DE10350240A1 - Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form - Google Patents

Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form Download PDF

Info

Publication number
DE10350240A1
DE10350240A1 DE10350240A DE10350240A DE10350240A1 DE 10350240 A1 DE10350240 A1 DE 10350240A1 DE 10350240 A DE10350240 A DE 10350240A DE 10350240 A DE10350240 A DE 10350240A DE 10350240 A1 DE10350240 A1 DE 10350240A1
Authority
DE
Germany
Prior art keywords
iii
sieve
filled
space
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10350240A
Other languages
English (en)
Other versions
DE10350240B4 (de
Inventor
Mathias Hefner
Heinz Forster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE10350240A priority Critical patent/DE10350240B4/de
Publication of DE10350240A1 publication Critical patent/DE10350240A1/de
Application granted granted Critical
Publication of DE10350240B4 publication Critical patent/DE10350240B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/12Making multilayered or multicoloured articles
    • B29C39/123Making multilayered articles
    • B29C39/126Making multilayered articles by casting between two preformed layers, e.g. deformable layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/383Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using spreading devices mounted in the mould, in front of the feed opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0061Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel
    • B29C33/0072Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel with a configuration promoting turbulency, e.g. for after-mixing in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Verfahren zur Einbringung von flüssigen Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten mittels einer Fördereinrichtung mit Mischelement in eine Form, die eine obere Schicht (i) mit mindestens einer Öffnung (iv), durch die Ausgangskomponenten gefüllt werden, und eine untere Schicht (iii) aufweist, wobei man die flüssigen Ausgangskomponenten durch ein Sieb, das sich in dem zu befüllenden Raum zwischen den Schichten (i) und (iii) befindet, in den zu befüllenden Raum zwischen den Schichten (i) und (iii) einfüllt.

Description

  • Die Erfindung betrifft Verfahren zur Einbringung von flüssigen Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten mittels einer Fördereinrichtung mit Mischelement, bevorzugt Mischkopf, in eine Form, die eine obere Schicht (i) mit mindestens einer Öffnung (iv), durch die Ausgangskomponenten gefüllt werden, und eine untere bevorzugt zur Schicht (i) parallele Schicht (iii) aufweist. Außerdem bezieht sich die Erfindung auf derart erhältliche Verbundelemente.
  • Für die Konstruktion von Schiffen, beispielsweise Schiffsrümpfen und Laderaumabdeckungen, Brücken, Dächern oder Hochhäusern müssen Konstruktionsteile verwendet werden, die erheblichen Belastungen durch äußere Kräfte standhalten können. Derartige Konstruktionsteile bestehen aufgrund dieser Anforderungen üblicherweise aus Metallplatten oder Metallträgern, die durch eine entsprechende Geometrie oder geeignete Verstrebungen verstärkt sind. So bestehen Schiffsrümpfe von Tankschiffen aufgrund von erhöhten Sicherheitsnormen üblicherweise aus einem inneren und einem äußeren Rumpf, wobei jeder Rumpf aus 15 mm dicken Stahlplatten, die durch ca. 2 m lange Stahlverstrebungen miteinander verbunden sind, aufgebaut ist. Da diese Stahlplatten erheblichen Kräften ausgesetzt sind, werden sowohl die äußere, als auch die innere Stahlhülle durch aufgeschweißte Verstärkungselemente versteift. Nachteilig an diesen klassischen Konstruktionsteilen wirken sich sowohl die erheblichen Mengen an Stahl aus, die benötigt werden, als auch die zeit- und arbeitsintensive Herstellung. Zudem weisen derartige Konstruktionsteile ein erhebliches Gewicht auf, wodurch sich eine geringere Tonnage der Schiffe und ein erhöhter Treibstoffbedarf ergibt. Zusätzlich sind solche klassischen Konstruktionselemente auf der Basis von Stahl sehr pflegeintensiv, da sowohl die äußeren Oberfläche, als auch die Oberflächen der Stahlteile zwischen der äußeren und inneren Hülle regelmäßig gegen Korrosion geschützt werden müssen.
  • Als Ersatz für die Stahlkonstruktionen sind SPS-Elemente (Sandwich-plate-system) bekannt, die einen Verbund aus Metall und Kunststoff beinhalten. Durch die Haftung des Kunststoffs an den zwei Metallschichten entstehen Verbundelemente mit außerordentlichen Vorteilen gegenüber bekannten Stahl Konstruktionen. Derartige SPS-Elemente sind bekannt aus den Schriften US 6 050 208 , US 5 778 813 , DE-A 198 25 083, DE-A 198 25 085, DE-A 198 25 084, DE-A 198 25 087 und DE-A 198 35 727. Üblicherweise werden diese Verbundelemente derart hergestellt, dass die Ausgangsstoffe zur Herstellung der Polyisocyanat-Polyadditionsprodukte in einem einzigen Arbeitsschritt zwischen die Metallplatten gegossen oder gespritzt werden. Da die reaktiven Ausgangskomponenten zur Herstellung der Kunststoffe im Verbundelement bereits beim Vermischen zu reagieren beginnen und ein vollständiges Befüllen des Raumes zwischen den Metallplatten Voraussetzung für ein einwandfreies Produkt ist, stellt der Vorgang der Injektion der Ausgangskomponenten einen entscheidenden und kritischen Schritt bei der Herstellung der Verbundelemente dar. Insbesondere bei reaktiven Flüssigkeiten, die aushärten, bedeuten Leckagen zusätzlichen Arbeitsaufwand.
  • Die DE-A 101 30 650 lehrt besonders vorteilhafte Verfahren zur Befüllung von Formen insbesondere mit reaktiven Flüssigkeiten.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form zu entwickeln, bei dem gerade das Befüllen des Raumes zwischen den Platten (i) und (iii) insbesondere mit den Ausgangskomponenten zur Herstellung von Kunststoffen (ii) zwischen den Platten (i) und (iii) optimiert wird. Dieses Herstellungsverfahren sollte insbesondere den Anteil fehlerhafter Elemente deutlich vermindern und ein sicheres Einbringen von flüssigen Komponenten zwischen die Platten des Verbundelementes ermöglichen. Insbesondere sollte das Entstehen von Lufteinschlüssen zwischen metallischen Deckschichten und daran haftenden Polyisocyanat-Polyadditionsprodukten, d.h. den Reaktionsprodukten der in die Form eingefüllten Flüssigkeiten, deutlich vermindert werden, da diese Lufteinschlüsse die Fläche, an der die Kunststoffe haftend mit dem Metall verbunden sind, verringern und damit die Festigkeit der Verbundelemente erniedrigen.
  • Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, dass man die flüssigen Ausgangskomponenten durch ein Sieb, das sich besonders bevorzugt in dem zu befüllenden Raum zwischen den Schichten (i) und (iii) befindet, in den zu befüllenden Raum zwischen den Schichten (i) und (iii) einfüllt.
  • Erfindungswesentlich ist, das die reaktiven Ausgangskomponenten zur Herstellung der Polyisocyanat-Polyadditionsprodukte, üblicherweise Polyurethane durch das Sieb oder eine Sieb-ähnliche Struktur in den zu befüllenden Raum eingefüllt werden. Dies bietet den Vorteil, dass während des gesamten Füllvorgangs deutlich weniger Luft eingeschlagen wird und somit weniger Lufteinschlüsse an der Verbindung zwischen (ii) und (i) entstehen. Dadurch ergibt sich eine größere Haftfläche und somit eine deutlich bessere Haftung zwischen (i) und (ii). Außerdem erfolgt während des Füllvorgangs eine Nachvermischung der Komponenten, was zu einem homogeneren Endprodukt führt.
  • Als Sieb können allgemein bekannten Strukturen eingesetzt werden, die eine poröse Struktur aufweisen und durch die die flüssigen Ausgangskomponenten mit ausreichender Geschwindigkeit gepresst werden können. Bevorzugt handelt es sich um allgemein bekannte Metallgeflecht, Metallgitter, Kunststoffgitter, bevorzugt auf der Basis von Stahl. Dabei weisen die Löcher des Siebs bevorzugt einen Durchmesser zwischen 0,1 mm und 5,0 mm auf.
  • Bei dem Sieb handelt es sich um einen zylindrischen Körper, bevorzugt mit Boden und Flansch (siehe 1), wobei der Flansch bevorzugt auf der Schicht (i) positioniert wird. Der zylindrische Körper des Siebs weist bevorzugt einen äußeren Durchmesser auf, der kleiner oder gleich, besonders bevorzugt gleich dem Durchmesser der Öffnung (iv) ist. Die Höhe des Siebs ist bevorzugt gleich oder größer der Höhe der Schichten (i) und (ii) (siehe 2). Alternativ ist es möglich, dass das Sieb einen Durchmesser größer als (iv) aufweist und eine Höhe, die der Höhe von (ii) entspricht. In den 1 und 2 ist das Sieb jeweils mit (x) gekennzeichnet. Der Flansch ist mit (xi) gekennzeichnet.
  • Bevorzugt wird man das Sieb in der Öffnung (iv) innerhalb des zu befüllenden Raumes zwischen den Schichten (i) und (iii) platzieren. Dies bietet den Vorteil, dass die gesamten Ausgangskomponenten das Sieb durchfliesen müssen.
  • Bevorzugt wird man außerdem das Sieb mit der Schicht (iii) und/oder mit der Schicht (i), bevorzugt dem Rand der Öffnung (iv) in der Schicht (i) haftend verbinden, beispielsweise verschweißen oder verkleben. Dabei reicht das Sieb bevorzugt von der Öffnung (iv) in der Schicht (i) bis zur Schicht (iii), d.h. das Sieb durchzieht bevorzugt den zwischen den Schichten (i) und (iii) befindlichen Raum, auch Schicht (ii) genannt, über die gesamte Höhe.
  • Vorrichtungen zum Befüllen des Raumes, d.h. zur Herstellung der Schicht (ii) enthaltend Polyisocyanat-Polyadditionsprodukte, beispielsweise Mischköpfe oder andere, an späterer Stelle beschriebene Ausflussenden, können sowohl an dem Sieb oder an der Schicht, in der die Öffnung (iv) vorliegt, befestigt werden.
  • Anschließend kann man die flüssigen Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten durch das Sieb einfüllen.
  • Nachdem man den zu befüllenden Raum mit den flüssigen Ausgangskomponenten zur Herstellung der Polyisocyanat-Polyadditionsprodukte gefüllt hat, kann man das Sieb entfernen oder auch in dem zu befüllenden Raum belassen. Bevorzugt wird man das Sieb nach dem Befüllen des Raumes zwischen den Schichten (i) und (iii) in der Schicht (ii) enthaltend die Polyisocyanat-Polyadditionsprodukte, die haftend mit den Schichten (i) und (iii) verbunden sind, belassen und bevorzugt die Öffnung (iv) verschließen, beispielsweise mit Kunststoff oder bevorzugt Metallstopfen, die bevorzugt in die Öffnung geschraubt werden.
  • Wie eingangs dargestellt kann es sich bei dem Sieb bevorzugt um einen zylindrischen Gegenstand handeln mit einem äußeren Durchmesser, der kleiner oder gleich ist dem Durchmesser der Öffnung (iv). Dies bedeutet, dass das Sieb bevorzugt durch die Öffnung in den zu befüllenden Raum zwischen (i) und (iii) gesteckt wird. Bevorzugt wird das Sieb derart in der Öffnung platziert, dass beim Befüllen die flüssigen Komponenten vollständig durch das Sieb in den zu befüllenden Raum gelangen, d.h. ein Danebenlaufen vermieden wird. Bevorzugt kann das Sieb eine zylindrische Form aufweisen mit einer Mantelfläche und einem Bodenteil, das bevorzugt zur Schicht (iii) gerichtet wird, sowie einer offenen Oberseite, die dem Bodenteil gegenüberliegt. Bevorzugt kann der Rand der Mantelfläche, der zur Oberseite gerichtet ist, nach außen gerichtet sein, bevorzugt in einem 80° bis 100° Winkel im Verhältnis zur Mantelfläche ausgerichtet, d.h. nahezu parallel zur Oberfläche der Schicht (i) verlaufen. Dies erleichtert die Befestigung des Siebs auf der Oberfläche von (i).
  • Bevorzugt wird man die flüssigen Ausgangskomponenten mittels einer Hochdruckapparatur über den Mischkopf und anschließend durch das Sieb in den Raum zwischen den Schichten (i) und (iii) einbringen.
  • Bei dem Ausdruck "Ausflussende" kann es sich um übliche Einrichtungen handeln, mit Hilfe derer Flüssigkeiten abgefüllt werden, beispielsweise Tankstutzen, Schlauchenden, Mischköpfe Statikmischer oder ähnliches. Bevorzugt handelt es sich bei dem Ausflussende um einen Mischkopf. Derartige Mischköpfe sind allgemein bekannt und beispielsweise in Zusammenhang mit üblichen Dosiereinrichtungen für Polyurethansysteme kommerziell erhältlich.
  • Bei den "Flüssigkeiten" handelt es sich bevorzugt um flüssige Ausgangskomponenten zur Herstellung von Kunststoffen, bevorzugt solchen, die an (i) und (iii) haften, besonders bevorzugt handelt es sich um die an späterer Stelle dargestellten Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten.
  • Üblicherweise weisen die Schichten (i) und (iii) keine Merkmale auf, die zu einer Befestigung eines Ausflussendes zur Befüllung mit Flüssigkeiten dienen können. Die Befestigung kann bevorzugt derart erfolgen, dass man Bolzen mit einem Gewinde, die zur Befestigung des Ausflussendes oder der Halterung dienen, in die Schicht (i) schießt. Diese Bolzen können bevorzugt an der vom Gewinde abgewandten Seite spitz zulaufen, um sie einfacher in die Schicht (i) einbringen zu können. Die Bolzen weisen bevorzugt einen Durchmesser von 6 mm bis 20 mm und eine Länge von 8 mm bis 42 mm auf. Das Gewinde, das nach der Fixierung der Bolzen nach außen gerichtet ist, d.h. auf der Seite von (i), die von (iii) abgewandt ist, hat bevorzugt eine Länge von 4 mm bis 30 mm. Das Einbringen der Bolzen erfolgt beispielsweise durch Schießen mit Hilfe eines Bolzenschubwerkzeugs , das kommerziell z.B. bei der Firma Hilti erhältlich ist. Bevorzugt weist (i) somit Gewinde auf, mit Hilfe derer das Ausflussende an der Öffnung (iv), durch die die Flüssigkeit eingefüllt wird, mit (i) verschraubt wird. Bevorzugt kann man zur Verbesserung der Dichtung zwischen dem Ausflussende und der Schicht (i) zwischen der Schicht (i) und dem Mischkopf einen O-Ring aus einem elastischen Material fixieren. Derartige O-Ringe sind allgemein bekannt und können in ihren Abmessungen auf den Durchmesser der Öffnung (iv) und den Mischkopf abgestimmt werden.
  • Besonders bevorzugt befestigt man nicht direkt das Ausflussende an der Schicht (i), sondern fixiert das Ausflussende an einer Halterung, die mit (i) verschraubt wird. Bei dieser Halterung, die aus üblichen Materialien, beispielsweise Kunststoffen, Holz oder bevorzugt üblichen Metallen bestehen kann, handelt es sich bevorzugt um eine Konstruktion, die über Bohrungen verfügt, durch die die auf (i) fixierten Gewinde geführt und beispielsweise mittels entsprechender Muttern befestigt werden. Außerdem weist die Halterung Befestigungselemente für das Ausflussende auf, beispielsweise Steckverbindungen, Schraubverbindungen oder Kanten, mit denen das Ausflussende durch elastische Bänder mit der Halterung verspannt werden kann. Besonders bevorzugt wird das Ausflussende an mindestens drei Punkten mit der Halterung befestigt, um eine Verkanten zu vermeiden.
  • Bevorzugt wird man somit eine Halterung an mindestens drei Gewinden, die an (i) befestigt sind, verschrauben und an dieser Halterung den Mischkopf fixieren. Die Bolzen können nach Fertigstellung der Verbundelemente beispielsweise an der Oberfläche von (i) abgesägt werden.
  • Das Befüllen des Raumes zwischen (i) und (iii) kann mit üblichen Fördereinrichtungen, bevorzugt kontinuierlich, durchgeführt werden, beispielsweise mit Hoch- und Niederdruckmaschinen, vorzugsweise Hochdruckmaschinen. Bevorzugt erfolgt das Befüllen mit einer Hochdruckmaschine über einen oder mehrere, bevorzugt einen Mischkopf, in dem die Ausgangskomponenten vermischt werden, in einem einzigen Arbeitsschritt, bevorzugt Injektionsvorgang. In einem einzigen Injektionsvorgang bedeutet, dass die Befüllung des Raumes zwischen (i) und (iii) beispielsweise mit den Ausgangsstoffen zur Herstellung von (ii) vor der vollständigen Befüllung nicht unterbrochen wird. Die Ausgangsstoffe werden somit bevorzugt in einem einzigen Schuss unter Druck in den Raum zwischen (i) und (iii) gegeben. Dies gilt insbesondere dann, wenn es sich bei der Flüssigkeit um eine reaktive Mischung handelt, die mit der Reaktion aushärtet. Bevorzugt trägt man somit die Ausgangsstoffe mittels einer Hochdruckapparatur über einen oder mehrere, bevorzugt einen Mischkopf ein. Die Befüllung des Raumes zwischen (i) und (iii) kann sowohl in vertikaler Ausrichtung von (i) und (iii), als auch in horizontaler Ausrichtung von (i) und (iii) erfolgen.
  • Die Schichten (i) und (iii) können bevorzugt als übliche Kunststoff-, Holz- oder bevorzugt Metallplatten, beispielsweise Eisen-, Stahl- Kupfer- und/oder Aluminiumplatten, mit den erfindungsgemäßen Dicken eingesetzt werden.
  • Sowohl (i) als auch (ii) können beschichtet, beispielsweise grundiert, geprimert, lackiert und/oder mit üblichen Kunststoffen beschichtet bei der Herstellung der erfindungsgemäßen Verbundelemente eingesetzt werden. Bevorzugt werden (i) und (iii) unbeschichtet und besonders bevorzugt beispielsweise durch übliches Eisenkiesstrahlen gereinigt eingesetzt.
  • Die Oberflächen von (i) und (iii) können vor der Herstellung der Verbundelemente zur Reinigung und Erhöhung der Oberflächenrauhigkeit mit Sand oder Stahlkugeln bevorzugt mit Korund oder Eisenkies gestrahlt werden. Dieses Strahlen kann nach den üblichen Verfahren erfolgen, bei denen das Strahlgut beispielsweise unter hohem Druck auf die Oberflächen auftrifft. Geeignete Apparaturen für eine solche Behandlung sind kommerziell erhältlich.
  • Durch diese Behandlung der Oberflächen von (i) und (iii), die nach der Umsetzung von (a) mit (b) in Kontakt mit (ii) stehen, führt zu einer deutlich verbesserten Haftung von (ii) an (i) und (iii). Das Strahlen wird bevorzugt direkt vor der Einbringung der Komponenten zur Herstellung von (ii) in den Raum zwischen (i) und (iii) durchgeführt. Die Oberflächen von (i) und (iii), an die (ii) haften soll, sind bevorzugt frei von anorganischen und/oder organischen Stoffen, die eine Haftung vermindern, beispielsweise Staub, Schmutz, Ölen und Fetten oder allgemein als Formtrennmitteln bekannten Stoffen.
  • Bevorzugt weisen (i) und/oder (iii) zusätzlich zu der oder den Öffnungen (iv), über die die Ausgangskomponenten zur Herstellung von (ii) eingetragen werden, mindestens eine weitere Öffnung (v) auf. Die Mengen an Ausgangsstoffen zur Herstellung von (ii) sind nur schwierig so zu bemessen, dass gerade der zu befüllende Raum (R) gefüllt wird, aber ein Überlaufen verhindert wird. Deshalb wird bevorzugt eine größere Mengen an Ausgangskomponenten zur Herstellung von (ii) in den Raum zwischen (i) und (iii) gegeben, als dieser aufnehmen kann. Der resultierende Überlauf wird bevorzugt über Öffnungen (v) abgeführt. Bevorzugt kann man an der oder den Öffnungen (v) Überlaufgefäße anbringt. Diese Überlaufgefäße befinden sich bevorzugt in einer Position über dem zwischen (i) und (iii) mit den Ausgangsstoffen zur Herstellung von (ii) zu befüllenden Raum. Dies bietet den Vorteil, dass erst nach dem vollständigen Befüllen mit den Ausgangsstoffen ein Anstieg der noch flüssigen, d.h. noch nicht ausreagierten Ausgangsstoffe in den Überlaufgefäßen festgestellt werden. An dem Anstieg der Ausgangskomponenten in den Überlaufgefäßen kann man somit die vollständige Befüllung des Raumes zwischen (i) und (iii) ermitteln. Das Verschließen der Öffnungen kann beispielsweise mit einem Kunststoff- oder Metallpfropfen bevorzugt mit einem Schraubverschluss, der sich entweder im Überlaufgefäß oder bevorzugt zwischen Überlaufgefäß und (i) und/oder (iii) befindet, erfolgen. Die Öffnungen (iv) bleiben bevorzugt bis zum Ende des Aushärtevorgangs der Mischung (a) und (b) durch den fixierten Mischkopf verschlossen.
  • Daneben dienen bevorzugt eine oder besonders bevorzugt mehrere Öffnungen (v) dazu, während des Befüllvorgangs Luft aus (R) entweichen zu lassen.
  • Bevorzugt handelt es sich bei den Öffnungen (iv) und (v) um Bohrungen in (i) und/oder (iii) mit einem Durchmesser von 0,5 bis 5,0 cm in (i) und/oder (iii).
  • Der Raum, der zwischen (i) und (iii) mit den Ausgangsstoffen zur Herstellung von (ii) gefüllt wird, muss nicht den ganzen Raum zwischen (i) und (iii) darstellen. Sowohl (i) als auch (iii) können an den Rändern über (ii) überstehen, d.h. nur in einem Teilbereich von (i) und (iii) erfolgt eine Bindung von (i) über (ii) an (iii). Beispielsweise kann der Raum zwischen (i) und (iii) vor der Befüllung mit den Ausgangsstoffen derart abgedichtet werden, dass sich die Dichtung innerhalb des von (i) und (iii) umschlossenen Raumes befindet und Ränder von (i) und/oder (iii) überstehen.
  • Die Förderleistung kann in Abhängigkeit des zu befüllenden Volumens variiert werden. Um eine homogene Durchhärtung von (ii) zu gewährleisten, wird die Förderleistung und Fördereinrichtung bevorzugt derart gewählt, dass der zu befüllende Raum innerhalb von 0,5 bis 20 min mit den Komponenten zur Herstellung von (ii) gefüllt werden kann. Bevorzugt handelt es sich Niederdruck oder besonders bevorzugt Hochdruckmaschinen, bevorzugt mit Kolbendosierung, besonders bevorzugt Axialkolbendosierung, wobei bevorzugt der Vorratsbehälter mit Rührwerk und bevorzugt temperierbar ausgestaltet ist und bevorzugt ein Kreislauf Vorratsbehälter-Mischkopf-Vorratsbehälter vorliegt, wobei bevorzugt die Austragsleistung 0,1 bis 3,0 kg/sec beträgt.
  • Die Ausgangskomponenten zur Herstellung der Polyisocyanat-Polyadditionsprodukte werden üblicherweise bei einer Temperatur von 0 bis 100°C, vorzugsweise von 20 bis 60°C, gemischt und wie bereits beschrieben in den Raum zwischen (i) und (iii) eingebracht. Die Vermischung kann mechanisch mittels eines Rührers oder einer Rührschnecke, bevorzugt aber durch das bei Hochdruckmaschinen übliche Gegenstromprinzip erfolgen, bei dem A- und B-Komponenten-Strahl sich im Mischkopf unter jeweils hohem Druck treffen und vermischen, wobei der Strahl einer jeden Komponente auch geteilt sein kann. Die Reaktionstemperatur, d.h. die Temperatur, bei der die Umsetzung erfolgt, beträgt in Abhängigkeit von der Materialdicke üblicherweise > 20°C, bevorzugt 50 bis 150°C.
  • Bei der Entwicklung geeigneter Herstellungsverfahren wurde festgestellt, dass ein unkontrolliertes Herauslaufen von flüssigen Ausgangskomponenten zur Herstellung von (ii) kaum als Fehler zu beheben ist. Aufgrund der limitierten Menge pro Schuss führt ein unkontrollierter Verlust an Ausgangsmaterial zur Herstellung von (ii) zu einer unvollständigen Befüllung des Raumes zwischen (i) und (iii). Aufgrund der schnellen Reaktion und der sehr guten Haftung von (ii) an (i) und (iii) entstehen durch eine unvollständige Befüllung weite Bereiche im Verbundelement, die kein (ii) enthalten und auch nicht mehr mit Ausgangskomponenten aufgefüllt werden können. Derartige Verbundelemente müssen leider verworfen werden.
  • Um ein Verlust an Ausgangskomponenten zu verhindern, hat es sich daher als vorteilhaft erwiesen, die zu befüllende Form sehr genau auf ihre Dichtigkeit zu überprüfen. Üblicherweise werden die Schichten (i) und (iii) in geeigneter Anordnung, beispielsweise parallel zueinander, fixiert. Der Abstand wird üblicherweise so gewählt, dass der Raum (R) zwischen (i) und (iii) eine Dicke von 10 bis 300 mm aufweist. Die Fixierung von (i) und (iii) kann beispielsweise durch Abstandshalter z.B. in einer Form oder geeigneten Halterung erfolgen. Die Ränder des Zwischenraumes werden üblicherweise derart abgedichtet, dass der Raum zwischen (i) und (iii) zwar mit der Flüssigkeit bzw. den Ausgangskomponenten zur Herstellung von (ii) vollständig gefüllt werden kann, ein Herausfließen dieser Ausgangskomponenten vor der vollständigen Befüllung aber verhindert wird. Das Abdichten kann mit üblichen Kunststoff-, Papier- oder Metallfolien und/oder -platten, die beispielsweise verklebt, verschweißt oder angepresst werden und die gegebenenfalls auch als Abstandshalter dienen können, erfolgen. Dieses bevorzugte Abdichten bezieht sich nicht auf die bevorzugten Öffnungen (iv) und (v), die eingangs dargestellt wurden.
  • Die Überprüfung der Dichtigkeit von (R) vor der Befüllung mit den Ausgangskomponenten erfolgt bevorzugt durch Druckdifferenzmessung. Unter dem Ausdruck Druckdifferenzmessung ist zu verstehen, dass man versucht, eine Druckdifferenz zwischen dem Raum (R) und der äußeren Umgebung über einen bestimmten Zeitraum aufzubauen, beispielsweise indem man versucht, in (R) einen Unter- oder Überdruck im Verhältnis zur äußeren Umgebung zu erreichen. Dies kann durch übliche Vakuumpumpen oder allgemein bekannte Kompressoren, die Luft oder Gas in den Raum (R) pumpen, erreicht werden. Kann ein stabiler Über- oder Unterdruck in (R) erzeugt werden, so deutet dies auf eine ausreichend dichte Kavität hin, die mit den Ausgangskomponenten zur Herstellung von (ii) gefüllt werden kann. Dabei ist bevorzugt zu beachten, dass man die Öffnungen (iv) bzw. (v), die man zum Befüllen von (R) mit den Ausgangskomponenten bzw. als Entlüftungsöffnungen bzw. als Überlauföffnungen zum Austritt von überschüssigen Ausgangskomponenten vorsieht, ebenfalls vorübergehend abdichtet. Dabei kann gegebenenfalls mindestens eine dieser Öffnungen dazu dienen, Vakuumpumpe oder Kompressor an (R) anzuschließen.
  • Während des Befüllens der Flüssigkeit in den Raum zwischen (i) und (iii) kann bevorzugt ein Unterdruck in dem zu befüllenden Raum erzeugt werden. Dies bietet den Vorteil, dass die Flüssigkeit in den Raum "gesaugt" und auch kleine Hohlräume mit der Flüssigkeit ausgefüllt werden. Bevorzugt ist es somit, dass man die Ausgangsstoffe zur Herstellung von (ii) in flüssigem Zustand in den Raum zwischen (i) und (iii) füllt und während dieses Füllvorgangs einen Unterdruck in dem zu füllenden Raum zwischen (i) und (iii) erzeugt. Bevorzugt beträgt der Unterdruck in dem zu befüllenden Raum 0,2 bis 0,8 bar, d.h. der Druck in der zu befüllenden Form ist 0,8 bar bis 0,2 bar niedriger als der Umgebungsluftdruck. Der Unterdruck, der beispielsweise durch allgemein bekannte Vakuumpumpen erzeugt werden kann, wird bevorzugt dadurch erreicht, dass (i) und/oder (iii) zusätzlich zu der oder den Öffnungen (iv) in (i) und/oder (iii), über die die Ausgangsstoffe zur Herstellung von (ii) eingetragen werden, über mindestens eine weitere Öffnung (v) verfügen, über die der Unterdruck angelegt wird.
  • Bevorzugt kann man den zu befüllenden Raum zwischen (i) und (iii) insbesondere vor dem Befüllen trocknen. Dies bietet den Vorteil, dass insbesondere zu befüllende flüssige Komponenten, die gegenüber Wasser reaktiv sind, beispielsweise Isocyanate, nicht in unerwünschten Nebenreaktion abreagieren. Das Trocknen, das bevorzugt direkt vor dem Befüllen stattfindet, kann beispielsweise mittels heißer Luft oder mittels Pressluft erfolgen. Des weiteren kann man den zu befüllenden Raum zwischen (i) und (iii) durch eine Erwärmung von (i) und/oder (iii) auf eine Temperatur von 20 bis 150°C für eine Dauer von 10 bis 180 min trocknen. Bevorzugt kann man den zu befüllenden Raum zwischen (i) und (iii) durch ein Gebläse trocknen, das Luft durch Öffnungen (iv) und (v) in (i) und/oder (iii) durch den zu befüllenden Raum zwischen (i) und (iii) leitet.
  • Bevorzugt werden mittels des erfindungsgemäßen Verfahrens Verbundelemente hergestellt, die folgende Schichtstruktur aufweisen:
    • (i) 2 mm bis 20 mm, bevorzugt 2 mm bis 10 mm, besonders bevorzugt 5 mm bis 10 mm Metall, Kunststoff oder Holz, bevorzugt Metall,
    • (ii) 10 mm bis 300 mm, bevorzugt 10 mm bis 100 mm Polyisocyanat-Polyadditionsprodukt,
    • (iii) 2 mm bis 20 mm, bevorzugt 2 mm bis 10 mm, besonders bevorzugt 5 mm bis 10 mm Metall, Kunststoff oder Holz, bevorzugt Metall,
    wobei sich die Längenangaben auf die Schichtdicken beziehen.
  • Die Breite der Verbundelemente kann üblicherweise 0,5 m bis 10 m, bevorzugt 1 m bis 5 m betragen. Die Länge der Verbundelemente kann im allgemeinen 0,5 m bis 10 m, bevorzugt 1 m bis 5 m betragen. Bevorzugt sind die Schichten (i) und (iii) parallel angeordnet. Die seitlichen Ränder des Raumes zwischen (i) und (iii), der mit (ii) ausgefüllt wird, werden bevorzugt abgedichtet, bevorzugt mit Kunststoff-, Papier- oder Metallfolien oder -platten, besonders bevorzugt Metallplatten, die beispielsweise verklebt, verschweißt oder angepresst, bevorzugt angeschweißt, werden und die gegebenenfalls auch als Abstandshalter dienen können.
  • Entsprechend besteht die zu befüllende Form bevorzugt aus den angegebenen Schichten (i) und (iii), die bevorzugt parallel angeordnet sind, sowie Abdichtungen zwischen den Schichten (i) und (iii), die ein Herauslaufen der Flüssigkeit beim Einfüllen verhindern. Die Schicht (ii) ist somit bevorzugt haftend zwischen den Schichten (i) und (iii) angeordnet.
  • Bevorzugt enthält die Flüssigkeit zur Herstellung von (ii) (a) Isocyanate und (b) gegenüber Isocyanaten reaktive Verbindungen. Die Schicht (ii) stellt somit bevorzugt Polyisocyanat-Polyadditionsprodukte dar. In dieser Schrift sind unter den Ausdrücken "Ausgangsstoffe" oder "Ausgangskomponenten" insbesondere (a) Isocyanate und (b) gegenüber Isocyanaten reaktive Verbindungen zu verstehen, aber gegebenenfalls, soweit sie zum Einsatz kommen, auch (c) Gase, (d) Katalysatoren, (e) Hilfsmittel und/oder (f) Treibmittel.
  • Bevorzugt führt man die Umsetzung von (a) mit (b) zu (ii) in Gegenwart von 1 bis 50 Volumen-% Gase (c) durch. Bevorzugt setzt man als (b) Polymerpolyole ein. Bevorzugt führt man die Umsetzung von (a) mit (b) in Gegenwart von (f) Treibmitteln durch.
  • Die Polyisocyanat-Polyadditionsprodukte (ii) der erfindungsgemäß hergestellten Verbundelemente weisen bevorzugt ein Elastizitätsmodul von >275 MPa im Temperaturbereich von –45 bis +50 °C (nach DIN 53457), eine Adhäsion zu (i) und (iii) von >4 MPa (nach DIN 53530), eine Dehnung von >30% im Temperaturbereich von –45 bis +50 °C (nach DIN 53504), eine Zugfestigkeit von >20 MPa (nach DIN 53504) und eine Druckfestigkeit von > 20 MPa (nach DIN 53421) auf.
  • Die Herstellung der erfindungsgemäßen Verbundelemente kann man derart durchführen, dass man zwischen (i) und (iii) Polyisocyanat-Polyadditionsprodukte (ii), üblicherweise Polyurethane, die gegebenenfalls Harnstoff- und/oder Isocyanuratstrukturen aufweisen können, durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindungen gegebenenfalls in Gegenwart von Treibmitteln (f), 1 bis 50 Volumen-%, bezogen auf das Volumen der Polyisocyanat-Polyadditionsprodukte, mindestens eines Gases (c), (d) Katalysatoren und/oder (e) Hilfsmittel herstellt, wobei bevorzugt (ii) an (i) und (iii) haftet. Die Herstellung derartiger Polyisoyanat-Polyadditionsprodukte (ii) ist vielfach beschrieben worden.
  • Die Ausgangsstoffe (a), (b), (c), (d), (e) und (f) in dem erfindungsgemäßen Verfahren werden im Folgenden beispielhaft beschrieben:
    Als Isocyanate (a) kommen die an sich bekannten aliphatischen, cycloaliphatischen, araliphatischen und/oder aromatischen Isocyanate, bevorzugt Diisocyanate in Frage, die gegebenenfalls nach allgemein bekannten Verfahren biuretisiert und/oder isoanuratisiert worden sein können. Im einzelnen seien beispielhaft genannt: Alkylendiisocyanate mit 4 bis 12 Kohlenstoffatomen im Alkylenrest, wie 1,12-Dodecandiisocyanat, 2-Ethyl-tetramethylendiisocyanat-1,4, 2-Methylpentamethylendiisocyanat-1,5, Tetramethylendiisocyanat-1,4, Lysinesterdiisocyanate (LDI), Hexamethylendiisocyanat-1,6 (HDI), Cyclohexan-1,3- und/oder 1,4-diisocyanat, 2,4- und 2,6-Hexahydrotoluyleniisoyanat sowie die entsprechenden Isomerengemische, 4,4'-, 2,2'- und 2,4'-Dicyclohexylethandiisocyanat sowie die entsprechenden Isomerengemische, 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethandiisocyanat (MDI), Polyphenylpolymethylen-polyisocyanate und/oder Mischungen enthaltend mindestens zwei der genannten Isocyanate. Außerdem können Ester-, Harnstoff-, Allophanat-, Carbodiimid-, Uretdion- und/oder Urethangruppen enthaltende Di- und/oder Polyisocyanate in dem erfindungsgemäßen Verfahren eingesetzt werden. Bevorzugt werden 2,4'-, 2,2'-und/oder 4,4'-MDI und/oder Polyphenylpolymethylen-polyisocyanate eingesetzt, besonders bevorzugt Mischungen enthaltend Polyphenylpolymethylen-polyisocyanate und mindestens eines der MDI-Isomere.
  • Als (b) gegenüber Isocyanaten reaktive Verbindungen können beispielsweise Verbindungen eingesetzt werden, die als gegenüber Isocyanaten reaktive Gruppen Hydroxyl-, Thiol- und/oder primäre und/oder sekundäre Aminogruppen aufweisen und üblicherweise ein Molekulargewicht von 60 bis 10000 g/mol aufweisen, z.B. Polyole ausgewählt aus der Gruppe der Polymerpolyole, Polyetherpolyalkohole, Polyesterpolyalkohole, Polythioether-polyole, hydroxylgruppenhaltigen Polyacetale und hydroxylgruppenhaltigen aliphatischen Polycarbonate oder Mischungen aus mindestens zwei der genannten Polyole. Diese Verbindungen weisen üblicherweise eine Funktionalität gegenüber Isocyanaten von 2 bis 6 und ein Molekulargewicht von 400 bis 8000 auf und sind dem Fachmann allgemein bekannt.
  • Beispielsweise kommen als Polyetherpolyalkohole, die nach bekannter Technologie durch Anlagerung von Alkylenoxiden, beispielsweise Tetrahydrofuran, 1,3-Propylenoxid, 1,2- bzw. 2,3-Butylenoxid, Styroloxid und vorzugsweise Ethylenoxid und/oder 1,2-Propylenoxid an übliche Startersubstanzen erhältlich sind. Als Startersubstanzen können beispielsweise bekannte aliphatische, araliphatische, cycloaliphatische und/oder aromatische Verbindungen eingesetzt werden, die mindestens eine, bevorzugt 2 bis 4 Hydroxylgruppen und/oder mindestens eine, bevorzugt 2 bis 4 Aminogruppen enthalten. Beispielsweise können als Startersubstanzen Ethandiol, Diethylenglykol, 1,2- bzw. 1,3-Propandiol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,7-Heptandiol, Glycerin, Trimethylolpropan, Neopentylglykol, Zucker, beispielswesie Saccharose, Pentaerythrit, Sorbitol, Ethylendiamin, Propandiamin, Neopentandiamin, Hexamethylendiamin, Isophorondiamin, 4,4'-Diaminodicyclohexylmethan, 2-(Ethylamino)-ethylamin, 3-(Methylamino)propylamin, Diethylentrimamin, Dipropylentriamin und/oder N,N'-Bis(3-aminopropyl)-ethylendiamin eingesetzt werden.
  • Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugt werden Alkylenoxide verwendet, die zu primären Hydroxylgruppen in dem Polyol führen. Besonders bevorzugt werden als Polyole solche eingesetzt, die zum Abschluss der Alkoxylierung mit Ethylenoxid alkoxyliert wurden und damit primäre Hydroxylgruppen aufweisen.
  • Als Polymerpolyole, einer speziellen Klasse der Polyetherpolyole, können allgemein aus der Polyurethanchemie bekannte Verbindungen eingesetzt werden, bevorzugt Styrol-Acrylnitril-Pfropfpolyole.
  • Gerade der Einsatz von Polymerpolyolen kann den Schrumpf des Polyisocyanat-Polyadditionsproduktes, beispielsweise des Polyurethans deutlich vermindern und somit zu einer verbesserten Haftung von (ii) an (i) und (iii) führen. Gegebenenfalls können als weiteren Maßnahmen, den Schrumpf zu verringern, bevorzugt Treibmittel (f) und/oder Gase (c) eingesetzt werden.
  • Geeignete Polyesterpolyole können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aliphatischen Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen, und mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden. Die Polyesterpolyole besitzen vorzugsweise eine Funktionalität von 2 bis 4, insbesondere 2 bis 3, und ein Molekulargewicht von 480 bis 3000, vorzugsweise 600 bis 2000 und insbesondere 600 bis 1500.
  • Die erfindungsgemäßen Verbundelemente werden bevorzugt unter Verwendung von Polyetherpolyalkoholen als Komponente (b) zur Umsetzung mit den Isocyanaten hergestellt, zweckmäßigerweise solche mit einer mittleren Funktionalität gegenüber Isocyanaten von 1,5 bis 8, bevorzugt 2 bis 6, und einem Molekulargewicht von 400 bis 8000.
  • Die Verwendung von Polyetherpolyalkoholen bietet erhebliche Vorteile durch eine verbesserte Stabilität der Polyisocyanat-Polyadditionsprodukte gegen eine hydrolytische Spaltung und aufgrund der geringeren Viskosität, jeweils im Vergleich mit Polyesterpolyalkoholen. Die verbesserte Stabilität gegen Hydrolyse ist insbesondere bei einem Einsatz im Schiffbau vorteilhaft. Die geringere Viskosität der Polyetherpolyalkohole und der Reaktionsmischung zur Herstellung von (ii) enthaltend die Polyetherpolyalkohle ermöglicht eine schnellere und einfachere Befüllung des Raumes zwischen (i) und (iii) mit der Reaktionsmischung zur Herstellung der Verbundelemente. Aufgrund der erheblichen Abmessungen insbesondere von Konstruktionsteilen im Schiffbau sind niedrigviskose Flüssigkeiten von erheblichem Vorteil.
  • Als gegenüber Isocyanaten reaktive Verbindungen können des weiteren zusätzlich zu den genannten Verbindungen mit einem üblichen Molekulargewicht von 400 bis 8000 gegebenenfalls Diole und/oder Triole mit Molekulargewichten von 60 bis <400 als Kettenverlängerungs- und/oder Vernetzungsmittel bei dem erfindungsgemäßen Verfahren eingesetzt werden. Zur Modifizierung der mechanischen Eigenschaften, z.B. der Härte, kann sich jedoch der Zusatz von Kettenverlängerungsmitteln, Vernetzungs mitteln oder gegebenenfalls auch Gemischen davon als vorteilhaft erweisen. Die Kettenverlängerungs- und/oder Vernetzungsmittel weisen vorzugsweise ein Molekulargewicht von 60 bis 300 auf. In Betracht kommen beispielsweise aliphatische, cycloaliphatische und/oder araliphatische Diole mit 2 bis 14, vorzugsweise 4 bis 10 Kohlenstoffatomen, wie z.B. Ethylenglykol, Propandiol-1,3, Decandiol-1,10, o-, m-, p-Dihydroxycyclohexan, Diethylenglykol, Dipropylenglykol und vorzugsweise Butandiol-1,4, Hexandiol-1,6 und Bis-(2-hydroxy-ethyl)-hydrochinon, Triole, wie 1,2,4-, 1,3,5-Trihydroxycyclohexan, Glycerin und Trimethylolpropan, niedermolekulare hydroxylgruppenhaltige Polyalkylenoxide auf Basis Ethylen- und/oder 1,2-Propylenoxid und den vorgenannten Diolen und/oder Triolen als Startermoleküle und/oder Diamine wie z.B. Diethyltoluendiamin und/oder 3,5-Dimethylthio-2,4-toluenediamin.
  • Sofern zur Herstellung der Polyisocyanat-Polyadditionsprodukten Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon Anwendung finden, kommen diese zweckmäßigerweise in einer Menge von 0 bis 30 Gew.-%, vorzugsweise von 1 bis 30 Gew.-%, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reaktiven Verbindungen (b), zum Einsatz.
  • Außerdem können als (b) aliphatische, araliphatische, cycloaliphatische und/oder aromatische Carbonsäuren zur Optimierung des Härtungsverlaufes bei der Herstellung von (ii) eingesetzt werden. Beispiele für solche Carbonsäuren sind Ameisensäure, Essigsäure, Bernsteinsäure, Oxalsäure, Malonsäure, Glutarsäure, Adipinsäure, Zitronensäure, Benzoesäure, Salicylsäure, Phenylessigsäure, Phthalsäure, Toluolsulfonsäure, Derivate der genannten Säuren, Isomere der genannten Säuren und beliebigen Mischungen der genannten Säuren. Der Gewichtsanteil dieser Säuren kann 0 bis 5 Gew.-%, bevorzugt 0,2 bis 2 Gew.-%, bezogen auf das Gesamtgewicht von (b), betragen.
  • Mit dem Einsatz von Amin-gestarteten Polyetherpolyalkoholen kann zudem das Durchhärteverhalten von der Reaktionsmischung zur Herstellung von (ii) verbessert werden. Bevorzugt werden die Verbindungen (b), wie auch die anderen Komponenten zur Herstellung von (ii), mit einem möglichst geringen Gehalt an Wasser eingesetzt, um die Bildung von Kohlendioxid durch Reaktion des Wassers mit Isocyanatgruppen zu vermeiden.
  • Als Komponente (c) zur Herstellung von (ii) können allgemein bekannte Verbindungen eingesetzt werden, die einen Siedepunkt bei einem Druck von 1 bar von kleiner (d.h. bei niedrigeren Temperaturen als) –50°C aufweisen, beispielsweise Luft, Kohlendioxid, Stickstoff, Helium und/oder Neon. Bevorzugt wird Luft eingesetzt. Die Komponente (c) ist bevorzugt gegenüber der Komponente (a), besonders bevorzugt gegenüber den Komponenten (a) und (b) inert, d.h. eine Reaktivität des Gases gegenüber (a) und (b) ist kaum, bevorzugt nicht nachzuweisen. Der Einsatz des Gases (c) unterscheidet sich grundlegend von dem Einsatz üblicher Treibmittel zur Herstellung von geschäumten Polyurethanen. Während übliche Treibmittel (f) flüssig eingesetzt werden oder im Falle der gasförmigen physikalischen Treibmittel in der Polyol-Komponente bis zu einem geringen Prozentsatz löslich sind) und während der Umsetzung entweder aufgrund der Wärmeentwicklung verdampfen oder aber im Falle des Wassers aufgrund der Reaktion mit den Isocyanatgruppen gasförmiges Kohlendioxid entwickeln, wird in der vorliegenden Erfindung die Komponente (c) bevorzugt bereits gasförmig als Aerosol beispielsweise in der Polyolkomponente eingesetzt.
  • Als Katalysatoren (d) können allgemein bekannte Verbindungen eingesetzt werden, die die Reaktion von Isocyanaten mit den gegenüber Isocyanaten reaktiven Verbindungen stark beschleunigen, wobei vorzugsweise ein Gesamtkatalysatorgehalt von 0,001 bis 15 Gew.-%, insbesondere 0,05 bis 6 Gew.-%, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reaktiven Verbindungen, verwendet wird. Beispielsweise können folgende Verbindungen verwendet werden: Triethylamin, Tributylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexylamin, N,N,N',N'-Tetramethyl-diamino-diethylether, Bis-(dimethylaminopropyl)-harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclohexylmorpholin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'-Tetramethylbutandiamin, N,N,N',N'-Tetramethylhexandiamin-1,6, Pentamethyldiethylentriamin, Dimethylpiperazin, N-Dimethylaminoethylpiperidin, 1,2-Dimethylimidazol, 1-Azabicyclo-(2,2,0)-octan, 1,4-Diazabicyclo-(2,2,2)-octan (Dabco) und Alkanolaminverbindungen, wie Triethanolamin, Triisopropanolamin, N-Methyl- und N-Ethyl-diethanolamin, Dimethylaminoethanol, 2-(N,N-Dimethylaminoethoxy)ethanol, N,N',N''-Tris-(dialkylaminoalkyl)hexahydrotriazine, z.B. N,N',N''-Tris-(dimethylaminopropyl)-s-hexahydrotriazin, Eisen(II)-chlorid, Zinkchlorid, Bleioctoat und vorzugsweise Zinnsalze, wie Zinndioctoat, Zinndiethylhexoat, Dibutylzinndilaurat und/oder Dibutyldilaurylzinnmercaptid, 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin, Tetraalkylammoniumhydroxide, wie Tetramethylammoniumhydroxid, Alkalihydroxide, wie Natriumhydroxid, Alkalialkoholate, wie Natriummethylat und Kaliumisopropylat, und/oder Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen.
  • Es hat sich als sehr vorteilhaft erwiesen, die Herstellung von (ii) in Gegenwart von (d) durchzuführen, um die Reaktion zu beschleunigen.
  • Der Reaktionsmischung zur Herstellung der Polyisocyanat-Polyadditionsprodukte (ii) können gegebenenfalls (e) Hilfsmittel einverleibt werden. Genannt seien beispielsweise Füllstoffe, oberflächenaktive Substanzen, Farbstoffe, Pigmente, Flammschutzmittel, Hydrolyseschutzmittel, fungistatische, bakteriostatisch wirkende Substanzen und Schaumstabilisatoren.
  • Als oberflächenaktive Substanzen kommen z.B. Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Struktur der Kunststoffe zu regulieren. Genannt seien beispielsweise Emulgatoren, wie die Natriumsalze von Ricinusölsulfaten oder von Fettsäuren sowie Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure und Ricinolsäure. Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-%, bezogen auf 100 Gew.-% der insgesamt eingesetzten gegenüber Isocyanaten reaktiven Verbindungen (b), angewandt.
  • Geeignete Flammschutzmittel sind beispielsweise Trikresylphosphat, Tris-(2-chlorethyl)phosphat, Tris-(2-chlorpropyl)phosphat, Tris(1,3-dichlorpropyl)phosphat, Tris-(2,3-dibrompropyl)phosphat, Tetrakis-(2-chlorethyl)-ethylendiphosphat, Dimethylmethanphosphonat, Diethanolaminomethylphosphonsäurediethylester sowie handelsübliche halogenhaltige Flammschutzpolyole. Außer den bereits genannten halogensubstituierten Phosphaten können auch anorganische oder organische Flammschutzmittel, wie roter Phosphor, Aluminiumoxidhydrat, Antimontrioxid, Arsenoxid, Ammoniumpolyphosphat und Calciumsulfat, Blähgraphit oder Cyanursäurederivate, wie z.B. Melamin, oder Mischungen aus mindestens zwei Flammschutzmitteln, wie z.B. Ammoniumpolyphosphaten und Melamin sowie gegebenenfalls Maisstärke oder Ammoniumpolyphosphat, Melamin und Blähgraphit und/oder gegebenenfalls aromatische Polyester zum Flammfestmachen der Polyisocyanat-Polyadditionsprodukte verwendet werden. Im allgemeinen hat es sich als zweckmäßig erwiesen, 5 bis 50 Gew.-%, vorzugsweise 5 bis 25 Gew.-%, der genannten Flammschutzmittel, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reaktiven Verbindungen, zu verwenden.
  • Als Füllstoffe, insbesondere verstärkend wirkende Füllstoffe, sind die an sich bekannten, üblichen organischen und anorganischen Füllstoffe, Verstärkungsmittel, Beschwerungsmittel, Mittel zur Verbesserung des Abriebverhaltens in Anstrichfarben, Beschichtungsmittel usw. zu verstehen. Im einzelnen seien beispielhaft genannt: anorganische Füllstoffe wie silikatische Mineralien, beispielsweise Schichtsilikate wie Antigorit, Serpentin, Hornblenden, Amphibole, Chrisotil und Talkum, Metalloxide, wie Kaolin, Aluminiumoxide, Titanoxide und Eisenoxide, Metallsalze, wie Kreide, Schwerspat und anorganische Pigmente, wie Cadmiumsulfid und Zinksulfid, sowie Glas u.a. Vorzugsweise verwendet werden Kaolin (China Clay), Aluminiumsilikat und Copräzipitate aus Bariumsulfat und Aluminiumsilikat sowie natürliche und synthetische faserförmige Mineralien wie Wollastonit, Metall- und Glasfasern geringer Länge.
  • Als organische Füllstoffe kommen beispielsweise in Betracht: Kohle, Melamin, Kollophonium, Cyclopentadienylharze und Pfropfpolymerisate sowie Cellulosefasern, Polyamid-, Polyacrylnitril-, Polyurethan-, Polyesterfasern auf der Grundlage von aromatischen und/oder aliphatischen Dicarbonsäureestern und insbesondere Kohlenstofffasern. Die anorganischen und organischen Füllstoffe können einzeln oder als Gemische verwendet werden.
  • Bevorzugt setzt man bei der Herstellung von (ii) 10 bis 70 Gew.-% Füllstoffe, bezogen auf das Gewicht von (ii), als (e) Hilfsmittel ein. Als Füllstoffe verwendet man bevorzugt Talkum, Kaolin, Calziumcarbonat, Schwerspat, Glasfasern und/oder Mikroglaskugeln. Die Größe der Partikel der Füllstoffe ist bevorzugt so zu wählen, dass das Eintragen der Komponenten zur Herstellung von (ii) in den Raum zwischen (i) und (iii) nicht behindert wird. Besonders bevorzugt weisen die Füllstoffe Partikelgrößen von < 0,5 mm auf.
  • Die Füllstoffe werden bevorzugt in Mischung mit der Polyolkomponente bei der Umsetzung zur Herstellung der Polyisocyanat-Polyadditionsprodukte eingesetzt.
  • Die Füllstoffe können dazu dienen, den im Vergleich beispielsweise zum Stahl größeren thermischen Ausdehnungskoeffizient der Polyisocyanat-Polyadditionsprodukte zu verringern und damit dem des Stahls anzupassen. Dies für einen nachhaltig festen Verbund zwischen den Schichten (i), (ii) und (iii) besonders vorteilhaft, da damit geringere Spannungen zwischen den Schichten bei thermischer Belastung auftreten.
  • Bevorzugt werden zur Herstellung von (ii) als (e) übliche Schaumstabilisatoren eingesetzt, die kommerziell erhältlich und dem Fachmann allgemein bekannt sind, beispielsweise allgemein bekannte Polysiloxan-Polyoxyalkylen-Blockcopolymere, z.B. Tegostab 2219 der Firma Goldschmidt. Der Anteil an diesen Schaumstabilisatoren bei der Herstellung von (ii) beträgt bevorzugt 0,001 bis 10 Gew.-%, besonders bevorzugt 0,01 bis 10 Gew.-%, insbesondere 0,01 bis 2 Gew.-%, bezogen auf das Gewicht der zur Herstellung von (ii) eingesetzten Komponenten (b), (e) und gegebenenfalls (d). Der Einsatz dieser Schaumstabilisatoren bewirkt, das die Komponente (c) in der Reaktionsmischung zur Herstellung von (ii) stabilisiert wird.
  • Als Treibmittel (f) können aus der Polyurethanchemie allgemein bekannte Treibmittel eingesetzt werden, beispielsweise physikalische und/oder chemische Treibmittel. Derartige physikalische Treibmittel weisen im allgemeinen einen Siedepunkt bei einem Druck von 1 bar von größer (d.h. bei höheren Temperaturen als) –50°C auf. Beispiele für physikalische Treibmittel sind z.B. FCKW, HFCKW, HFKW, aliphatische Kohlenwasserstoffe, cycloaliphatische Kohlenwasserstoffe, jeweils beispielsweise mit 4 bis 6 Kohlenstoffatomen oder Gemische dieser Stoffe, beispielsweise Trichlorfluormethan (Siedepunkt 24°C), Chlordifluormethan (Siedepunkt –40,8°C), Dichlorfluorethan (Siedepunkt 32°C), Chlordifluorethan (Siedepunkt –9,2°C), Dichlortrifluorethan (Siedepunkt 27,1°C), Terafluorethan (Siedepunkt –26,5°C), Hexafluorbutan (Siede punkt 24,6°C), iso-Pentan (Siedepunkt 28°C), n-Pentan (Siedepunkt 36°C), Cyclopentan (Siedepunkt 49°C).
  • Als chemische Treibmittel, d.h. Treibmittel die aufgrund einer Reaktion, beispielsweise mit Isocyanatgruppen, gasförmige Produkte bilden, kommen beispielsweise Wasser, Hydratwasser-haltige Verbindungen, Carbonsäuren, tert.-Alkohole, z.B. t-Butanol, Carbamate, beispielsweise die in der Schrift EP-A 1000955, insbesondere auf den Seiten 2, Zeilen 5 bis 31 sowie Seite 3, Zeilen 21 bis 42 beschrieben Carbamate, Carbonate, z.B. Ammoniumcarbonat und/oder Ammoniumhydrogencarbonat und/oder Guanidincarbamat in Betracht.
  • Bevorzugt werden als Treibmittel (f) Wasser und/oder Carbamate eingesetzt.
  • Bevorzugt werden die Treibmittel (f) in einer Menge eingesetzt, die ausreicht, um die bevorzugte Dichte von (ii) von 350 bis 1200 kg/m3 zu erhalten. Dies kann mit einfachen Routineexperimenten, die dem Fachmann allgemein geläufig sind, ermittelt werden. Besonders bevorzugt werden die Treibmittel (f) in einer Menge von 0,05 bis 10 Gew.-%, insbesondere von 0,1 bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Polyisocyanat-Polyadditionsprodukte, eingesetzt.
  • Das Gewicht von (ii) entspricht per Definition dem Gewicht der zur Herstellung von (ii) eingesetzten Komponenten (a), (b) und gegebenenfalls (c), (d), (e) und/oder (f).
  • Zur Herstellung der erfindungsgemäßen Polyisocyanat-Polyadditionsprodukte werden die Isocyanate und die gegenüber Isocyanaten reaktiven Verbindungen in solchen Mengen zur Umsetzung gebracht, dass das Äquivalenzverhältnis von NCO-Gruppen der Isocyanate (a) zur Summe der reaktiven Wasserstoffatome der gegenüber Isocyanaten reaktiven Verbindungen (b) und gegebenenfalls (f) 0,85 bis 1,25 : 1, vorzugsweise 0,95 bis 1,15 : 1 und insbesondere 1 bis 1,05 : 1, beträgt. Falls (ii) zumindest teilweise Isocyanuratgruppen gebunden enthalten, wird üblicherweise ein Verhältnis von NCO-Gruppen zur Summe der reaktiven Wasserstoffatome von 1,5 bis 60 : 1, vorzugsweise 1,5 bis 8 : 1, angewandt.
  • Die Polyisocyanat-Polyadditionsprodukte werden üblicherweise nach dem one shot Verfahren oder nach dem Prepolymerverfahren, beispielsweise mit Hilfe der Hochdruck- oder Niederdruck-Technik hergestellt.
  • Als besonders vorteilhaft hat es sich erwiesen, nach dem Zweikomponentenverfahren zu arbeiten und die gegenüber Isocyanaten reaktiven Verbindungen (b), gegebenenfalls die Treibmittel (f) und gegebenenfalls die Katalysatoren (d) und/oder Hilfsmittel (e) in der Komponente (A) (Polyolkomponente) zu vereinigen und bevorzugt innig miteinander zu vermischen und als Komponente (B) die Isocyanate (a) zu verwenden.
  • Die Komponente (c) kann der Reaktionsmischung enthaltend (a), (b) und gegebenenfalls (f), (d) und/oder (e) zugeführt werden, und/oder den einzelnen, bereits beschriebenen Komponenten (a), (b), (A) und/oder (B). Die Komponente, die mit (c) gemischt wird, liegt üblicherweise flüssig vor. Bevorzugt wird die Komponenten in die Komponente (b) gemischt.
  • Das Mischen der entsprechenden Komponente mit (c) kann nach allgemein bekannten Verfahren erfolgen. Beispielsweise kann (c) durch allgemein bekannte Beladungseinrichtungen, beispielsweise Luftbeladungseinrichtungen, bevorzugt unter Druck, beispielsweise aus einem Druckbehälter oder durch einen Kompressor komprimiert, z.B. durch eine Düse der entsprechenden Komponente zugeführt werden. Bevorzugt erfolgt eine weitgehende Durchmischung der entsprechende Komponenten mit (c), so dass Gasblasen von (c) in der üblicherweise flüssigen Komponente bevorzugt eine Größe von 0,0001 bis 10, besonders bevorzugt 0,0001 bis 1 mm aufweisen.
  • Der Gehalt an (c) in der Reaktionsmischung zur Herstellung von (ii) kann in der Rücklaufleitung der Hochdruckmaschine mit allgemein bekannten Messgeräten über die Dichte der Reaktionsmischung bestimmt werden. Die Gehalt an (c) in der Reaktionsmischung kann über eine Kontrolleinheit bevorzugt automatisch auf der Grundlage dieser Dichte reguliert werden. Die Komponentendichte kann während der üblichen Zirkulation des Materials in der Maschine auch bei sehr niedriger Zirkulationsgeschwindigkeit online bestimmt und reguliert werden.
  • Die erfindungsgemäß erhältlichen Verbundelemente finden Verwendung vor allem in Bereichen, in denen Konstruktionselemente benötigt werden, die großen Kräften standhalten, beispielsweise als Konstruktionsteile im Schiffsbau, z.B. in Schiffsrümpfen, beispielsweise Schiffsdoppelrümpfe mit einer äußeren und einer inneren Wand, und Laderaumabdeckungen, Laderaumtrennwänden, Ladeklappen oder in Bauwerken, beispielsweise Brücken oder als Konstruktionselemente im Hausbau, insbesondere in Hochhäusern.
  • Die erfindungsgemäßen Verbundelemente sind nicht mit klassischen Sandwichelementen zu verwechseln, die als Kern einen Polyurethan- und/oder Polyisocyanurathartschaumstoff enthalten und üblicherweise zur thermischen Isolierung eingesetzt werden. Derartige bekannte Sandwichelemente wären aufgrund ihrer vergleichsweise geringeren mechanischen Belastbarkeit nicht für die genannten Anwendungsbereiche geeignet.

Claims (10)

  1. Verfahren zur Einbringung von flüssigen Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten mittels einer Fördereinrichtung mit Mischelement in eine Form, die eine obere Schicht (i) mit mindestens einer Öffnung (iv), durch die Ausgangskomponenten gefüllt werden, und eine untere Schicht (iii) aufweist, dadurch gekennzeichnet, dass man die flüssigen Ausgangskomponenten durch ein Sieb, das sich in dem zu befüllenden Raum zwischen den Schichten (i) und (iii) befindet, in den zu befüllenden Raum zwischen den Schichten (i) und (iii) einfüllt.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man als Sieb ein Metallgeflecht, Metallgitter und/oder Kunststoffgitter einsetzt.
  3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Löcher des Siebs einen Durchmesser zwischen 0,1 mm und 5,0 mm aufweisen.
  4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man das Sieb in der Öffnung (iv) innerhalb des zu befüllenden Raumes zwischen den Schichten (i) und (iii) platziert, mit der Schicht (iii) und/oder mit der Schicht (i) haftend verbindet und anschließend die flüssigen Ausgangskomponenten zur Herstellung von Polyisocyanat-Polyadditionsprodukten durch das Sieb einfüllt.
  5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass man das Sieb nach dem Befüllen des Raumes zwischen den Schichten (i) und (iii) in der Schicht (ii) enthaltend die Polyisocyanat-Polyadditionsprodukte, die haftend mit den Schichten (i) und (iii) verbunden sind, belässt.
  6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Sieb um einen zylindrischen Gegenstand handelt mit einer Höhe, die mindestens dem Abstand der Schichten (i) und (iii) zueinander entspricht und einem äußeren Durchmesser, der kleiner oder gleich ist dem Durchmesser der Öffnung (iv).
  7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die flüssigen Ausgangskomponenten mittels einer Hochdruckapparatur über den Mischkopf und anschließend durch das Sieb in den Raum zwischen den Schichten (i) und (iii) einbringt.
  8. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass mittels des Verfahrens Verbundelemente hergestellt werden, die folgende Schichtstruktur aufweisen: (i) 2 bis 20 mm Metall, Kunststoff oder Holz, (ii) 10 bis 300 mm Polyisocyanat-Polyadditionsprodukt, (iii) 2 bis 20 mm Metall, Kunststoff oder Holz.
  9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die Flüssigkeit zur Herstellung von (ii) (a) Isocyanate und (b) gegenüber Isocyanaten reaktive Verbindungen enthält.
  10. Verbundelemente erhältlich durch ein Verfahren gemäß einem der Ansprüche 1 bis 9.
DE10350240A 2003-10-27 2003-10-27 Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form Expired - Fee Related DE10350240B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10350240A DE10350240B4 (de) 2003-10-27 2003-10-27 Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10350240A DE10350240B4 (de) 2003-10-27 2003-10-27 Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form

Publications (2)

Publication Number Publication Date
DE10350240A1 true DE10350240A1 (de) 2005-05-19
DE10350240B4 DE10350240B4 (de) 2013-07-25

Family

ID=34442245

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10350240A Expired - Fee Related DE10350240B4 (de) 2003-10-27 2003-10-27 Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form

Country Status (1)

Country Link
DE (1) DE10350240B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792971B (zh) * 2009-12-28 2012-08-08 上海新铁链筛网制造有限公司 一种三百目以上精密高目孔筛网后处理工艺
EP3127678A1 (de) * 2015-08-07 2017-02-08 SMP Deutschland GmbH Vorrichtung und verfahren zur kunststoffbeschäumung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778813A (en) * 1996-11-13 1998-07-14 Fern Investments Limited Composite steel structural plastic sandwich plate systems
US6050208A (en) * 1996-11-13 2000-04-18 Fern Investments Limited Composite structural laminate
DE19825087B4 (de) * 1998-06-05 2018-12-27 Basf Se Verfahren zur Herstellung von Schiffsrümpfen, Laderaumabdeckungen oder Brücken enthaltend Verbundelemente
DE19825085A1 (de) * 1998-06-05 1999-12-09 Basf Ag Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
DE19825084A1 (de) * 1998-06-05 1999-12-09 Basf Ag Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
DE19825083A1 (de) * 1998-06-05 1999-12-09 Basf Ag Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte
DE19835727A1 (de) * 1998-08-07 2000-02-10 Basf Ag Verbundelemente
DE10130650A1 (de) * 2001-06-27 2003-01-16 Basf Ag Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792971B (zh) * 2009-12-28 2012-08-08 上海新铁链筛网制造有限公司 一种三百目以上精密高目孔筛网后处理工艺
EP3127678A1 (de) * 2015-08-07 2017-02-08 SMP Deutschland GmbH Vorrichtung und verfahren zur kunststoffbeschäumung

Also Published As

Publication number Publication date
DE10350240B4 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2000059718A1 (de) Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte
EP1513684B1 (de) Verfahren zur herstellung von verbundelementen
DE19825087B4 (de) Verfahren zur Herstellung von Schiffsrümpfen, Laderaumabdeckungen oder Brücken enthaltend Verbundelemente
EP1490216B1 (de) Herstellung von verbundelementen
WO2002040876A1 (de) Verfahren zur verbindung von verbundelementen
EP1315768B1 (de) Verbundelemente enthaltend polyisocyanat-polyadditionsprodukte
DE10350238A1 (de) Verbundelemente
DE10350240B4 (de) Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form
WO2003002341A1 (de) Verfahren zur einbringung von flüssigkeiten mittels einer fördereinrichtung in eine form
WO2002040264A2 (de) Verfahren zur herstellung von verbundelementen
WO2004073973A1 (de) Verbundelemente
EP1339544B1 (de) Verfahren zur herstellung von verbundelementen
EP1337393B1 (de) Verfahren zur reparatur von verbundelementen
WO2003002321A1 (de) Verfahren zur herstellung von verbundelementen
DE10135213A1 (de) Verbundelemente
WO2002040253A1 (de) Verfahren zur herstellung von verbundelementen
WO2003002324A1 (de) Verfahren zur herstellung von verbundelementen
EP1215223A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte
DE10056378A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte
DE10310379A1 (de) Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BASF SE, 67063 LUDWIGSHAFEN, DE

8110 Request for examination paragraph 44
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20131026

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140501