CN88101061A - 淀积碳的微波增强化学汽相淀积(cvd)方法 - Google Patents

淀积碳的微波增强化学汽相淀积(cvd)方法 Download PDF

Info

Publication number
CN88101061A
CN88101061A CN88101061.8A CN88101061A CN88101061A CN 88101061 A CN88101061 A CN 88101061A CN 88101061 A CN88101061 A CN 88101061A CN 88101061 A CN88101061 A CN 88101061A
Authority
CN
China
Prior art keywords
carbon
deposit
reaction chamber
reactant gases
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN88101061.8A
Other languages
English (en)
Other versions
CN1036078C (zh
Inventor
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62041748A external-priority patent/JPS63210010A/ja
Priority claimed from JP17556087A external-priority patent/JPH0623437B2/ja
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN88101061A publication Critical patent/CN88101061A/zh
Application granted granted Critical
Publication of CN1036078C publication Critical patent/CN1036078C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/104Utilizing low energy electromagnetic radiation, e.g. microwave, radio wave, IR, UV, visible, actinic laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/106Utilizing plasma, e.g. corona, glow discharge, cold plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种由金刚砂组成的碳膜内含有氮和硼。借助氮和硼的加入,制造出一种不会生长缺陷的金刚石,并使该薄膜与下伏表面成坚实的机械接触。

Description

本发明涉及一种淀积碳用的微波增强化学汽相淀积法。
最近,作为一种制造薄膜,特别是非晶形薄膜的新方法,ECR CVD(电子回旋加速共振化学汽相淀积法)已经引起了研究工作者们的注意。例如,Matsuo等人在第USP 4,401,054号美国专利中公开了这样一种ECR CVD的设备。这种新技术利用微波,借助一种在激发空间内对等离子气体起箍缩作用的磁场而使反应气体激励成一种等离子态。采用这种组态,该反应气体就可吸收微波能量。将所要涂敷的基片置于远离该激发空间(共振空间)处以便防止基片被溅出。该被激励的气体从该共振空间中被簇射到该基片上。为了建立一个电子回旋共振,使共振空间中的压强保持在1×10-3至1×10-5托,在该压强下可以把电子视为独立粒子,并与在某一表面(磁场在该表面上形成一种为ECR所需的特殊强度)上按一种电子回旋共振的微波相共振。利用一种发散的磁场将受激发的等离子体从该共振空间中抽出到位于远离该共振空间处,并在其中置有准备涂敷的基片的淀积空间。
在这样一种先有技术的方法中,要形成一种多晶或单晶结构的薄膜是很困难的,因此当前可用的各种方法几乎都局限于制造非晶薄膜。而且,按照这种先有技术很难实现高能化学汽相反应,因而就不能形成金刚石薄膜或其它具有高熔点的薄膜、或不能在一种有各种凹陷的均匀表面上形成均匀薄膜。
此外,还不可能给由例如碳化钨制成的超硬金属表面涂敷一层碳膜。因此,在供具有足够硬度的研磨用时,就需要给一超硬表面涂敷上一种细金刚砂,并需要在金刚砂与基片表面之间形成坚实的机械接触。
因此本发明的一个目的是要提供一种淀积碳用的微波增强CVD方法。
根据本发明的一个方面,除将碳化物外,又将氮气和/或氮化物气体送入反应室。该被送入的氮气的作用是阻止因外应力或内应力而生长的各晶格缺陷。如果还将一种硼化物与氮化物一起送入,则被淀积的碳的粘性就增进。氮化硼看来象是碳和准备涂敷的基片(例如由超硬金属-例如碳化钨-制的基片)之间的所述粘合剂。最好使碳和氮化硼以晶粒的方式或以一层含有少于10%的氮和硼的方式淀积在该基片上。
根据本发明的另一方面,终于导致了一种新的CVD方法。该新方法利用了一种首先由本发明人所推荐的混合回旋共振。在该新型激发方法中,除了把相应的反应气体的粒子和磁场以及微波间的相互作用以外,还必须把反应气体的声波作用考虑为一种不可忽略的扰动,因此可以把反应气体的荷电粒子吸入一个相当宽广的共振空间。最好将其压强保持在大于3托。作为该混合共振,将反应室中的压强升高到相当于先有技术中所用的102-105倍。例如可以通过在某一低压下进行ECR以后使压强升高的方法来建立该混合共振。即:先通过在存在有磁场的情况下输入微波的方法而将一种等离子气体置于1×10-3至1×10-5托的条件中。然后将一种反应气体送入该等离子体气体,以便使压强升高到0.1至300托,并使共振从ECR变换成MCR(混合回旋共振)。只有在这样相当高的压强下才能分解碳并进行必要的化学作用。在过程中,在各凸面上很可能要有选择地生成金刚石。
虽然在最好是用金刚石时也可把碳淀积成非晶相,但处于等离子态的氢通过刻蚀可优先地消除非晶碳而保留晶状碳。
实验证明,由本发明所形成的金刚石硬度是用先有技术的汽相方法所制成的金刚石硬度的1.3至3.0倍。
图1是表示按照本发明的一个CVD设备的横断面图。
图2(A)是表示根据计算机模拟的磁场断面中的各等势表面的轮廓的曲线图。
图2(B)是表示根据计算机模拟的电场强度的曲线图。
图3(A)和3(B)是分别表示根据微波在共振空间中传播的磁场和电场的各等势表面的曲线图。
图4是表示本发明借助于射频功率来淀积碳膜的、另一种CVD设备的横断面图。
参考图1对本发明用微波增强等离子体的CVD设备进行说明。在该图中,该设备包括有:一个反应室,在该室中构成一个等离子体发生空间1和一个辅助空间2,并可保持在某一合适的负压;一个微波发生器4;电磁铁5和5′,它们环绕空间1而构成各探向线圈(helmholtz    coils);一个用于向电磁铁5和5′供电的电源25以及一个水冷系统18。等离子体发生空间拥有一圆形横断面。在等离子体发生空间1中,备有一个装有一基片10的基片夹具10′,该夹具是由较少干扰由磁铁5和5′在反应室中所产生的磁场条件的材料制成,例如由不锈钢或石英制成的。基片夹具10′被在高温等离子气体中用红外线24照射加温到800至1000℃,该红外线从一个红外(IR)加热器20发射,而从一个抛物面红外反射镜反射,并经一透镜22而聚焦在夹具10′的后表面上。参考数字23表示供IR加热器20用的电源。为使反应室抽空而备有一抽空系统,该系统包括有一涡轮分子泵17和一个旋转泵14,它们都经过各压强控制阀11、13和15而与反应室接通。基片温度只借助反应室中所产生的等离子气体就可达到某一足够的温度。此时就可免去加热器。再说,基片温度可能随着等离子体的条件而升得太高以致不能进行适当的反应。此时必须提供冷却装置。此设备的进行过程如下:
将基片10装在夹具10′上,并将反应室抽空到1×10-6托或更高的真空状态。然后将来自气体引入系统6的氢,以30标准立方厘米/分(30SCCM)的流率引入,同时将来自微波发生器4的、500瓦、2.45千兆赫的微波通过微波引入窗口15而发射到处于由磁铁5和5′所感生的、大约2K高斯的磁场中的等离子发生空间1。该氢就被该微波的能量激发成为处于1×10-4托的空间中的高密度等离子态。该基片的表面就由无数高能量的电子和氢原子加以清洁。除引入氢外,还以30SCCM的流率经过一个引入系统7而输入一种作为产品气体的碳化物气体,诸如C2H2、C2H4、CH3OH、C2H5OH或CH4。在此过程中,用氢对产品气体进行稀释到足够的稀释密度,例如0.1至5%。除此之外还向反应室送入一种引自引入系统的氮或其化合物气体(例如氨或氮气)。该氮化物气体与碳化物气体的比例是0.1%至5%。然后使反应室中的压强维持在0.1至300托,最好在3至30托,例如1托。通过使反应室中的压强增加,就可提高该产品气体的密度,因而加快了该产品的生成速度。换句话说,使碳原子激发成高能状态,以便使装在夹具10′上的基片10涂敷一层由i碳(由微晶组成的绝缘碳)制成的薄膜或由0.1至100微米颗粒直径的金刚石制成的薄膜。该被淀积的碳含有以重量计的0.1至1%的氮。
为比较起见,已经利用本发明所涂敷成的含有氮的金刚石的研磨剂和利用先有技术所涂敷成的不含氮的金刚石的研磨剂来进行抛光试验。结果前者抛光能力的减退是后者的一半或更少。即按照本发明的金刚石具有高的抗磨性。
下面将描述另一个实施例。将一基片10装在基片夹具10′上,并将反应室抽空到1×10-6托或更高的真空状态。然后将来自气体引入系统中的氢以6至300SCCM的流率引入,同时使来自微波发生器4的1千瓦2.45千兆赫的微波,经过一个微波引入窗口15发射到处于由磁铁5和5′所感生的大约2千高斯的磁场中的等离子体发生空间1。该氢就在空间1中被微波能量激发成一高密度的等离子态。该基片的表面被无数高能量的电子和氢原子所清洁。除引入所述氢气外,还将一种诸如C2H2、C2H4、CH3OH、C2H5OH或CH4的作为产品气体的碳化物气体,经过一个引入系统7,以3SCCM的流率而送入。在此过程中,用氢稀释该产品气体到某一足够稀的密度,例如0.1至15%。除此之外,还将分别来自引入系统7和8的氮化合物气体诸如氨、NO2、NO、N2O或氮气、以及B2H6或BF3以B/N=1而送入该反应室温。其B2H6(BF3)+NH3与碳化物气体的比例1%至50%。然后使反应室中的压强保持在1托至760托,最好高于10托或10至100托,例如30托。通过提高该反应室中的压强,就可使产品气体的密度升高,因而使该产品的生成速率提高。换句话说,就使装在夹具10′的基片10涂敷上含有氮和硼(或以一氮化硼的形式)的碳。该产品包括有作为主要成份的一氮化硼和碳,它们的比例之和至少为90%。
图2(A)是表示在图1中的区域30上的磁场分布情况。该图上的各曲线都是沿着各等势表面而标绘出的,并以表示由具有2,000高斯功率的磁铁5和5′所感生的磁场的各相应曲线上的各磁场强度的标号标出。通过调整磁铁5和5′的功率,就可控制该磁场的强度,以便使位于该磁场(875±185高斯)和电场相互作用的区域100中的被涂敷表面上的磁场强度变得很均匀。在该曲线图中,参考曲线26表示出相当于875高斯(在此磁场强度下,可满足磁场和微波频率之间的ECR条件)的等势表面。当然,按照本发明,由于在反应室中的高压而不能建立ECR,但在某一包括有ECR条件的等势表面的宽广区域中却出现混合回旋共振(MCR)。图2(B)中的X轴是相当于图2(A)中的X轴,并表明在等离体发生空间1中的微波电场强度的曲线图。在区域100和100′中的电场强度居于最大值。但是,在区域100′中,要对基片10′进行加热而不干扰微波传播是很困难的。在其它区域中,没有均匀地淀积出一种薄膜,但却对产品淀积成环状,这就是所以要把基片10设置于区域100中的原因。该等离子体按侧向流动。根据实验情况,在具有直径大到100毫米的圆形基片上可形成一种均匀薄膜。最好在反应室中的具有直径大到50毫米的圆形基片上形成一种均匀厚度和均匀质量的薄膜。如果要求涂敷一较大的基片,则通过使用1.225千兆赫作为该微波的频率而可使所述空间1的直径尺寸为两倍于图2(A)的垂直方向。图3(A)和3(B)是表示由于来自微波发生器4的微波发射到等离子体发生空间1的某一横断面上所形成的磁场和电场分布曲线图。各图的圆中各曲线都是沿着各等势表面而标绘出的,而所给的标号表示其场强。如图3(B)中所示,该电场以25KV/m而达到其最大值。
在按照上述方法所生产的薄膜的电子束反射映象上可看到许多表示出现有多晶一氮化硼和晶体碳,即金刚石(单晶颗粒)的光点。换句话说,该薄膜是由一氮化硼和金刚石的混合物制成的。随着该微波功率从1KW增加到5KW,该薄膜的金刚石比例也就增加。
当将BF3和/或NF3用作硼和/或氮源时,所述等离子气体就变成含氟的了,而氟的作用是通过刻蚀而消除存在于待涂敷的表面上的杂质。
作为参考,曾经用上述同样方式,只是不用磁场而进行形成薄膜的过程。结果,所淀积的是一种石墨薄膜。
使用同样的过程,通过适当选择淀积条件也能淀积出非晶的或微晶的薄膜。如果用大量的氢气来稀释碳化物气体、输入功率较小以及过程温度较低,则就淀积出一种非晶薄膜。如果在宜于淀积非晶形薄膜的条件中的直流偏流是叠加在交流电流上的,则所淀积出的薄膜就变成含有微晶结构的了。
本发明的一个显著特点是按照本发明所形成的碳,不论其为非晶还是晶体,都有很高的硬度。其维氏硬度是4,500至6,400公斤/毫米2,例如2,000公斤/毫米2。其热导率不低于2.5,例如5.0至6.6瓦/厘米·度。
通过由射频功率所引起的辉光或电弧增强的CVD,可用本发明形成碳。图4是表示用于由某一射频功率进行淀积的CVD设备的剖面图。在该图中,该设备包括有一个反应室101;一个装载室103;一个用于抽空装载室103的旋转泵105;一个用于同时抽空反应室101和装载室103的、与旋转泵109相关连的涡轮分子泵107;一个用于送入过程气体(例如通过一个喷嘴129的反应气体或掺杂剂气体)的输气系统;一个用于支承基片113的夹具111,设置于夹具111对面的各电极115,一个包括有一个与一个匹配电路121和一个用于在各电极115和基片夹具111之间供给射频功率的由一射频电源119连同一匹配电路121和一直流偏置电路123组成的射频功率源117以及用于对各基片113加热的带有一个石英窗口129的卤灯加热器125。对各基片涂敷一种碳膜的淀积过程如下:
在将各基片113设置于反应室101中以后,将一种由碳化物气体,诸如CH4、C2H4和C2H2组成的反应气体和一种掺杂剂气体(例如氮、一种氮化物气体和,必要的话,一种硼化物气体)送入处于1×10-3至5×10-1托的反应室。用氢将该碳化物气体稀释到50克分子%。同时用加热器125对各基片113加热到不高于450℃。在此情况下,利用从功率源117输入的射频功率使气相反应开始。载在一-200V至+400V直流偏压的该射频功率频率为13.56兆赫,功率为50瓦至1千瓦(0.03至3.00瓦/厘米2)。然后在基片113上以150埃/分的生长速率淀积碳膜。该碳膜看似一种非晶结构而不似一种晶状结构。尽管是非晶的,但其硬度却被测得与金刚石薄膜一样。其维氏硬度为4,500至6,400公斤/毫米2,例如2,000公斤/毫米2。所以我们称它为“似金刚石的碳”或简称DLC。
按照本发明也可形成一种超晶格结构。使用与上述相同而不用碳化物气体的方法可淀积一种一氮化硼薄膜。依次进行许多次的碳的薄膜淀积和BN薄膜淀积,则在基片上将叠积成一种超晶格结构。
本发明不应局限于上述特指的各实施例,而本领域的技术人员可以导出许多改进和变化。例如已经实验证明将铝或磷按0.01至1%(以重量计)加入碳是有效的。虽然反应气体是从一边流向右边的,但该系统也可设计成气体是从左流向右或从上往下流的方式。

Claims (22)

1、一种淀积碳的方法包括:
-将一种包括有一种气态碳化物的反应气体引入一个反应室;
-将一种电磁辐射能输入到所述反应室中;
-用所述电磁辐射能激发所述碳化物,并用一种化学汽相反应在所要涂敷的表面上淀积碳,
所述方法特征在于所述反应气体包括有氮气或气态氮化物。
2、根据权利要求1的方法,其特征在于:其中所述电磁功率能是微波。
3、根据权利要求1的方法,其特征在于:其中所述电磁功率是一种射频功率。
4、根据权利要求1的方法,其特征在于:其中所述反应室受到一个磁场的作用,并且在所述磁场下实现由所述微波对含有氮或氮化物的所述碳化物的激发作用。
5、根据权利要求4的方法,其特征在于:其中所述反应气体是按混合的回旋共振方式激发的。
6、根据权利要求5的方法,其特征在于:其中在所述反应室中的压强是在0.1托300托的范围内选择的。
7、根据权利要求6的方法,其中特征在于:其中所述氮化物是氨。
8、根据权利要求6的方法,其特征在于:其中所述反应气体包括至少一种碳氢化合物。
9、根据权利要求6的方法,其特征在于:其中所淀积出的产品是一种金刚石。
10、根据权利要求6的方法,其特征在于:其中所淀积出的产品是一种i碳。
11、根据权利要求9的方法,其特征在于:其中所述反应气体是C2H6、C2H4和/或C2H2
12、一种淀积碳层用的方法,其特征包括下列步骤:
-将待涂敷以所说碳层的一种物体设置于一反应室中;
-将一种主要包括有碳化物的反应气体送入所述反应室中,所述反应气体含有氮或氮化物和硼化物;
-用一种电磁功率来激励所述反应气体;以及
-在所述物体上实现一种化学汽相淀积。
13、根据权利要求12的方法,其特征在于:其中所述电磁功率是微波。
14、根据权利要求12的方法,其特征在于:其中所述电磁功率是在一种射频功率。
15、根据权利要求12的方法,其特征在于:其中在所述反应室中的压强是1至760托。
16、根据权利要求15的方法,其特征在于:其中所述淀积过程是在有1千高斯或更强的磁场下实现的。
17、根据权利要求13的方法,其特征在于:其中所述微波的频率是2.45千兆赫。
18、根据权利要求15的方法,其特征在于:其中所述反应气体是CH4
19、根据权利要求15的方法,其特征在于:其中所述碳层是一种结晶层。
20、根据权利要求15的方法,其特征在于:其中所述碳层是一种微晶层。
21、根据权利要求15的方法,其特征在于:其中所述碳层是一种非晶层。
22、根据权利要求15的方法,其特征在于:其中所述碳层是重复地跟在BN薄膜的淀积之后或在BN薄膜的淀积之前淀积而成的,以便组成一种超晶格结构。
CN88101061A 1987-02-24 1988-02-24 淀积碳的微波增强化学气相淀积方法 Expired - Lifetime CN1036078C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP41748/87 1987-02-24
JP62041748A JPS63210010A (ja) 1987-02-24 1987-02-24 炭素作製方法
JP17556087A JPH0623437B2 (ja) 1987-07-13 1987-07-13 炭素および窒化ホウ素の作製方法
JP175560/87 1987-07-13

Publications (2)

Publication Number Publication Date
CN88101061A true CN88101061A (zh) 1988-09-07
CN1036078C CN1036078C (zh) 1997-10-08

Family

ID=26381396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88101061A Expired - Lifetime CN1036078C (zh) 1987-02-24 1988-02-24 淀积碳的微波增强化学气相淀积方法

Country Status (5)

Country Link
US (3) US4869923A (zh)
EP (1) EP0284190B1 (zh)
KR (1) KR900008505B1 (zh)
CN (1) CN1036078C (zh)
DE (1) DE3876120T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933490A (zh) * 2011-06-06 2013-02-13 神港精机株式会社 洋葱状碳的制作方法

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3752208T2 (de) * 1986-11-10 1998-12-24 Semiconductor Energy Laboratory Co., Ltd., Atsugi, Kanagawa Durch Mikrowellen gesteigertes CVD-Verfahren und -Gerät
US5266363A (en) * 1986-11-10 1993-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method utilizing a microwave and a magnetic field at high pressure
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
US5277939A (en) * 1987-02-10 1994-01-11 Semiconductor Energy Laboratory Co., Ltd. ECR CVD method for forming BN films
JPH0676666B2 (ja) * 1987-02-10 1994-09-28 株式会社半導体エネルギ−研究所 炭素膜作製方法
KR900008505B1 (ko) * 1987-02-24 1990-11-24 세미콘덕터 에너지 라보라터리 캄파니 리미티드 탄소 석출을 위한 마이크로파 강화 cvd 방법
US5238705A (en) * 1987-02-24 1993-08-24 Semiconductor Energy Laboratory Co., Ltd. Carbonaceous protective films and method of depositing the same
JPH0672306B2 (ja) * 1987-04-27 1994-09-14 株式会社半導体エネルギー研究所 プラズマ処理装置およびプラズマ処理方法
US6224952B1 (en) * 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US5190824A (en) 1988-03-07 1993-03-02 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
GB8810111D0 (en) * 1988-04-28 1988-06-02 Jones B L Diamond growth
US6756670B1 (en) * 1988-08-26 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Electronic device and its manufacturing method
US5147822A (en) * 1988-08-26 1992-09-15 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method for improving a package of a semiconductor device
US5258206A (en) * 1989-01-13 1993-11-02 Idemitsu Petrochemical Co., Ltd. Method and apparatus for producing diamond thin films
JPH02192494A (ja) * 1989-01-20 1990-07-30 Sumitomo Electric Ind Ltd 複合材料
DE3903322A1 (de) * 1989-02-04 1990-08-16 Nmi Naturwissenschaftl U Mediz Verfahren zur erzeugung von ionen
IL93399A (en) * 1989-02-16 1994-06-24 De Beers Ind Diamond Epithelium of a diamond or a layer of diamond figures
US5142390A (en) * 1989-02-23 1992-08-25 Ricoh Company, Ltd. MIM element with a doped hard carbon film
US5106452A (en) * 1989-06-05 1992-04-21 Semiconductor Energy Laboratory Co., Ltd. Method of depositing diamond and diamond light emitting device
US5744101A (en) * 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5037666A (en) * 1989-08-03 1991-08-06 Uha Mikakuto Precision Engineering Research Institute Co., Ltd. High-speed film forming method by microwave plasma chemical vapor deposition (CVD) under high pressure
DE69021821T2 (de) * 1989-09-20 1996-05-30 Sumitomo Electric Industries Verfahren und Anlage zum Herstellen von Hartstoff.
US5139591A (en) * 1989-12-06 1992-08-18 General Motors Corporation Laser deposition of crystalline boron nitride films
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5326424A (en) * 1989-12-06 1994-07-05 General Motors Corporation Cubic boron nitride phosphide films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
JPH0721858B2 (ja) * 1989-12-11 1995-03-08 松下電器産業株式会社 磁気記録媒体およびその製造方法
US5110577A (en) * 1990-01-12 1992-05-05 Ford Motor Company Process of depositing a carbon film having metallic properties
EP0445754B1 (en) * 1990-03-06 1996-02-14 Sumitomo Electric Industries, Ltd. Method for growing a diamond or c-BN thin film
DE4010663C2 (de) * 1990-04-03 1998-07-23 Leybold Ag Vorrichtung und Verfahren zur plasmagestützten Beschichtung von Werkstücken
US5500393A (en) * 1990-05-21 1996-03-19 Sumitomo Electric Industries, Ltd. Method for fabricating a schottky junction
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
US6162412A (en) * 1990-08-03 2000-12-19 Sumitomo Electric Industries, Ltd. Chemical vapor deposition method of high quality diamond
JPH04228572A (ja) * 1990-08-10 1992-08-18 Sumitomo Electric Ind Ltd 硬質窒化ホウ素合成法
KR930011413B1 (ko) * 1990-09-25 1993-12-06 가부시키가이샤 한도오따이 에네루기 겐큐쇼 펄스형 전자파를 사용한 플라즈마 cvd 법
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma
JPH04305096A (ja) * 1991-04-01 1992-10-28 Sumitomo Electric Ind Ltd 高品質気相合成ダイヤモンドの低温形成法
US5221411A (en) * 1991-04-08 1993-06-22 North Carolina State University Method for synthesis and processing of continuous monocrystalline diamond thin films
US5169676A (en) * 1991-05-16 1992-12-08 The United States Of America As Represented By The Secretary Of The Navy Control of crystallite size in diamond film chemical vapor deposition
US5146481A (en) * 1991-06-25 1992-09-08 Diwakar Garg Diamond membranes for X-ray lithography
USH1249H (en) 1991-07-01 1993-11-02 Machonkin Mary A Coating processes with a polycrystalline diamond passivation layer
JPH059735A (ja) * 1991-07-09 1993-01-19 Kobe Steel Ltd ダイヤモンドの気相合成方法
JP3042127B2 (ja) * 1991-09-02 2000-05-15 富士電機株式会社 酸化シリコン膜の製造方法および製造装置
US5849079A (en) * 1991-11-25 1998-12-15 The University Of Chicago Diamond film growth argon-carbon plasmas
US5620512A (en) * 1993-10-27 1997-04-15 University Of Chicago Diamond film growth from fullerene precursors
US6592839B2 (en) * 1991-11-25 2003-07-15 The University Of Chicago Tailoring nanocrystalline diamond film properties
US5772760A (en) * 1991-11-25 1998-06-30 The University Of Chicago Method for the preparation of nanocrystalline diamond thin films
US5989511A (en) * 1991-11-25 1999-11-23 The University Of Chicago Smooth diamond films as low friction, long wear surfaces
US5439492A (en) * 1992-06-11 1995-08-08 General Electric Company Fine grain diamond workpieces
US5637373A (en) * 1992-11-19 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US6805941B1 (en) * 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
JPH06251896A (ja) * 1992-12-28 1994-09-09 Hitachi Ltd プラズマ処理方法及び装置
US5346729A (en) * 1993-05-17 1994-09-13 Midwest Research Institute Solar-induced chemical vapor deposition of diamond-type carbon films
KR0134942B1 (ko) * 1993-06-11 1998-06-15 이다가끼 유끼오 비정질 경질 탄소막 및 그 제조 방법
US6001480A (en) * 1993-06-11 1999-12-14 Zexel Corporation Amorphous hard carbon film and mechanical parts coated therewith
DE4331701A1 (de) * 1993-09-17 1995-03-23 Fraunhofer Ges Forschung Verfahren zur Herstellung von polykristallinen Diamantschichten
US5514242A (en) * 1993-12-30 1996-05-07 Saint Gobain/Norton Industrial Ceramics Corporation Method of forming a heat-sinked electronic component
AU1745695A (en) * 1994-06-03 1996-01-04 Materials Research Corporation A method of nitridization of titanium thin films
US5628829A (en) * 1994-06-03 1997-05-13 Materials Research Corporation Method and apparatus for low temperature deposition of CVD and PECVD films
US5665640A (en) * 1994-06-03 1997-09-09 Sony Corporation Method for producing titanium-containing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
US5975912A (en) * 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
US5593783A (en) * 1994-06-17 1997-01-14 Advanced Technology Materials, Inc. Photochemically modified diamond surfaces, and method of making the same
FR2726834B1 (fr) * 1994-11-07 1997-07-18 Neuville Stephane Procede de depot sur au moins une piece d'un revetement protecteur de grande durete
FR2726579A1 (fr) * 1994-11-07 1996-05-10 Neuville Stephane Procede de depot d'un revetement protecteur de type pseudo carbonne diamant amorphe
US6161498A (en) * 1995-09-14 2000-12-19 Tokyo Electron Limited Plasma processing device and a method of plasma process
US5620745A (en) * 1995-12-19 1997-04-15 Saint Gobain/Norton Industrial Ceramics Corp. Method for coating a substrate with diamond film
US5981071A (en) * 1996-05-20 1999-11-09 Borealis Technical Limited Doped diamond for vacuum diode heat pumps and vacuum diode thermionic generators
US6214651B1 (en) * 1996-05-20 2001-04-10 Borealis Technical Limited Doped diamond for vacuum diode heat pumps and vacuum diode thermionic generators
DE19635737C1 (de) * 1996-09-03 1998-03-12 Max Planck Gesellschaft Herstellung keramischer Schichten aus B-C-N-Verbindungen
DE19635736C2 (de) * 1996-09-03 2002-03-07 Saxonia Umformtechnik Gmbh Diamantähnliche Beschichtung
DE19643550A1 (de) * 1996-10-24 1998-05-14 Leybold Systems Gmbh Lichttransparentes, Wärmestrahlung reflektierendes Schichtensystem
US6066399A (en) * 1997-03-19 2000-05-23 Sanyo Electric Co., Ltd. Hard carbon thin film and method of forming the same
DE19740792A1 (de) * 1997-09-17 1999-04-01 Bosch Gmbh Robert Verfahren zur Erzeugung eines Plasmas durch Einstrahlung von Mikrowellen
EP1114881A4 (en) * 1999-06-18 2007-05-16 Nissin Electric Co Ltd CARBON FILM, METHOD OF FORMING THE SAME, COVERED ARTICLE OF THE SAME, AND PROCESS FOR PREPARING THE SAME
US6447851B1 (en) * 1999-07-14 2002-09-10 The University Of Chicago Field emission from bias-grown diamond thin films in a microwave plasma
US6368676B1 (en) * 1999-07-20 2002-04-09 Diversified Technologies, Inc. Method of coating an article
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP5013353B2 (ja) * 2001-03-28 2012-08-29 隆 杉野 成膜方法及び成膜装置
JP2002289616A (ja) * 2001-03-28 2002-10-04 Mitsubishi Heavy Ind Ltd 成膜方法及び成膜装置
WO2003005432A1 (fr) * 2001-07-05 2003-01-16 Kabushiki Kaisha Watanabe Shoko Procede et appareil de formation de film a basse constante dielectrique et dispositif electronique utilisant ce film
US6833027B2 (en) * 2001-09-26 2004-12-21 The United States Of America As Represented By The Secretary Of The Navy Method of manufacturing high voltage schottky diamond diodes with low boron doping
GB0130004D0 (en) * 2001-12-14 2002-02-06 Diamanx Products Ltd Coloured diamond
US8220489B2 (en) 2002-12-18 2012-07-17 Vapor Technologies Inc. Faucet with wear-resistant valve component
US7866342B2 (en) 2002-12-18 2011-01-11 Vapor Technologies, Inc. Valve component for faucet
US8555921B2 (en) 2002-12-18 2013-10-15 Vapor Technologies Inc. Faucet component with coating
US7866343B2 (en) 2002-12-18 2011-01-11 Masco Corporation Of Indiana Faucet
US20040227197A1 (en) * 2003-02-28 2004-11-18 Shinji Maekawa Composition of carbon nitride, thin film transistor with the composition of carbon nitride, display device with the thin film transistor, and manufacturing method thereof
US7740916B2 (en) * 2004-04-05 2010-06-22 Euv Llc. Method for the protection of extreme ultraviolet lithography optics
US20070026205A1 (en) 2005-08-01 2007-02-01 Vapor Technologies Inc. Article having patterned decorative coating
SG157973A1 (en) * 2008-06-18 2010-01-29 Indian Inst Technology Bombay Method for growing monocrystalline diamonds
US20100174245A1 (en) * 2009-01-08 2010-07-08 Ward Dean Halverson System for pretreating the lumen of a catheter
SG179318A1 (en) * 2010-09-27 2012-04-27 Gemesis Company S Pte Ltd Method for growing white color diamonds by using diborane and nitrogen in combination in a microwave plasma chemical vapor deposition system
GB201021855D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
CN103370765B (zh) 2010-12-23 2016-09-07 六号元素有限公司 控制合成金刚石材料的掺杂
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
TWI458678B (zh) * 2011-12-30 2014-11-01 Ind Tech Res Inst 石墨烯層的形成方法
US9469918B2 (en) 2014-01-24 2016-10-18 Ii-Vi Incorporated Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon
JP6499835B2 (ja) * 2014-07-24 2019-04-10 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
SG10201505413VA (en) 2015-01-14 2016-08-30 Iia Technologies Pte Ltd Electronic device grade single crystal diamonds and method of producing the same
CN112011828B (zh) * 2020-08-04 2022-02-18 西安电子科技大学 一种用于金刚石生长的plc辉光控制方法及装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3335345A (en) * 1967-08-08 Pyrolytic graphite
US1566848A (en) * 1922-01-26 1925-12-22 Gen Electric Incandescent lamp
US2344906A (en) * 1941-09-30 1944-03-21 Rca Corp Carbonizing metals
US2392682A (en) * 1943-01-11 1946-01-08 Little Inc A Process for decreasing the permeability of fabricated carbon shapes
GB962634A (en) * 1959-11-20 1964-07-01 Secr Aviation Carbon articles
CA923274A (en) * 1969-12-29 1973-03-27 Araki Tadashi Method for producing isotropic pyrolysis carbon
US4142008A (en) * 1972-03-01 1979-02-27 Avco Corporation Carbon filament coated with boron and method of making same
US3944686A (en) * 1974-06-19 1976-03-16 Pfizer Inc. Method for vapor depositing pyrolytic carbon on porous sheets of carbon material
US4194027A (en) * 1975-04-21 1980-03-18 General Atomic Company Method of coating with homogeneous pyrocarbon
US4104441A (en) * 1975-07-29 1978-08-01 Institut Sverkhtverdykh Materialov Ssr Polycrystalline diamond member and method of preparing same
US4060660A (en) * 1976-01-15 1977-11-29 Rca Corporation Deposition of transparent amorphous carbon films
JPS5948864B2 (ja) * 1978-07-05 1984-11-29 住友電気工業株式会社 被覆超硬合金部材の製造法
CA1159012A (en) * 1980-05-02 1983-12-20 Seitaro Matsuo Plasma deposition apparatus
JPS5848428A (ja) * 1981-09-17 1983-03-22 Semiconductor Energy Lab Co Ltd 炭素被膜を有する複合体およびその作製方法
US4434188A (en) * 1981-12-17 1984-02-28 National Institute For Researches In Inorganic Materials Method for synthesizing diamond
JPS59170262A (ja) * 1983-03-14 1984-09-26 Mitsubishi Metal Corp 耐摩耗性のすぐれた表面被覆工具部材
US4701317A (en) * 1983-06-14 1987-10-20 Director-General Of Agency Of Industrial Science And Technology Highly electroconductive films and process for preparing same
JPS60103098A (ja) * 1983-11-04 1985-06-07 Kyocera Corp ダイヤモンド膜の製造方法
JPS60137898A (ja) * 1983-12-24 1985-07-22 Namiki Precision Jewel Co Ltd ダイヤモンド薄膜の製造方法
US4634605A (en) * 1984-05-23 1987-01-06 Wiesmann Harold J Method for the indirect deposition of amorphous silicon and polycrystalline silicone and alloys thereof
SE442305B (sv) * 1984-06-27 1985-12-16 Santrade Ltd Forfarande for kemisk gasutfellning (cvd) for framstellning av en diamantbelagd sammansatt kropp samt anvendning av kroppen
JPS61158898A (ja) * 1984-12-29 1986-07-18 Kyocera Corp 装飾用ダイヤモンドの製造方法
US4645713A (en) * 1985-01-25 1987-02-24 Agency Of Industrial Science & Technology Method for forming conductive graphite film and film formed thereby
US4725345A (en) * 1985-04-22 1988-02-16 Kabushiki Kaisha Kenwood Method for forming a hard carbon thin film on article and applications thereof
US4743522A (en) * 1985-09-13 1988-05-10 Minolta Camera Kabushiki Kaisha Photosensitive member with hydrogen-containing carbon layer
US4816286A (en) * 1985-11-25 1989-03-28 Showa Denko Kabushiki Kaisha Process for synthesis of diamond by CVD
JPS62280364A (ja) * 1986-05-29 1987-12-05 Sumitomo Electric Ind Ltd 硬質窒化硼素の合成方法
JPH0649637B2 (ja) * 1986-08-04 1994-06-29 住友電気工業株式会社 高硬度窒化ホウ素の合成法
KR900008505B1 (ko) * 1987-02-24 1990-11-24 세미콘덕터 에너지 라보라터리 캄파니 리미티드 탄소 석출을 위한 마이크로파 강화 cvd 방법
US4816291A (en) * 1987-08-19 1989-03-28 The Regents Of The University Of California Process for making diamond, doped diamond, diamond-cubic boron nitride composite films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933490A (zh) * 2011-06-06 2013-02-13 神港精机株式会社 洋葱状碳的制作方法
CN102933490B (zh) * 2011-06-06 2015-02-11 神港精机株式会社 洋葱状碳的制作方法

Also Published As

Publication number Publication date
DE3876120T2 (de) 1993-06-24
US4869923A (en) 1989-09-26
EP0284190B1 (en) 1992-11-25
DE3876120D1 (de) 1993-01-07
US4973494A (en) 1990-11-27
EP0284190A3 (en) 1989-02-22
CN1036078C (zh) 1997-10-08
EP0284190A2 (en) 1988-09-28
KR900008505B1 (ko) 1990-11-24
KR880010152A (ko) 1988-10-07
US5015494A (en) 1991-05-14

Similar Documents

Publication Publication Date Title
CN1036078C (zh) 淀积碳的微波增强化学气相淀积方法
US6110542A (en) Method for forming a film
US5330802A (en) Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
EP0994973B1 (en) Apparatus and method for nucleation and deposition of diamond using hot-filament dc plasma
US6838126B2 (en) Method for forming I-carbon film
KR930003605B1 (ko) 플라스틱 물체에 탄소필름을 코팅하는 마이크로파 증강 cvd법 및 그 제품
US5203959A (en) Microwave plasma etching and deposition method employing first and second magnetic fields
CN101584020B (zh) 通过从等离子体沉积而形成膜的方法
US20050196549A1 (en) Microwave enhanced CVD method and apparatus
US5183685A (en) Diamond film deposition by ECR CVD using a catalyst gas
JPS6136200A (ja) ダイヤモンドの気相合成法
EP0556615B1 (en) Method of making synthetic diamond
US6677001B1 (en) Microwave enhanced CVD method and apparatus
JPH0471034B2 (zh)
US5277939A (en) ECR CVD method for forming BN films
CN1045658A (zh) 一种金属氧化物超导薄膜的制备方法
JP3190100B2 (ja) 炭素材料作製装置
JPH0623437B2 (ja) 炭素および窒化ホウ素の作製方法
JPH101332A (ja) 耐薬品性部材
JPH05306193A (ja) ダイヤモンド膜の被覆方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
C17 Cessation of patent right