathartschaumstoff enthalten und üblicher­ weise zur thermischen Isolierung eingesetzt werden. Derartige be­ kannte Sandwichelemente wären aufgrund ihrer vergleichsweise ge­ ringeren mechanischen Belastbarkeit nicht für die genannten An­ wendungsbereiche geeignet.

Claims (7)

1. Verbundelemente, die folgende Schichtstruktur aufweisen:
  • a) 2 bis 20 mm Metall,
  • b) 10 bis 300 mm Polyisocyanat-Polyadditionsprodukte erhältlich durch Umsetzung von (a) Isocyanaten mit (b) Polymerpolyen als gegenüber Isocyanaten reaktiven Verbindungen,
  • c) 2 bis 20 mm Metall.
2. Verbundelemente nach Anspruch 1 enthaltend als (b) Styrol- Acrylnitril-Pfropfpolyole.
3. Verbundelemente, die folgende Schichtstruktur aufweisen:
  • a) 2 bis 20 mm Metall,
  • b) 20 bis 300 mm Polyisocyanat-Polyadditionsprodukte mit einer Dichte von 350 bis 1100 kg/m3 erhältlich durch Umsetzung von (a) Isocyanaten mit (b) Polymerpolyolen als gegenüber Isocyanaten reaktiven Verbindungen in Gegenwart von (f) Treibmitteln und/oder 1 bis 50 Volumen-%, bezogen auf das Volumen der Polyisocyanat- Polyadditionsprodukte, mindestens eines Gases (c) sowie gegebenenfalls (d) Katalysatoren und/oder (e) Hilfs- und/oder Zusatzstoffen,
  • c) 2 bis 20 mm Metall.
4. Verfahren zur Herstellung von Verbundelementen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man zwischen (i) und (iii) Polyisocyanat-Polyadditionsprodukte (ii) durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindungen herstellt, die an (i) und (iii) haften.
5. Verbundelemente erhältlich durch ein Verfahren gemäß An­ spruch 4.
6. Verwendung von Verbundelementen nach einem der Ansprüche 1 bis 3 oder 5 als Konstruktionsteile im Schiffbau oder in Bau­ werken.
7. Schiffe oder Bauwerke enthaltend Verbundelemente nach einem der Ansprüche 1 bis 3 oder 5.
DE2000156378 2000-11-14 2000-11-14 Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte Withdrawn DE10056378A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE2000156378 DE10056378A1 (de) 2000-11-14 2000-11-14 Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte
US10/416,641 US20040038042A1 (en) 2000-11-14 2001-11-10 Composite element containing polyisocyanate polyaddition products
AU2002217017A AU2002217017A1 (en) 2000-11-14 2001-11-10 Composite element containing polyisocyanate polyaddition products
EP01996458A EP1345762A1 (de) 2000-11-14 2001-11-10 Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte
PCT/EP2001/013023 WO2002040265A1 (de) 2000-11-14 2001-11-10 Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000156378 DE10056378A1 (de) 2000-11-14 2000-11-14 Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Publications (1)

Publication Number Publication Date
DE10056378A1 true DE10056378A1 (de) 2002-05-23

Family

ID=7663246

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000156378 Withdrawn DE10056378A1 (de) 2000-11-14 2000-11-14 Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Country Status (5)

Country Link
US (1) US20040038042A1 (de)
EP (1) EP1345762A1 (de)
AU (1) AU2002217017A1 (de)
DE (1) DE10056378A1 (de)
WO (1) WO2002040265A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10350238A1 (de) * 2003-10-27 2005-05-19 Basf Ag Verbundelemente
JP6537976B2 (ja) 2013-12-24 2019-07-03 三洋化成工業株式会社 半硬質ポリウレタンフォーム形成用組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167612A (en) * 1978-06-19 1979-09-11 Wm. T. Burnett & Co., Inc. Flexible polyurethane foams having low resistance to air flow and method for preparation
US4202956A (en) * 1978-11-13 1980-05-13 Basf Wyandotte Corporation Thixotropic isocyanate-terminated prepolymers and use in the preparation of polyurethane coating compositions
GB8821058D0 (en) * 1988-09-08 1988-10-05 Bp Chem Int Ltd Dispersion polymer polyols
JPH04279619A (ja) * 1990-05-25 1992-10-05 Mitsui Toatsu Chem Inc 硬質ポリウレタンフォーム複合体の製造方法
US6050208A (en) * 1996-11-13 2000-04-18 Fern Investments Limited Composite structural laminate
JPH11256031A (ja) * 1998-03-11 1999-09-21 Kuraray Co Ltd 発泡性ポリウレタン組成物および発泡体
DE19825085A1 (de) * 1998-06-05 1999-12-09 Basf Ag Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
DE19825083A1 (de) * 1998-06-05 1999-12-09 Basf Ag Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
JP2000026567A (ja) * 1998-07-10 2000-01-25 Achilles Corp 連続気泡を有する硬質ウレタンフォームの製造方法
DE19914420A1 (de) * 1999-03-30 2000-10-05 Basf Ag Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte
DE10041162A1 (de) * 2000-08-21 2002-03-07 Basf Ag Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Also Published As

Publication number Publication date
US20040038042A1 (en) 2004-02-26
WO2002040265A1 (de) 2002-05-23
EP1345762A1 (de) 2003-09-24
AU2002217017A1 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
EP1165314B1 (de) Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte
EP1094938B1 (de) Verbundelemente enthaltend kompakte polyisocyanat-polyadditionsprodukte
DE19825085A1 (de) Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
EP1513684B1 (de) Verfahren zur herstellung von verbundelementen
DE19825087B4 (de) Verfahren zur Herstellung von Schiffsrümpfen, Laderaumabdeckungen oder Brücken enthaltend Verbundelemente
DE19825084A1 (de) Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
EP1315768B1 (de) Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte
DE10056375A1 (de) Verfahren zur Verbindung von Verbundelementen
DE10056377A1 (de) Verfahren zur Herstellung von Verbundelementen
DE10056378A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte
EP1682338A2 (de) Verbundelemente
EP1337393B1 (de) Verfahren zur reparatur von verbundelementen
DE19953240A1 (de) Verbundelemente
WO2003002341A1 (de) Verfahren zur einbringung von flüssigkeiten mittels einer fördereinrichtung in eine form
DE10062129A1 (de) Verbundelemente enthaltend Polyisocanat-Polyadditionsprodukte
DE10056373A1 (de) Verfahren zur Herstellung von Verbundelementen
DE10130651A1 (de) Verfahren zur Herstellung von Verbundelementen
WO2003009996A1 (de) Verbundelemente
DE10350240A1 (de) Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form
WO2003002324A1 (de) Verfahren zur herstellung von verbundelementen
DE10310379A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Legal Events

Date Code Title Description
8130 Withdrawal