CN101584020B - 通过从等离子体沉积而形成膜的方法 - Google Patents

通过从等离子体沉积而形成膜的方法 Download PDF

Info

Publication number
CN101584020B
CN101584020B CN2007800406757A CN200780040675A CN101584020B CN 101584020 B CN101584020 B CN 101584020B CN 2007800406757 A CN2007800406757 A CN 2007800406757A CN 200780040675 A CN200780040675 A CN 200780040675A CN 101584020 B CN101584020 B CN 101584020B
Authority
CN
China
Prior art keywords
pulse
gas
microwave
chamber
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800406757A
Other languages
English (en)
Other versions
CN101584020A (zh
Inventor
P·罗卡艾卡巴罗卡斯
P·布尔金
D·戴纳卡
P·里波尔
P·狄斯坎普
T·科尔恩德米尔伦德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique
Dow Silicones Corp
Original Assignee
Ecole Polytechnique
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique, Dow Corning Corp filed Critical Ecole Polytechnique
Publication of CN101584020A publication Critical patent/CN101584020A/zh
Application granted granted Critical
Publication of CN101584020B publication Critical patent/CN101584020B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32678Electron cyclotron resonance
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明从等离子体向衬底上沉积无定形或微晶材料例如硅的膜的方法。以不连续微波脉冲的序列将微波能量引入腔室中,以不连续气体脉冲的序列将膜前体气体引入腔室中,且至少在每个微波脉冲期间,将用于产生原子氢的气体供入腔室中。每个微波脉冲以非重叠形式跟随有前体气体脉冲,且每个前体气体脉冲之后是其间既没有微波脉冲又没有前体气体脉冲的时段。

Description

通过从等离子体沉积而形成膜的方法
背景技术
本发明涉及通过从等离子体沉积至加工表面上而形成膜的方法。更具体地,本发明涉及使用微波能量以通过电子回旋共振产生等离子体。特别关注的一个领域是在称为等离子体增强CVD(化学气相沉积)的工艺中,通过硅烷如SiH4、Si2H6或者更高阶低聚物的离解沉积无定形硅(a-Si:H)的膜。可以用于沉积无定形硅或无定形硅合金的其它前体气体包括其中硅与一个或多个碳、氧或氮结合、任选地连同氢一起存在的分子。硅合金的实例为SiOxNy所示类型的结构。此外,含硅气体可以与其它气体一起使用,例如锗烷、或可以用于沉积其它膜的不含硅的气体。关于无定形硅膜应用的特别关注的一个领域是将太阳能转化成电功率的装置。这类无定形硅材料还可以用于电子应用中,例如显示器用的TFT。本文使用的术语“无定形硅”表示氢化的无定形硅,a-Si:H。为了用于刚才提及的领域中,必须存在一些氢,通常是3-20%,以钝化作为缺陷的悬空键。
为了在低温下有助于高品质硅膜的沉积,希望促进SiH3基团的形成。由于低的等离子体密度和膜前体气体的不完全离解,因此这可以容易地使用电容式等离子体沉积实现。然而,沉积速率很低。因为膜前体气体的离解程度,因此采用高密度等离子体实现促进SiH3基团的形成较为复杂。然而,使用高密度等离子体使得能够获得很高的沉积速率。
本发明特别涉及分布式ECR技术(DECR),这是开发用以产生适于涂覆大面积衬底的高密度、低温等离子体的技术。DECR技术是直接离解技术,这意味着体系采用单一腔室。在该技术中,在该单一腔室中发生气态前体的离解和基团到衬底上的沉积以形成膜。可以在例如对应于EP-A-1075168的US-A-6407359中找到其它细节。
该技术与经典的发散ECR非常不同,该发散ECR是间接离解方法。在发散ECR技术中,在引发ECR等离子体的单独等离子体腔室中,产生了He或氢的等离子体。该腔室通过孔口与沉积腔室相连以允许离子和中性物质从一个腔室转移到另一腔室。在等离子体腔室中产生的离子沿磁力线从等离子体腔室移动到位于沉积腔室中的衬底表面。在沉积腔室中仅注入硅烷或其它膜前体气体,其通过与等离子体腔室中产生的离子、基团和/或活化物质反应而离解。这意味着硅烷的离解是间接的,且这并非因为与ECR区域中存在的热电子的碰撞。
就在大表面上沉积均匀膜的简易性、可量测性和能力方面而言,DECR相比发散ECR具有显著的优势。然而,至少就目前操作来看,DECR在以高速率沉积高品质硅膜方面具有一些缺点。关于此的一个原因如下。
因为DECR使用单一沉积腔室,借助于在ECR区域产生的热电子的硅烷的直接离解导致产生具有非常不同离解程度的基团例如SiH3、SiH2、SiH和Si的混合物。例如,SiH2并非主要通过SiH3离解产生,而大多数是通过借助于热电子的直接硅烷离解而产生的,同时产生了两个原子氢。
SiH4+e-→SiH2+H+H+e-
通过直接电子离解可以进行SiH3的产生。
SiH4+e-→SiH3+H+e-
同样,且主要地,通过硅烷与原子氢的反应:
SiH4+H→H2+SiH3
因此,在DECR反应器中,在膜表面产生了具有非常不同的可移动性的基团的混合物。高度离解的基团如Si、SiH或甚至SiH2的可移动性不及SiH3,且因为大的沉积速率而可能来不及在生长中的膜表面重排,导致当在过低的衬底温度下运作时沉积出有缺陷的膜。因此,期望促进从SiH3基团的沉积,以便甚至在低温下的沉积期间仍有助于获得高品质材料。然而,即使促进SiH3基团形成在发散ECR构造中相对容易实现,仍发现较难使用DECR技术实现。
发明内容
本发明的目的是解决该问题,并以高速率和可能低的衬底温度沉积出高品质硅膜,该膜主要是从具有高移动性的SiH3前体沉积的。
根据本发明提供了从等离子体向衬底上沉积无定形或微晶材料的膜的方法,其中以不连续微波脉冲的序列将微波能量引入腔室中,以不连续气体脉冲的序列将膜前体气体引入腔室,且至少在每个微波脉冲期间将用于产生原子氢的气体供入腔室中,每个微波脉冲以非重叠形式跟随有前体气体脉冲,且每个前体气体脉冲之后是其间既没有微波脉冲又没有前体气体脉冲的时段。
在本发明的优选实施方案中,将连续氢流供入DECR反应器中。向DECR天线脉冲输送微波能量,产生氢等离子体的交替引发和灭失。在等离子体的中断(off-pause)阶段期间且仅仅在该阶段期间,注入硅烷(膜前体气体),使得硅烷流随微波的脉动而被脉冲化。如此,在微波脉冲的ON阶段,主要向反应器供应氢气,且微波功率允许H2离解成两个原子氢:
H2+e-→H+H+e-
电子的停留时间极短,比原子氢的停留时间显著更短,在微波脉冲的OFF阶段不发生直接硅烷离解。相反,存在的氢将与硅烷脉冲反应以主要产生将沉积在衬底表面上的SiH3前体。为了提高沉积速率,优选在衬底附近注入硅烷,而优选在ECR区域注入氢。
主要通过反应器中的物质停留时间来限定占空比和脉冲频率的范围。零硅烷流的时间长度(硅烷脉冲结束与微波脉冲开始之间的时段)必须足够长,以确保在开启微波功率之前大多数硅烷分子会离解或被从反应器中抽出。这使硅烷的直接离解最小化,在本情形中这是不希望的。相反,硅烷脉冲的长度应优选不长于原子氢的停留时间,因为时段长于原子氢停留时间的任何硅烷注入将产生未离解的硅烷,还导致有价值原料的损失。
附图说明
在以下附图中:
图1是显示用于限定微波和硅烷流的脉冲频率和占空比的准则的图表;
图2是显示四种方案的图表:其中氢流是连续的或脉冲的,并对衬底施加恒定偏压;
图3是显示四种方案的图表:其中氢流是连续的,且使偏压脉冲化;及
图4是显示六种方案的图表:其中氢流和偏压两者均为脉冲化;
具体实施方式
参考图1,可见脉冲循环的组成如下:当微波功率处于开启时的时段mon、当硅烷或其它膜前体气体被引入时的非重叠(尽管在该情形中是相邻的)时段Son和当微波功率处于切断且不引入硅烷时的时段m/soff。如果微波和硅烷流脉冲的频率是相同的,则其占空比可能是不同的以优化沉积。在所有的三个时段均可引入氢。然而,作为替代,如果至少在每个微波脉冲期间引入氢,则也可以使氢流脉冲化,如图2和4所示。
通过等离子体脉冲产生原子氢的能力来确定时间mon。典型地,其长度为0.1ms到1s。
通过如下时间长度确定时间son:其中由先前微波脉冲产生的原子氢在反应器中继续存在以便可用来与硅烷反应。原子氢(在其转化为分子氢或其它含氢分子之前)的寿命和氢(在其被泵吸出腔室之前)的停留时间将较短。在DECR反应器中优选使用的很低压力的条件下,在典型尺寸的反应器中原子氢的寿命很短,且可能比停留时间显著更短,,在该情形中,正是前者将决定时段son应多么长。当然,son应精确等于原子氢的寿命是不必要的,但其越接近则所需SiH3基团的形成将越有效。
通过如下时间长度来确定m/soff:从反应器中抽空硅烷以及由硅烷产生但未沉积在衬底上的那些气态物质所花费的时间。这将根据反应器尺寸和泵吸速率而不等,但m/soff典型应为约30ms,且更通常为1ms到100ms。
微波脉冲和硅烷脉冲的频率将典型为1Hz到30kHz,更优选1Hz到10kHz,最优选1Hz到250Hz。
优选地,将偏置电压施加到衬底以辅助沉积。其中衬底是非导电的,例如玻璃,使用RF电压源在衬底表面产生DC偏置电压。在与本申请同日提交的题为“Method for forming a film of amorphoussilicon by deposition from a plasma(我们的卷号G27558EP(欧洲专利申请No.06301114.2))”的本申请人的共同待审的申请中可以发现对此的更进一步讨论。如需要,可以使偏置电压脉冲化,在图3和4中显示了关于此的一些方案。如需要,可以使偏置电压脉冲化且与微波脉冲同步,只要微波脉冲的持续时间不太短。典型地,如果微波脉冲不短于约30ms,则同步脉冲化是可能的。允许这样同步的最小微波脉冲时间由如下体系的时间常数决定,该体系包含等离子体反应器和施加RF电压的发生器。
在上述的说明中,认为分子氢是引入到腔室中以产生原子氢的气体。然而,至少在一些情形中,一些其它气体也可用于此目的。例如,如果要制备的膜是SiC,则用于膜的碳和原子氢均可以通过引入含有碳和氢的气体例如甲烷得到。同样地,可以通过使用氨制备SiN膜。

Claims (11)

1.从等离子体向衬底上沉积无定形或微晶材料的膜的方法,其中以不连续微波脉冲的序列将微波能量引入腔室中,以不连续气体脉冲的序列将膜前体气体引入腔室中,且至少在每个微波脉冲期间,将用于产生原子氢的气体供入腔室中,每个微波脉冲以非重叠形式跟随有前体气体脉冲,且每个前体气体脉冲之后是其间既没有微波脉冲又没有前体气体脉冲的时段。
2.根据权利要求1的方法,其中每个前体气体脉冲与先前的微波脉冲在时间上是相邻的。
3.根据权利要求1或2的方法,其中用于产生原子氢的气体是分子氢。
4.根据权利要求1或2的方法,其中膜材料是无定形硅。
5.根据权利要求1或2的方法,其中膜材料是微晶硅。
6.根据权利要求1或2的方法,其中膜材料是硅和其它元素的合金,且其中用于产生原子氢的气体是包含氢和所述其它元素的化合物。
7.根据权利要求1或2的方法,其中对衬底施加偏置电压以辅助沉积。
8.根据权利要求7的方法,其中连续施加所述偏置电压。
9.根据权利要求7的方法,其中使所述偏置电压脉冲化。
10.根据权利要求1或2的方法,其中使用于产生原子氢的气体输入脉冲化。
11.根据权利要求1或2的方法,其中通过分布式电子回旋共振产生等离子体。
CN2007800406757A 2006-11-02 2007-10-26 通过从等离子体沉积而形成膜的方法 Expired - Fee Related CN101584020B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06301118.3A EP1918967B1 (en) 2006-11-02 2006-11-02 Method of forming a film by deposition from a plasma
EP06301118.3 2006-11-02
PCT/EP2007/009306 WO2008052706A1 (en) 2006-11-02 2007-10-26 Method of forming a film by deposition from a plasma

Publications (2)

Publication Number Publication Date
CN101584020A CN101584020A (zh) 2009-11-18
CN101584020B true CN101584020B (zh) 2011-01-05

Family

ID=37887360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800406757A Expired - Fee Related CN101584020B (zh) 2006-11-02 2007-10-26 通过从等离子体沉积而形成膜的方法

Country Status (6)

Country Link
US (1) US8383210B2 (zh)
EP (1) EP1918967B1 (zh)
JP (1) JP5276594B2 (zh)
KR (1) KR101475416B1 (zh)
CN (1) CN101584020B (zh)
WO (1) WO2008052706A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923483A1 (en) 2006-11-02 2008-05-21 Dow Corning Corporation Deposition of amorphous silicon films by electron cyclotron resonance
EP1918414A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Film deposition of amorphous films with a graded bandgap by electron cyclotron resonance
EP1919264A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Device for forming a film by deposition from a plasma
EP1918966A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Method for forming a film with a graded bandgap by deposition of an amorphous material from a plasma
EP1918965A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Method and apparatus for forming a film by deposition from a plasma
EP2284869B9 (en) * 2008-05-26 2015-10-21 Mitsubishi Electric Corporation Thin film formation device and semiconductor film manufacturing method
KR101100109B1 (ko) * 2009-06-12 2011-12-29 한국철강 주식회사 광기전력 장치의 제조 방법
KR101106480B1 (ko) * 2009-06-12 2012-01-20 한국철강 주식회사 광기전력 장치의 제조 방법
JP2011021256A (ja) * 2009-07-16 2011-02-03 Kochi Univ Of Technology ナノ結晶シリコン薄膜の成膜方法及びナノ結晶シリコン薄膜、並びに該薄膜を成膜する成膜装置
US8026157B2 (en) * 2009-09-02 2011-09-27 Applied Materials, Inc. Gas mixing method realized by back diffusion in a PECVD system with showerhead
US8828859B2 (en) * 2011-02-11 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor film and method for manufacturing semiconductor device
US8692467B2 (en) * 2011-07-06 2014-04-08 Lam Research Corporation Synchronized and shortened master-slave RF pulsing in a plasma processing chamber
US9224783B2 (en) * 2013-12-23 2015-12-29 Intermolecular, Inc. Plasma densification of dielectrics for improved dielectric loss tangent
CN104746036B (zh) * 2013-12-31 2017-11-07 中国科学院微电子研究所 一种薄膜封装方法
TW202043522A (zh) 2019-02-11 2020-12-01 美商應用材料股份有限公司 透過脈衝式rf電漿之膜形成

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407359B1 (en) * 1999-08-04 2002-06-18 Metal Process (Societe A Responsabilite Limitee) Method of producing individual plasmas in order to create a uniform plasma for a work surface, and apparatus for producing such a plasma

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490018B1 (fr) 1980-09-09 1986-01-17 Energy Conversion Devices Inc Procede et dispositif pour etalonner les intervalles de bande d'alliages semi-conducteurs amorphes et alliages obtenus
EG18056A (en) 1986-02-18 1991-11-30 Solarex Corp Dispositif feedstock materials useful in the fabrication of hydrogenated amorphous silicon alloys for photo-voltaic devices and other semiconductor devices
JP2792558B2 (ja) * 1987-12-07 1998-09-03 株式会社日立製作所 表面処理装置および表面処理方法
DE3830249A1 (de) * 1988-09-06 1990-03-15 Schott Glaswerke Plasmaverfahren zum beschichten ebener substrate
US5130170A (en) * 1989-06-28 1992-07-14 Canon Kabushiki Kaisha Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
JP3080385B2 (ja) * 1990-03-12 2000-08-28 株式会社日立製作所 マイクロ波発生装置及びプラズマ処理装置
JP2719230B2 (ja) 1990-11-22 1998-02-25 キヤノン株式会社 光起電力素子
US5204272A (en) * 1991-12-13 1993-04-20 United Solar Systems Corporation Semiconductor device and microwave process for its manufacture
US5231048A (en) * 1991-12-23 1993-07-27 United Solar Systems Corporation Microwave energized deposition process wherein the deposition is carried out at a pressure less than the pressure of the minimum point on the deposition system's paschen curve
EP0589049B1 (en) * 1992-03-25 2000-01-12 Kanegafuchi Chemical Industry Co., Ltd. Thin polysilicon film and production thereof
JPH05314918A (ja) 1992-05-13 1993-11-26 Nissin Electric Co Ltd イオン源用マイクロ波アンテナ
US5429685A (en) 1992-11-16 1995-07-04 Canon Kabushiki Kaisha Photoelectric conversion element and power generation system using the same
FR2702119B1 (fr) 1993-02-25 1995-07-13 Metal Process Dispositif d'excitation d'un plasma à la résonance cyclotronique électronique par l'intermédiaire d'un applicateur filaire d'un champ micro-onde et d'un champ magnétique statique.
JP3547161B2 (ja) * 1993-03-15 2004-07-28 株式会社トクヤマ 非晶質シリコン膜およびその製造方法
JP2942138B2 (ja) 1994-03-22 1999-08-30 三菱電機株式会社 プラズマ処理装置及びプラズマ処理方法
FR2726729B1 (fr) 1994-11-04 1997-01-31 Metal Process Dispositif de production d'un plasma permettant une dissociation entre les zones de propagation et d'absorption des micro-ondes
US5980999A (en) * 1995-08-24 1999-11-09 Nagoya University Method of manufacturing thin film and method for performing precise working by radical control and apparatus for carrying out such methods
US5722501A (en) 1996-05-24 1998-03-03 Teftec Corporation Bevel steering gear integrated drive transmission
DE19634795C2 (de) * 1996-08-29 1999-11-04 Schott Glas Plasma-CVD-Anlage mit einem Array von Mikrowellen-Plasmaelektroden und Plasma-CVD-Verfahren
JPH1081968A (ja) 1996-09-03 1998-03-31 Nippon Hoso Kyokai <Nhk> 非晶質シリコン膜の作製法
WO1998058100A1 (de) * 1997-06-16 1998-12-23 Robert Bosch Gmbh Verfahren und einrichtung zum vakuumbeschichten eines substrates
DE19740792A1 (de) * 1997-09-17 1999-04-01 Bosch Gmbh Robert Verfahren zur Erzeugung eines Plasmas durch Einstrahlung von Mikrowellen
DE19935046C2 (de) * 1999-07-26 2001-07-12 Schott Glas Plasma-CVD-Verfahren und Vorrichtung zur Herstellung einer mikrokristallinen Si:H-Schicht auf einem Substrat sowie deren Verwendung
JP4029615B2 (ja) * 1999-09-09 2008-01-09 株式会社Ihi 内部電極方式のプラズマ処理装置およびプラズマ処理方法
JP2001332749A (ja) 2000-05-23 2001-11-30 Canon Inc 半導体薄膜の形成方法およびアモルファスシリコン太陽電池素子
DE10139305A1 (de) * 2001-08-07 2003-03-06 Schott Glas Verbundmaterial aus einem Substratmaterial und einem Barriereschichtmaterial
JP3872363B2 (ja) * 2002-03-12 2007-01-24 京セラ株式会社 Cat−PECVD法
US6845734B2 (en) * 2002-04-11 2005-01-25 Micron Technology, Inc. Deposition apparatuses configured for utilizing phased microwave radiation
EP1918966A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Method for forming a film with a graded bandgap by deposition of an amorphous material from a plasma
EP1918965A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Method and apparatus for forming a film by deposition from a plasma
EP1921178A1 (en) 2006-11-02 2008-05-14 Dow Corning Corporation Film deposition of amorphous films by electron cyclotron resonance
EP1918414A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Film deposition of amorphous films with a graded bandgap by electron cyclotron resonance
EP1923483A1 (en) 2006-11-02 2008-05-21 Dow Corning Corporation Deposition of amorphous silicon films by electron cyclotron resonance
EP1919264A1 (en) 2006-11-02 2008-05-07 Dow Corning Corporation Device for forming a film by deposition from a plasma

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407359B1 (en) * 1999-08-04 2002-06-18 Metal Process (Societe A Responsabilite Limitee) Method of producing individual plasmas in order to create a uniform plasma for a work surface, and apparatus for producing such a plasma

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. Sakudo et al.Development of hybrid pulse plasma coating system.Surface and Coatings Technology.2001,(136),23-27. *

Also Published As

Publication number Publication date
KR101475416B1 (ko) 2014-12-23
WO2008052706A1 (en) 2008-05-08
US20100047473A1 (en) 2010-02-25
CN101584020A (zh) 2009-11-18
EP1918967B1 (en) 2013-12-25
US8383210B2 (en) 2013-02-26
KR20090087461A (ko) 2009-08-17
EP1918967A1 (en) 2008-05-07
JP5276594B2 (ja) 2013-08-28
JP2010508447A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
CN101584020B (zh) 通过从等离子体沉积而形成膜的方法
CN1036078C (zh) 淀积碳的微波增强化学气相淀积方法
CN101578388B (zh) 具有渐变带隙的无定形膜通过电子回旋共振的膜沉积
US7125588B2 (en) Pulsed plasma CVD method for forming a film
CN100594259C (zh) 改善低k叠层之间粘附性的界面工程
US6755151B2 (en) Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
CN105154856B (zh) 等离子体源和用等离子体增强的化学气相沉积来沉积薄膜涂层的方法
US20100189924A1 (en) Apparatus and method for diamond film growth
CN102677019B (zh) 一种运动磁场辅助增强化学气相沉积方法及装置
Schlemm et al. Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources
JPH06314660A (ja) 薄膜形成法及びその装置
US7521341B2 (en) Method of direct deposition of polycrystalline silicon
CN88100841A (zh) 用碳膜涂覆塑料制品的微波增强cvd法及其产品
TWI772969B (zh) Dlc膜製備裝置和製備方法
CN1020477C (zh) 含卤素的碳材料淀积方法
CN101233621B (zh) 用于钝化衬底表面的方法
RU2258764C1 (ru) Способ и устройство для осаждения по меньшей мере частично кристаллического кремниевого слоя на подложку
CN111188027A (zh) 一种化学气相沉积设备和成膜方法
CN87107779A (zh) 徽波增强式化学汽相淀积法及设备
Girshick Diamond CVD using radio-frequency plasmas
JPS6383271A (ja) ダイヤモンド状炭素膜の製造法
Sun et al. Nucleation of diamond films by ECR-enhanced microwave plasma chemical vapor deposition
CN105648523A (zh) 等离子体增强原子吸附的化合物半导体的外延生长装置
JPH1018042A (ja) 薄膜作成装置
JPH03146673A (ja) 薄膜堆積法及び薄膜堆積装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110105

Termination date: 20161026