CN1984708B - 微球体 - Google Patents

微球体 Download PDF

Info

Publication number
CN1984708B
CN1984708B CN200580021966.2A CN200580021966A CN1984708B CN 1984708 B CN1984708 B CN 1984708B CN 200580021966 A CN200580021966 A CN 200580021966A CN 1984708 B CN1984708 B CN 1984708B
Authority
CN
China
Prior art keywords
microsphere
fluid
manufacture method
production fluid
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200580021966.2A
Other languages
English (en)
Other versions
CN1984708A (zh
Inventor
M·R·博哈默
H·R·斯塔帕特
P·C·多内弗尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1984708A publication Critical patent/CN1984708A/zh
Application granted granted Critical
Publication of CN1984708B publication Critical patent/CN1984708B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium

Abstract

一种包含组成材料的生产流体(23)的微球体制造系统。该系统包括用于容纳接收流体(11)的储液槽(1)。该系统还设有喷射模块(2),具有至少一个用于将生产流体喷射到接收流体内的喷嘴(21)。该生产流体包含该组成材料的浓度范围为0.01至5%。最终微球体的成分溶解于该生产流体。由于喷嘴使用的喷墨头置于接收液体/空气界面的表面之下。在该配置中,喷墨液滴无需穿过空气-液体界面,而是将直接注射到接收流体内。

Description

微球体
技术领域
本发明涉及由生产流体(production fluid)制造微球体的系统。 
背景技术
这种系统在D.Radulescu等的“Uniform Paclitaxel-loadedbiodegradable microspheres manufactured by ink-jettechnology”,Proc.Recent Adv.in Drug Delivery Sys.(March 2003)文献中已经公知。 
这种已知系统生产生物可降解的微球体,即,基于喷墨技术的微球体。具体而言,制造了窄尺寸分布和直径受控的装入了紫杉醇(paclitaxel)的PLGA微球体。该已知系统采用按需供墨(drop-on-demand)工艺或压力辅助按需供墨,将紫杉醇PLGA喷射到聚乙烯醇水溶液中。已经生产了具有约60μm±1μm的窄尺寸分布的微球体。这些微球体由包含3%PLGA和1.5%紫杉醇的二氯乙烷溶液形成。在形成该溶液的液滴之后,除去二氯乙烷,留下包含PLGA和紫杉醇的混合物的固态粒子。 
发明内容
本发明的目标是提供一种系统,其能够制造尺寸远小于由已知系统生产的微球体尺寸的微球体,并实现窄的尺寸分布。 
本发明是基于以下理解,即,从低浓度即0.01%至5%范围开始,根据聚合物单分散,可通过喷墨和随后除去溶剂而形成紧密的聚合物粒子。在0.01至3%的聚合物浓度范围内实现了良好的结果。具体而言,在0.01至2.9%的聚合物浓度范围内实现了单分散微球体的可靠形成。该微球体泡的尺寸非常小,特别地,获得的微球体的尺寸范围为1至15μm,且体积变化小,约3%。典型地,生产的微球体尺寸为5μm。 
该生产流体为组成材料(constituting material即,将在溶剂中制成的微球体的材料)的溶液。换而言之,最后的微球体的成分溶解在该生产流体中。例如,可将聚合物或单体溶解于该溶剂内。生产流体中的溶剂在接收流体(receiving fluid)中应该相对于该接收流体具有有限的溶解度。该溶剂将缓慢地扩散到接收流体内并随后蒸发,导致生产流体的液滴的收缩。在约1%的溶解度获得了良好的结果,正如二氯乙烷(DCE)或二氯甲烷(DCM)在水中的情况。
特别是当微球体形成稳定胶体时,可获得微球体的良好的尺寸维持以及尺寸分布,接收流体中存在的聚合物或表面活性剂有助于实现这一点。于是阻碍或防止液滴合并成更大的液滴。在优选实施方案中,该生产液体包含具有高密度的卤化溶剂,例如二氯乙烷,该接收溶液为水溶液。为了缓慢且受控地从液滴除去生产流体,在水中具有低溶解度(对于二氯乙烷,约0.8%)且具有高蒸气压力的卤化溶剂是优选的。最终微球体的成分被溶解于生产流体内。对于将用于活体内(通过静脉注射)的成分,生物可降解聚合物和(改性)磷脂优选作为载体材料,药品和成像剂可结合到该微球体内,并靶向至显示于血管壁上的疾病标记,例如与肿瘤相关的血管生成(angiogenesis)的标记以及易损性斑块(vulnerable plaque)的标记。喷射之后,通过一系列清洗步骤可以除去过量的稳定剂,通过冻干(lyophilization)(冷冻干燥)可以安排除去卤化溶剂的最后残余。 
看上去可以获得小尺寸微球体的基本上单分散的分布。将生产流体喷射到接收流体内导致各个微液滴离开喷嘴时更优良的分离。这种制造涉及以相对高的喷射速率将生产流体喷射到接收流体内。发现当生产流体内聚合物浓度低时,液滴收缩成基本上无细孔的聚合物微球体。 
由于上述方法形成紧密粒子,还可以形成紧密壳体,因此提供了牢固的液体或气体胶囊。为了实现这一点,还需要使用壳体形成材料的非溶剂改性该生产液体。该生产液体也可以改性成包括磷脂而非聚合物或磷脂与聚合物的组合。 
根据本发明另一个方面,用于制造微球体的系统设有控制系统以控制所述喷射的喷射速率在0.1kHz至100kHz的范围内并以脉冲方式操纵该喷射。该控制系统控制对喷射模块施加激励脉冲。矩形脉冲(blockshaped pulse)获得良好的结果,其原因在于可生产体积为零点几n1的略大尺寸的微球体。 
 根据本发明又一个方面,该喷射系统设有几个喷嘴,可分别受控以调整来自相应喷嘴的微泡的尺寸。例如,这些喷嘴受到控制,使得这些喷嘴都产生落在窄尺寸分布内的泡。个别喷嘴的分别控制于是补 偿了喷嘴之间的微小差异。特别地,通过调整施加于喷嘴的电学激励脉冲而实现这一点。具体而言,体积分布的宽度可变窄为约3-5%。采用更多的喷嘴时,单位时间内可以生产更多的微球体。 
根据本发明另一个方面,可以形成具有受控孔隙率的微球体。根据本发明又一个方面,储液槽设有温度控制,从而将接收流体冷却到其冷凝温度之下。当接收液体冷却到室温以下,即298K以下时,获得良好的结果。于是,该生产流体以液滴的形式喷射到冷却的接收液体内,并可被存储供稍后使用。当液滴温度上升时,接收流体蒸发并形成填充气体的微球体。另外,催化剂可用于接收液体以引发产生流体的聚合,从而促进形成稳定的微泡。作为使用电磁辐射的备选照射,例如可以采用通过照射模块对离开喷嘴的泡进行紫外线辐射,用于光引发聚合。 
在本发明另一个方面,可以利用聚合物的最低临界溶解温度(lower critical solution temperature,LCST)或最高临界溶解温度(upper critical solution temperature,UCST)。当温度上升出现聚合物沉淀时观察到LCST。因此为了生产微球体,接收流体的温度上升到高于LCST,包含该聚合物的溶液在低于LCST的温度下喷射。由于严格定义的液滴内聚合物沉淀,于是形成微球体。当不允许使用卤化接收液体时,或者不期望冻干(冷冻干燥)时,这种方法尤其有利。具有LCST的公知聚合物的示例为聚(N-异丙基丙烯酰胺)(PNiPAAm)。根据所期望的LCST,通过与聚(丙烯酸)或更多的疏水丙烯酸脂共聚合,该聚合物的LCST(约32℃)可以容易地调整为临床应用的相关温度(例如低于或高于37℃)。 
当液滴喷射到空气中而非直接喷射到接收液体内时,于是采用从液滴喷嘴的长的飞行路径,例如几厘米,也可以导致形成微球体。 
根据本发明的一个方面,喷墨头置于接收液体/空气界面的表面之下。在该配置中,喷射的液滴无需穿过该空气-液体界面,而是将直接注射到接收流体内。使用这种配置,接收液体中存在的聚合物或表面活性剂的稳定作用将被优化,从而导致生产流体液滴在接收液体中的稳定乳化。备选地,稳定剂可以添加到生产流体,合适的稳定剂为磷脂。浸渍喷墨的附加优点为,不会产生与接收液体的表面特性相关联的问题。良好的乳化和喷射稳定性由具有不同密度的生产流体与接 收液体支持。如果生产流体的密度高于接收液体且喷射沿重力的方向,则该液滴将继续以其沉降速度(sedimentation velocity)下沉到容器底部,从容器底部可以容易地收集该液滴。在备选设置中,生产流体密度小于接收液体,液滴沿一方向喷射使得液滴浮向接收液体表面而不返回朝向喷嘴。随后可在接收液体的表面收集形成的微球体。 
本发明还涉及超声造影剂。使用非球面微液滴作为超声造影剂本身从美国专利US 5606973中已经公知。本发明的超声造影剂包括填充了气体的基本上单分散微泡或者填充了碳氟化合物液体的单分散微球体。该微泡不仅改变超声的反射,还能够在超声场内共振产生谐波。这种单分散造影剂以靶向造影剂的形式应用特别有利。靶向造影剂选择性地结合到特殊受体,例如粘附到管壁组织。选择性结合微泡的谐振频率相对于未结合微泡发生偏移。微泡的单分散分布导致这些谐振的谱线宽度窄,且因此该频移可被探测。因此,结合造影剂可以与未结合造影剂精确区分。 
可以由包含卤化溶剂的生产流体、形成生物可降解聚合物的低浓度壳体、通过冻干可除去的分子量不太高的第二非极性液体来制备这种填充气体的泡。生物可降解聚合物选择为不溶于接收液体,而且如果卤化溶剂扩散到接收液体内之后通过蒸发而消失,则也不溶于生产流体。当冻干时,第二非极性溶剂通过升华被除去,留下空的粒子。 
可用于本发明的典型生物可降解聚合物为生物高聚物,例如右旋糖酐和蛋白素,或者合成聚合物,例如聚(L-丙交酯酸)(PLA)以及特定的聚甲基丙烯酸甲脂,聚己内酯,聚羟基乙酸。其中尤其重要的是组合了两种聚合物嵌段(例如疏水和亲水嵌段)性能的所谓嵌段共聚物。随机共聚物实例为聚乳酸和乙醇酸的共聚物(poly(L-lactic-glycolic-acid),PLGA)和聚(d-乳酸-1-乳酸)[poly(d-lactic-1-lactic acid)Pd,1LA]。双嵌段共聚物的实例为聚(乙二醇)-聚(L-丙交酯)(PEG-PLLA)、聚(乙二醇)-聚(N-异丙基丙烯酰胺)(PEG-PNiPAAm)和聚环氧乙烷-聚环氧丙烷(PEO-PPO)。三嵌段共聚物的实例为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)。 
当在生产流体中采用例如具有氟化端基(例如C6F14)的L-聚丙交酯(L-polylactide)的聚合物时,可获得良好的结果。对于制备中空胶囊,这是特别有利的。如果胶囊内部是疏水的,将不存在水蒸汽 冷凝在胶囊内壁上的趋势。因此,胶囊将不会被水填充,而是长时间保持被空气填充,对于超声造影剂这是期望的。将含氟的基团(fluorcontaing group)结合到聚合物中增大了胶囊内壁的疏水性,并因此抑制冷凝。此外,结合包含氟石的基团可形成水与极性溶质的更有效的扩散势垒。 
从这种生产液体得到微球体具有非常良好的不透水性。这种氟化聚合物的合成本身从美国专利US 6329470已知。 
通过改变聚合物性能、凝胶转变温度以及由该材料制成的膜发生破裂之前的最大延伸的重要参数,可以调整壳体的弹性。 
填充了液体(例如氟化液体,诸如全氟溴-辛烷)的微球体,不仅可对于超声有益,而且对于功能磁共振成像(fMRI)有益。在Proc.Intl.Soc.mag.Reson.Med.9(2001)659-660中公开了fMRI技术。具体而言,基于核19F,可以进行组织充氧作用、氟化癌症药品的药物动力学的磁共振谱测量,其本身如Proc.Intl.Soc.mag.Reson.Med.9(2001)497所述。可以按照上述方法制备,不同的是选择包含氟基的非极性液体以及在冻干时不除去该液体。 
微球体也可以被药品填充;药品可溶解于油中,并将形成具有液体核心的微球体,或者在冻干之后将微球体暴露于包含气体的气相药品,由此可以结合入气相药品。药品可用于受控释放,例如通过超声脉冲释放以实现局部供给。当使用靶向微球体时,将最为有效。 
药品也可以结合到(另外的)紧密微球体。特别是,放射性化合物,例如用于治疗肝脏恶性肿瘤的(活性/螯合(activated/chelated))钬化合物是有用的。例如,钬起着磁共振造影剂的功能,其诱导T1与T2对比(contrast)。此外,通过使用中子照射可以使钬为放射性。钬的放射性同位素发射β辐射(高能电子)以及γ辐射。B辐射可在治疗上用于局部消灭肿瘤,而作为磁共振造影剂的活性使得可以监视该放射性钬的正确的局部应用。另外,γ发射可被伽马照相机探测以对施加了钬的解剖位置成像。具有非放射性钬的微球体首先形成,随后通过使用中子照射将钬转换成微球体内的放射性钬同位素。应当直到钬放射性消失才释放钬。粒子应该足够大以被俘获于毛细血管床中,且精细微球体不能在血液内循环。为此,需要严格控制的合成。 
微球体的典型尺寸取决于具体应用。优选尺寸范围为1至100μm。例如,用于US成像作为血池剂的微球体的最优选直径为1至10μm。 用于钬胶囊微球体的最优选直径为15至40μm。 
附图说明
参考详细示例并参考附图,将对本发明的这些与其他方面进行进一步的详细描述。 
图1示出了本发明的微泡制造系统的示意性图示; 
图2示出了使用PVA清洗之后喷墨粒子的尺寸分布,给出了1μm类别粒子的百分比; 
图3示出了根据下述示例1所述工艺获得的PLA粒子的SEM图片;以及 
图4示出了来自示例7(0.1%PLGA)和8(0.1%PLGA,0.3%环辛烷)的尺寸分布; 
图5示出了模型直径(model diameter)为4.7μm的由L聚丙交酯制成的微球体的示例; 
图6示出了模型直径为4.5μm的由L聚丙交酯制成的微球体的示例。 
具体实施方式
图1示出了本发明的微泡制造系统的示意性图示。该微泡制造系统包括容纳接收流体11的储液槽1。喷射系统2包括喷嘴21,以将生产流体23的喷射液滴喷射到接收流体内。喷嘴21设有对喷嘴施加压力脉冲的压电系统22以产生液滴24,微球体25由该液滴24形成且在本示例中聚集在储液槽1的底部。例如,喷嘴21可配置喷墨头。 
喷射系统2还设有对压电系统22施加电学脉冲的控制单元3。控制单元按照这种方式控制喷射系统的工作以产生生产流体的液滴。 
此外,在本示例中以套筒4的形式提供冷却系统4,冷却流体例如水通过该套筒从入口41流到出口42。冷却系统工作以将接收液体冷却到室温以下。 
此外,该微泡制造系统设有紫外线辐射源5,对来自喷嘴的生产流体液滴发射紫外线辐射(脉冲)束以导致液滴内聚合的光引发,由此形成微球体。 
示例: 
示例1,制备10mm PLA粒子 
喷射1%PLA(聚-DL-丙交酯,Aldrich)的二氯乙烷溶液,在将喷墨头浸渍到荧光液池(fluorescence cuvet)内1%PVA(15/79)水溶液后立即开始。穿过液池观察到初始液滴直径约为50μm,对应于6.5×10-14m3的液滴体积。以1500Hz喷墨20分钟之后,停止该工艺。沉淀物再分散并转移到玻璃样品瓶,并搅拌一小时以除去二氯乙烷。使用滤过(200nm)的去离子水清洗粒子三次。取样品进行显微检查,显示出直径约10μm的严格分散的球形粒子。使用20×物镜以及IMAGE PROPLUS软件分析平均直径,从显微检查获得的尺寸分布示于图2。将该样品冷冻干燥48小时,并存储于-20℃。在再分散在过滤的去离子水中且干燥并沉积3nm Pd/Pt层之后得到的SEM图片示出了10.2±0.3μm的粒子尺寸,对应于5.6×10-16m3的粒子体积。由于二氯乙烷和PLA的密度近似相等,初始和最后尺寸之间的体积比率证明已经以低的孔隙率制备成了PLA粒子。所生产的粒子的SEM图片示于图3。 
示例2,制备18mm PLA粒子 
喷射3%PLA(聚-DL-丙交酯,Aldrich)的二氯乙烷溶液,在将喷墨头浸渍到荧光液池内1%PVA水溶液后立即开始。以1500Hz喷墨20分钟之后,停止该工艺。沉淀物再分散并转移到玻璃样品瓶,并搅拌一小时以除去二氯乙烷。使用滤过(200nm)的去离子水清洗粒子三次。取样品进行显微检查,显示出直径约18μm的严格分散的单分散球形粒子。冷冻干燥不改变粒子尺寸。初始液滴体积和最后粒子尺寸之间的体积比率为20,该比率为形成完全紧密的聚合物粒子时5%溶液的期望值。这表明由3%溶液制成的这种制备粒子中存在残余孔隙率。 
示例3,制备PLGA粒子 
喷射3%PLGA(poly(DL-lactic-co-glycolic(75∶25),Aldrich)的二氯乙烷溶液,在将喷墨头浸渍到荧光液池内1%PVA水溶液后立即开始。以1500Hz喷墨20分钟之后,停止该工艺。沉淀物再分散并转移到玻璃样品瓶,并搅拌一小时以除去二氯乙烷。使用滤过(200nm)的去离子水清洗粒子三次。取样品进行显微检查,显示出直径约18μm的严格分散的单分散球形粒子。冷冻干燥不改变粒子尺寸。初始液滴体积和最后粒子尺寸之间的体积比率为20,该比率为形成完 全紧密的聚合物粒子时5%溶液的期望值。这表明由3%溶液制成的这种制备粒子中存在残余孔隙率。 
示例4,使用连续喷墨制备PLGA粒子 
制备1%PLA的二氯乙烷溶液,并以14kHz的频率使用50μm的喷嘴将其喷墨到1%PVA 15/79的水溶液中。在蒸发二氯乙烷、清洗和冷冻干燥之后,使用光学显微图片进行图像分析定量时,形成的粒子的平均直径为15.3μm,标准偏差为2.7μm。 
示例5,制备装入有乙酰丙酮化钬的PLA粒子 
以14kHz的频率使用50μm的喷嘴将1%PLA,0.02%乙酰丙酮化钬的二氯乙烷溶液喷墨到1%PVA(15/79)的水溶液中。在蒸发二氯乙烷、清洗和冷冻干燥之后,使用光学显微图片进行图像分析定量时,形成的粒子的平均直径为15.7μm,标准偏差为2.6μm。 
示例6,通过连续喷墨制备12mm PLGA粒子 
制备1%PLGA(75%乳酸,25%羟基乙酸)的二氯乙烷溶液,并以14kHz的频率使用50μm的喷嘴将其喷墨到1%PVA 15/79溶液中。在蒸发二氯乙烷、清洗和冷冻干燥之后,使用光学显微图片进行图像分析定量时,形成的粒子的平均直径为12.5μm,标准偏差为2.3μm。 
示例7,通过连续喷墨制备7mm PLGA粒子 
制备0.1%PLGA(75%乳酸,25%羟基乙酸)的二氯乙烷溶液,并以14kHz的频率使用50μm的喷嘴将其喷墨到1%PVA 15/79溶液中。在蒸发二氯乙烷、清洗和冷冻干燥之后,使用光学显微图片进行图像分析定量时,形成的粒子的平均直径为6.8μm,标准偏差为1.3μm。尺寸分布示于图4。 
示例8,制备11微米聚合物壳体胶囊 
制备0.1%PLGA和0.3%环辛烷的二氯乙烷溶液,并以14kHz的频率使用50μm的喷嘴将其喷墨到0.1%PVA 40/88溶液中。蒸发二氯乙烷,使用预先使用环辛烷饱和的水清洗样品,并冷冻干燥样品。使 用光学显微图片进行图像分析定量时,形成的胶囊的直径为11.2μm,标准偏差为1.8μm,其尺寸分布示于图4。从SEM图片推知,胶囊具有包含单一腔体的平滑表面。 
示例9,制备脂质糖衣胶囊 
将0.1%PLGA、0.3%环辛烷、0.005%粗磷脂(asolectin)的二氯乙烷溶液以12kHz的频率使用50μm的喷嘴喷墨到PVA 15/79水溶液中。蒸发二氯乙烷,清洗样品并冷冻干燥样品,使用SEM观察到直径为7.5μm的平滑胶囊,呈现单个中空核。 
示例10 
具有C6F14端基的L-聚丙交酯在存在0.01%环癸烷时以0.01%的浓度溶解于二氯乙烷。以23,000Hz的频率使用50μm的喷嘴通过在0.3%PVA中浸渍喷墨,形成了初始直径约85μm的液滴。通过一夜的反复清洗和搅拌,液滴收缩形成填充了环癸烷的胶囊,模型直径为4.7μm。在Coulter Counter上测量尺寸分布,结果示于图5。样品被冻干以除去环癸烷的核。在除去以及再分散之后的尺寸分布未改变,如图5所示。对再分散样品的显微检查示出了填充了气体的胶囊。曝光于超声时,可以探测到该气体的逃逸。 
示例11 
具有C6F14端基的L-聚丙交酯在存在0.01%环癸烷时以0.005%的浓度溶解于二氯乙烷。以23,000Hz的频率使用50μm的喷嘴通过在0.3%PVA中浸渍喷墨,形成了初始直径约85μm的液滴。通过一夜的反复清洗和搅拌,液滴收缩形成填充了环癸烷的胶囊,模型直径为4.5μm。在Coulter Counter上测量尺寸分布,结果示于图6。样品被冻干以除去环癸烷的核。在除去以及再分散之后的尺寸分布几乎没有改变,如图6所示。对再分散样品的显微检查示出了填充了气体的胶囊。曝光于超声时,可以探测到该气体的逃逸。 

Claims (13)

1.一种微球体制造方法,所述微球体为包含组成材料的生产流体(23)的微球体,所述方法包括:
由储液槽(1)容纳接收流体(11),
通过具有至少一个喷嘴(21)的喷射模块(2)将所述生产流体的液滴喷射到所述接收流体内,其中
所述生产流体包含所述组成材料的浓度范围为0.01%至5%,并且所述生产流体中的溶剂在接收流体中相对于该接收流体具有有限的溶解度,并适于扩散到接收流体内并随后蒸发,导致所述生产流体的液滴的收缩。
2.如权利要求1所述的微球体制造方法,包括通过控制系统控制所述喷射的喷射速率在0.1kHz至100kHz的范围内。
3.如权利要求2所述的微球体制造方法,其中所述喷射被控制成以脉冲方式操作。
4.如权利要求2所述的微球体制造方法,其中:
所述喷射模块包括数个喷嘴,以及
所述控制系统布置成调整个别喷嘴的液滴尺寸。
5.如权利要求1所述的微球体制造方法,其中所述储液槽设有温度控制系统。
6.如权利要求1所述的微球体制造方法,包括通过照射模块以使用紫外辐射照射所述微球体。
7.如权利要求1所述的微球体制造方法,其中所述微球体的飞行路径经过一定距离从所述喷嘴延伸到所述接收流体。
8.如权利要求1所述的微球体制造方法,其中所述接收流体和/或所述生产流体包含选自脂质、表面活性剂、聚合物的组的稳定剂。
9.一种超声造影剂,包括根据权利要求1-8之任一的微球体制造方法制造的单分散微球体。
10.如权利要求9所述的超声造影剂,靶向至脉管系统内的具体位置。
11.一种磁共振造影剂,包括根据权利要求1-8之任一的微球体制造方法制造的单分散微球体。
12.一种胶囊药品,包括根据权利要求1-8之任一的微球体制造方法制造的单分散微球体,其装有药物活性化合物。
13.一种胶囊治疗化合物,包括根据权利要求1-8之任一的微球体制造方法制造的单分散微球体,其装有放射性化合物或者具有放射性同位素的化合物。
CN200580021966.2A 2004-06-29 2005-06-24 微球体 Expired - Fee Related CN1984708B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04103038 2004-06-29
EP04103038.8 2004-06-29
PCT/IB2005/052098 WO2006003581A1 (en) 2004-06-29 2005-06-24 System for manufacturing micro-spheres

Publications (2)

Publication Number Publication Date
CN1984708A CN1984708A (zh) 2007-06-20
CN1984708B true CN1984708B (zh) 2014-01-29

Family

ID=34970671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580021966.2A Expired - Fee Related CN1984708B (zh) 2004-06-29 2005-06-24 微球体

Country Status (5)

Country Link
US (1) US20080019904A1 (zh)
EP (1) EP1763397A1 (zh)
JP (1) JP5068646B2 (zh)
CN (1) CN1984708B (zh)
WO (1) WO2006003581A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014876A (ja) * 2005-07-07 2007-01-25 Nippon Kayaku Co Ltd 微粒体型硬化触媒の製造方法
US8257338B2 (en) * 2006-10-27 2012-09-04 Artenga, Inc. Medical microbubble generation
WO2007085990A1 (en) * 2006-01-24 2007-08-02 Koninklijke Philips Electronics N.V. Method for producing a particle comprising a gas core and a shell and particles thus obtained
EP1993447A4 (en) 2006-03-10 2012-12-12 Univ Mcgill ULTRASONIC MOLECULAR SENSORS AND USES THEREOF
EP2209549A4 (en) * 2007-10-12 2014-03-05 Fio Corp FLOW FOCUSING SYSTEM AND SYSTEM FOR FORMING CONCENTRATED VOLUMES OF MICRO BEADS AND FURTHER MICRO BEADS
WO2009053885A2 (en) * 2007-10-23 2009-04-30 Koninklijke Philips Electronics N.V. Methods for preparing polymer microparticles
EP2055299A1 (en) 2007-10-23 2009-05-06 Koninklijke Philips Electronics N.V. Methods for preparing polymer microparticles
GB2455143A (en) * 2007-11-30 2009-06-03 Ct Angewandte Nanotech Can Preparation of emulsions using inkjet technology
EP2103313A1 (en) * 2008-03-19 2009-09-23 Koninklijke Philips Electronics N.V. Method for the synthesis of hollow spheres
JP5689416B2 (ja) * 2008-07-23 2015-03-25 コーニンクレッカ フィリップス エヌ ヴェ 超音波仲介による薬送達
GB2469087A (en) * 2009-04-02 2010-10-06 Ct Angewandte Nanotech Can Preparation of colloidal dispersion
WO2011135275A1 (en) * 2010-04-29 2011-11-03 Imperial Innovations Limited Method and microbubbles for detecting atherosclerotic plaque
GB201016436D0 (en) 2010-09-30 2010-11-17 Q Chip Ltd Method of making solid beads
GB201016433D0 (en) 2010-09-30 2010-11-17 Q Chip Ltd Apparatus and method for making solid beads
KR20130136557A (ko) * 2011-04-11 2013-12-12 인텔 코오퍼레이션 개인화된 광고 선택 시스템 및 방법
US20140294944A1 (en) 2013-03-28 2014-10-02 Kimberly-Clark Worldwide, Inc. Microencapsulation of oxygen liberating reactants
GB2551944B (en) * 2015-12-18 2021-09-01 Midatech Pharma Wales Ltd Microparticle production process and apparatus
WO2017220615A1 (en) 2016-06-20 2017-12-28 Virbac Method and apparatus for preparing a micro-particles composition
KR102613626B1 (ko) * 2017-05-21 2023-12-15 엘지전자 주식회사 유체조성물 제조 장치
CN110833802A (zh) * 2018-08-15 2020-02-25 漯河医学高等专科学校 一种γ射线辐照制备磁性淀粉微球的方法
CN114082376B (zh) * 2022-01-10 2022-04-22 烟台科立化工设备有限公司 一种聚合物微球生产装置及生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110444A (en) * 1994-03-01 2000-08-29 Nycomed Imaging As Gas-containing microcapsules useful as contrast agents for diagnostic imaging
US6368586B1 (en) * 1996-01-26 2002-04-09 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US20020160109A1 (en) * 2000-12-13 2002-10-31 Yoon Yeo Microencapsulation of drugs by solvent exchange

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
JPS607931A (ja) * 1983-06-24 1985-01-16 Suriibondo:Kk マイクロカプセルの製造方法
JPS61274738A (ja) * 1985-05-29 1986-12-04 Mitsui Toatsu Chem Inc マイクロカプセル
JPH0558882A (ja) * 1991-09-04 1993-03-09 Yoshiaki Kawashima ナノカプセルの製造法
GB9221329D0 (en) * 1992-10-10 1992-11-25 Delta Biotechnology Ltd Preparation of further diagnostic agents
JPH0775728A (ja) * 1993-06-18 1995-03-20 Suzuki Yushi Kogyo Kk 無機質均一微小球体の製造方法
US5540909A (en) * 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
US6139819A (en) * 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
US5606973A (en) * 1995-06-07 1997-03-04 Molecular Biosystems, Inc. Liquid core microdroplets for ultrasound imaging
US5873811A (en) * 1997-01-10 1999-02-23 Sci-Med Life Systems Composition containing a radioactive component for treatment of vessel wall
JP2001527547A (ja) * 1997-04-30 2001-12-25 ポイント バイオメディカル コーポレイション 超音波コントラスト剤として、および、血流への薬剤デリバリーのために有用な微小パーティクル
DE19800294A1 (de) * 1998-01-07 1999-07-08 Mueller Schulte Detlef Dr Induktiv aufheizbare magnetische Polymerpartikel sowie Verfahren zur Herstellung und Verwendung derselben
DE19925311B4 (de) * 1999-05-27 2004-06-09 Schering Ag Mehrstufen-Verfahren zur Herstellung von gasgefüllten Mikrokapseln
WO2001023454A1 (en) 1999-09-30 2001-04-05 The Research Foundation Of State University Of New York Fluorocarbon end-capped polymers and method of synthesis
JP4029252B2 (ja) * 2000-02-24 2008-01-09 セイコーエプソン株式会社 マイクロカプセルの製造方法、および表示デバイスの製造方法
DE10105156A1 (de) * 2001-02-06 2002-08-22 Bruske Frank Verfahren und Vorrichtung zur Herstellung von Teilchen aus flüssigen Ausgangsmedien
US6919068B2 (en) * 2002-05-17 2005-07-19 Point Biomedical Corporation Method of preparing gas-filled polymer matrix microparticles useful for echographic imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110444A (en) * 1994-03-01 2000-08-29 Nycomed Imaging As Gas-containing microcapsules useful as contrast agents for diagnostic imaging
US6368586B1 (en) * 1996-01-26 2002-04-09 Brown University Research Foundation Methods and compositions for enhancing the bioadhesive properties of polymers
US20020160109A1 (en) * 2000-12-13 2002-10-31 Yoon Yeo Microencapsulation of drugs by solvent exchange

Also Published As

Publication number Publication date
EP1763397A1 (en) 2007-03-21
WO2006003581A1 (en) 2006-01-12
JP5068646B2 (ja) 2012-11-07
US20080019904A1 (en) 2008-01-24
JP2008504950A (ja) 2008-02-21
CN1984708A (zh) 2007-06-20

Similar Documents

Publication Publication Date Title
CN1984708B (zh) 微球体
Yeo et al. AC electrospray biomaterials synthesis
JP5984903B2 (ja) 微粒子を調製する乳剤基調プロセス、及び、プロセスで利用されるワークヘッド構造体
Böhmer et al. Preparation of monodisperse polymer particles and capsules by ink-jet printing
Chang et al. Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization
US20050191491A1 (en) Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
JP5733981B2 (ja) ポリマー微粒子を調製する方法及びデバイス
KR20000029639A (ko) 고분자-지질로마이크로캡슐화된가스영상화제
KR19990087529A (ko) 영상화제로사용되는마이크로캡슐화된불소첨가가스
TWI246426B (en) Microencapsulated fluorinated gases for use as imaging agents
KR20020093097A (ko) 마이크로스피어 제조 방법
SK154198A3 (en) Microparticles
CN101048225A (zh) 用作超声成像中的造影剂的颗粒的分散体的制备
JP2009502772A (ja) 生体内の薬物の送達用の方法及びシステム
JP4967101B2 (ja) 中空マイクロカプセルの製造方法
JP5220263B2 (ja) 集束音響エネルギーを使用して形成される液滴からの固体粒子の沈殿
US6998074B1 (en) Method for forming polymer microspheres
JP2004532102A (ja) 集中音響エネルギーを使用する薬剤粒子の生成
Kim et al. Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion
JP2005538835A5 (zh)
Leach et al. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film
ES2284776T3 (es) Microparticulas.
US20050191357A1 (en) Method of manufacturing chemical-containing composite particles
WO2005061095A9 (ja) 微小球体の製造方法およびその製造装置
US20100221190A1 (en) Method for producing a particle comprising a gas core and a shell and particles thus obtained

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140129

Termination date: 20170624