CN1967750B - 多层芯片电容器 - Google Patents

多层芯片电容器 Download PDF

Info

Publication number
CN1967750B
CN1967750B CN200610145204XA CN200610145204A CN1967750B CN 1967750 B CN1967750 B CN 1967750B CN 200610145204X A CN200610145204X A CN 200610145204XA CN 200610145204 A CN200610145204 A CN 200610145204A CN 1967750 B CN1967750 B CN 1967750B
Authority
CN
China
Prior art keywords
interior electrode
lead
electrode layer
capacitor body
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200610145204XA
Other languages
English (en)
Other versions
CN1967750A (zh
Inventor
李炳华
丁海硕
朴东锡
朴珉哲
朴祥秀
魏圣权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of CN1967750A publication Critical patent/CN1967750A/zh
Application granted granted Critical
Publication of CN1967750B publication Critical patent/CN1967750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

多层芯片电容器包括:具有介电层的电容器本体、以及在电容器本体中通过介电层彼此分离的内部电极层。每个内部电极层均具有一条或两条导线且包括至少一个共面电极板。外部电极通过导线电连接至内部电极层。内部电极层组成多个重复堆叠的块。每个块包括顺序堆叠的多个内部电极层。延伸至电容器本体的表面的导线沿着堆叠方向以之字形排列。具有相反极性的垂直邻近的电极板的导线排列为彼此水平邻近。

Description

多层芯片电容器
优先权要求
本申请要求于2005年11月17日在韩国知识产权局提交的第2005-110394号韩国专利申请、以及于2006年10月11日在韩国知识产权局提交的第2006-99092号韩国专利申请的优先权,其全部内容结合于此作为参考。
技术领域
本发明涉及多层芯片电容器,更具体地涉及一种能够通过降低等效串联电感(ESL)将等效串联电阻器(ESR)保持在适当电平的多层芯片电容器。
背景技术
多层芯片电容器已经广泛用作用于射频(RF)电路的电容部件。具体地,它们可以被用作排列在大规模集成(LSI)芯片或装置的电源电路中的去耦电容器。为了稳定电源电路,多层芯片电容器需要具有较低的ESL。这种需求随着电子装置的高频和低压趋势而进一步增加。电源电路的稳定性不仅取决于多层芯片电容器的ESL,而且取决于ESR。当ESR太小时,电源电路的稳定性变弱,从而电压以振荡的形式剧烈波动。所以,最好将ESR保持在适当的数值。
作为一种被提议用来减小ESL的方法,美国专利第5880925号中公开了一种位于“交叉”排列(“interdigitated”arrangement)中的第一和第二内部电极的导线结构(lead structure)。图1a是示出传统的多层芯片电容器的内部电极结构的分解透视图;图1b是示出图1a中所示的多层芯片电容器的外形的透视图。
参考图1a,内部电极14分别形成在介电板11a和11b上。介电层11a和11b彼此交替堆叠,从而形成电容器本体(capacitor body)20。内部电极14包括相反极性的第一内部电极12和第二内部电极13。内部电极12中的单独一个内部电极与内部电极13中的单独一个内部电极配合组成一块(block),多个这样的块一个堆叠在另一个顶上。第一和第二内部电极12和13连接至外部电极30(包括31和32),其中,第一内部电极12通过导线16分别连接至外部电极31,第二内部电极13通过导线17分别连接至外部电极32(参考图2b)。第一内部电极12的导线16邻近第二内部电极13的导线17,并与第二内部电极的导线相互交叉。由于互相邻近的导线被提供有相反极性的电压,所以在邻近导线之间由外部电极施加的高频电流产生的磁通量相互抵消,从而降低了ESL。
另外,每个内部电极12或13都具有四条导线16或17。由于该四条导线中产生的电阻相互并行连接,所以也大大降低了电容器的整个电阻。结果,电容器的ESR变得太小。从而,很难满足目标阻抗并使得电源电路不稳定。
为了防止ESR变得太低,美国专利第6441459号中公开了在一个内部电极中使用一条导线。然而,根据这个专利文档,电流以相同的方向流过在垂直方向(即,堆叠方向)相互邻近的一些内部电极。然后,在垂直方向邻近的对应内部电极之间的磁通量没有抵消。这就导致ESL增加。
发明内容
本发明旨在解决现有技术中的上述问题,本发明的目的在于提供一种能够通过降低的ESL将ESR保持在适当水平的多层芯片电容器。
根据本发明的一个方面,本发明提供了一种多层芯片电容器。该多层芯片电容器包括:电容器本体,具有一个堆叠在另一个顶上的多个介电层;多个内部电极层,在电容器本体中通过介电层彼此分离,其中,每个内部电极层均具有一条或两条延伸至电容器本体的外表面的导线,并包括至少一个共面电极板(coplanar electrodeplate);及多个外部电极,排列在电容器本体的外表面上并通过导线电连接至内部电极层。内部电极层构成多个一个堆叠在另一个顶上的重复堆叠的块,其中,每个块包括沿堆叠方向顺序排列的多个内部电极层。每个电极板均具有一条延伸至电容器本体的表面的导线。这些延伸至电容器本体的表面的导线沿着堆叠方向以之字形排列。具有相反极性的电极板中的垂直邻近的电极板的导线水平邻近排列。
根据本发明的实施例,外部电极可以为至少六个。
根据本发明的实施例,外部电极的总数可以为八个。在这种情况下,每个块包括在堆叠方向顺序排列的六个内部电极层。
在具有八个外部电极的电容器中,第一至第四外部电极可以顺次排列在电容器本体的表面上。另外,电极板中的第一至第六电极板可以一个堆叠在另一个顶上顺序堆叠成每个块,第一至第六电极板中的每一个都具有一条延伸至电容器本体的表面的导线。第一至第四电极板的导线可以分别连接至第一至第四外部电极。另外,第五电极板的导线可以连接至第三外部电极,并且第六电极板的导线连接至第二外部电极。通过这个导线排列,延伸至电容器本体的一个表面的导线沿着堆叠方向以之字形排列。
根据本发明的另一实施例,外部电极的总数可以为十个。此处,每个块包括在堆叠方向顺序排列的八个内部电极层。
在具有十个外部电极的电容器中,第一至第五外部电极可以顺次排列在电容器本体的表面上。第一至第八电极板一个堆叠在另一个顶上顺序堆叠成每个块,第一至第八电极板中的每个都具有一条延伸至电容器本体的表面的导线。第一至第五电极板的导线可以分别连接至第一至第五外部电极。另外,第六电极板的导线连接至第四外部电极,第七电极板的导线连接至第三外部电极,以及第八电极板的导线连接至第二外部电极。通过这种导线排列,延伸到电容器本体的一个表面的导线沿着堆叠方向以之字形排列。
根据本发明的实施例,连接至共用外部电极的导线中的垂直邻近的导线相互之间可以以预定角度沿不同方向延伸。可选地,这个角在从45°到135°的范围内。
根据本发明的实施例,每个内部电极层均可以用隔离缝(separator slit)分为多个共面电极板,其中,每个电极板均具有用于将电极板电连接至外部电极中的对应外部电极的导线。每个电极板均可以具有一条(单条)导线。
每个内部电极层均可以用隔离缝分为一对共面电极板。共面电极板对可以具有相反的极性。可选地,两个共面电极板具有相同的极性。
根据本发明的实施例,隔离缝可以平行于电容器本体的纵向方向延伸。
根据本发明的另一实施例,隔离缝可以在电容器本体的对角线方向延伸。此处,垂直邻近的内部电极层的隔离缝可以在不同的对角线方向延伸。
根据本发明的另一实施例,垂直邻近的内部电极层的隔离缝可以排列为相互垂直地延伸。例如,隔离缝可以包括沿着电容器本体的纵向方向延伸的纵向隔离缝、以及垂直于电容器本体的纵向方向延伸的横向隔离缝,其中,纵向和横向隔离缝沿着堆叠方向相互交替。
共面电极板可以具有相同的区域。可选地,共面电极板可以具有不同的区域。在这种情况下,垂直邻近的内部电极层的隔离缝可以具有不同的平面内(in-plane)位置。可选地,垂直邻近的内部电极层的隔离缝在相同的平面内位置。
根据本发明的实施例,每个电极板均可以具有从电极板的侧面朝向中心延伸的非隔离缝,以改变电极板内的电流。隔离缝和非隔离缝可以与电容器本体的纵向方向平行延伸。可选地,垂直邻近的电极板中的对应非隔离缝在相同的平面内位置。在相同的平面内位置的非隔离缝的这种排列可以减小由非隔离缝导致的电容损耗(capacitance loss)。共面电极板对可以允许电流以相反的方向流过其邻近区域。垂直邻近的电极板可以允许电流以相反的方向流过。
根据本发明的实施例,每个块中的至少一个内部电极层可以通过隔离缝分为多个共面电极板,并且每个电极板可以具有用于将电极板电连接至对应外部电极的导线。
分成的内部电极层的每个电极板均可以具有一条用于电连接至外部电极的导线。此处,隔离缝可以沿着电容器本体的纵向方向延伸。
在多层芯片电容器中,外部电极的总数可以为八个。在这种情况下,每个块可以包括在堆叠方向顺序排列的六个内部电极层,并且这六个内部电极层中的三个中的每个可以分为一对共面电极板。
在多层芯片电容器中,每个块可以包括顺序堆叠的第一至第六内部电极层。第一、第三、和第五内部电极层中的每个可以分为一对电极板,并且分成的内部电极层的每个电极板可以具有一条导线。另外,第二、第四、和第六内部电极层中的每个可以是具有两条导线的单一完整结构。
根据本发明的实施例,每个内部电极层可以仅包括一个完整电极板,每个电极板可以具有电连接至外部电极的导线。
在这种情况下,每个电极板可以具有两条延伸至电容器本体的相对表面的导线,并且这些延伸至相对表面中的每个的导线可以以之字形沿着堆叠方向排列在每个表面上。
在多层芯片电容器中,外部电极的总数可以为八个。在这种情况下,每个块均可以包括顺序堆叠的第一至第六内部电极层。
在多层芯片电容器中,第一至第四外部电极可以顺序排列在电容器本体的表面上。第一至第六内部电极层可以具有分别延伸至电容器本体的表面的第一至第六导线。另外,第一至第四导线可以分别连接至第一至第四外部电极,第五导线可以连接至第三外部电极,并且第六导线可以连接至第二外部电极。
在多层芯片电容器中,外部电极的总数可以为十个。在这种情况下,每个块可以包括顺序排列的第一至第八内部电极层。
在多层芯片电容器中,第一至第五内部电极可以顺序排列在电容器本体的表面上。第一至第八内部电极层可以分别具有延伸至电容器本体的表面的第一至第八导线。第一至第五导线可以分别连接至第一至第五外部电极。另外,第六导线可以连接至第四外部电极,第七导线可以连接至第三外部电极,以及第八导线可以连接第二外部电极。
根据本发明的另一方面,本发明提供了一种多层芯片电容器。多层芯片电容器包括:一个堆叠在另一个顶上的多个介电层的电容器本体;多个内部电极层,在电容器本体中通过介电层相互分离,其中,每个内部电极层均具有一条或两条朝向电容器本体的外表面延伸的导线,并包括至少一个共面电极板;以及多个外部电极,排列在电容器本体的外表面上并通过导线电连接至内部电极层。内部电极层组成重复地一个堆叠在另一个的顶上的块,每个块包括顺序排列在堆叠方向的多个内部电极层。另外,具有相反极性的垂直邻近的电极板的导线水平邻近排列。
根据本发明的实施例,外部电极的总数可以为八个。此处,每个块可以包括顺序排列的第一至第八内部电极层。第四和第八内部电极层中的每个均可以具有延伸至电容器本体的相对表面的导线对。另外,第一至第三和第五至第七内部电极层中的每个均可以具有一条导线。
在具有八个外部电极的多层芯片电容器中,第四内部电极层可以具有延伸至电容器本体的相对表面中的第一相对表面的第一导线和延伸至电容器本体的相对表面中的第二相对表面的第二导线;第八内部电极层可以具有延伸至第一表面的第三导线和延伸至第二表面的第四导线。第一导线可以与第三内部电极层的导线水平邻近排列,并且第二导线可以与第五内部电极层的导线水平邻近排列。另外,第三导线可以与邻近块的第一内部电极层的导线水平邻近排列,并且第四导线可以与第七内部电极层的导线水平邻近排列。
根据本发明的实施例,第四内部电极层可以包括通过隔离缝分成的第一和第二电极板,第一电极板具有第一导线,第二电极板具有第二导线。第八内部电极层可以包括由隔离缝分成的第三和第四电极板,第三电极板具有第三导线,第四电极板具有第四导线。另外,第一至第三和第五至第七内部电极层中的每个均可以为完整单一结构并可以具有一条导线。
根据本发明的另一实施例,每个内部电极层均可以包括一个(单个)完整电极板,并且每个完整电极板均可以具有用于电连接至对应外部电极的导线。
根据本发明的多个实施例,每个内部电极层均仅具有一条或两条导线。这能够防止ESR过分降低。而且,具有相反极性的彼此垂直邻近的电极板的导线贯穿电容器的整个内部结构总是水平邻近排列,从而抑制了ESL的增长。
此处,术语“隔离缝”表示物理地分成内部电极层的缝隙区域,以及术语“非隔离缝”表示没有物理地分成内部电极层的缝隙区域。
附图说明
结合附图,本发明的上述及其他目的、特点、和其他优点将通过下列详细描述而能被更清楚地理解,其中:
图1a是示出传统的多层芯片电容器的内部电极结构的分解透视图;
图1b是示出图1a所示的多层芯片电容器的外形的透视图;
图2是示出根据本发明的优选实施例的多层芯片电容器的内部电极结构的平面图;
图3是示出图2所示的导线的排列的平面图(a)和侧视图(b);
图4是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图;
图5是示出导线的排列的平面图,其中,(a)示出延伸至图4中所示的多层芯片电容器本体的侧面的导线的排列,以及(b)示出延伸至现有技术的多层芯片电容器本体的侧面的导线的排列;
图6是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图;
图7是示出图6中所示的内部电极结构的一部分的局部放大图;
图8至16是示出根据本发明的其他实施例的多层芯片电容器的内部电极结构的平面图;
图17是示出图16中所示的内部电极结构的一部分的局部放大图;
图18是示出根据本发明的实施例的八端子多层芯片电容器的外型的透视图;
图19和图20是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图;
图21是示出延伸至图22中所示的多层芯片电容器本体的侧面的导线排列的平面图;
图22是示出根据本发明的多层芯片电容器的变化的内部电极结构的平面图;
图23是示出根据本发明的实施例的十端子多层芯片电容器的外型的透视图;以及
图24和图25是示出根据本发明的其他实施例的多层芯片电容器的内部电极结构的平面图。
具体实施方式
下文中将参考附图,更加详细地说明本发明。其中,示出了本发明的优选实施例。然而,本发明可以具体化为多种不同的形式,不应该被理解为仅限于本文中所阐述的具体实施例。当然,提供这些实施例是为了使本公开更加彻底和完整,并向本领域的技术人员完整地阐述本发明的范围。在附图中,为了清楚,可以放大厚度、形状、以及尺寸,并且贯穿本文,相同的参考标号用来表示相似的部分。
图2至图17示出了根据本发明的多个实施例的多层芯片电容器的内部电极结构。图2至图17中所示的内部电极结构可以应用于图18中所示的八(8)端子电容器100(具有八个外部电极)。
参考图18,电容器100包括电容器本体120和形成在电容器本体120的外部(即,外表面)的八个外部电极131至138。电容器本体120是通过将多个介电层一个堆叠在另一个顶上形成的。多个内部电极层排列在该电容器本体120中,并被介电层相互分离。相反极性的外部电极131至138以这样的方式排列在电容器本体120的相对侧面上:一种极性的电极与相反极性的电极相交替。图2至图17中示出了8-端子电容器100的内部结构的实例。
参考图2,分别形成在介电层1000上的六(6)个内部电极层1010、1020、1030、1040、1050、及1060一个堆叠在另一个顶上,以组成块。即,这六个内部电极层1010至1060在堆叠方向(参见虚线表示的箭头)顺序排列,以组成周期性的多层结构的单一单元(块)。重复堆叠多个这样的块,以制造电容器本体(参见图18中的参考标号120)。本文中,短语“重复堆叠”表示每个块具有相同的内部电极结构。尽管示出了从内部电极层1010开始的六个连续的内部电极层1010、1020、1030、1040、1050、以及1060形成了图2中的一个块(虚线),但是块的开始点不限于此。例如,可以将从内部电极层1020开始的六个连续的电极层1020、1030、1040、1050、1060、以及1010设置为一个块。不考虑设置为开始点的内部电极层,一个块包括通过介电层彼此邻近的六(6)个连续的内部电极层。
此处,利用隔离缝将内部电极层1010分为一对电极板或电极板对1011和1012。以同样的方式,也分别将其他的内部电极层1020、1030、1040、1050、和1060分为电极板对1021和1022、1031和1032、1041和1042、1051和1052、以及1061和1062。如图所示,相同平面上的电极板对1011和1012具有相反的极性。其他的电极板对1021和1022至1061和1062也一样。隔离缝延伸跨过对应的内部电极层的中心部分,以与电容器本体的纵向方向L相平行(即,垂直于其宽度方向W),从而使得共面电极板对具有基本相同的区域。例如,利用平行于电容器本体的纵向方向L排列的隔离缝将内部电极层1010分为相同区域的电极板1011和1012。然后,相反极性的相对电极板(例如,在垂直或堆叠方向彼此邻近排列的电极板1011和1021)组成一个电容元件。(下文中,将这些在垂直方向彼此邻近的电极板或层称为“垂直邻近板或层”)。
如图2所示,电极板1011具有一条导线1011a,电极板1012具有一条导线1012a。同样,电极板1021、1022、1031、1032、1041、1042、1051、1052、1061、以及1062中的每一个分别具有一条导线1021a、1022a、1031a、1032a、1041a、1042a、1051a、1052a、1061a、及1062a。这些导线1011a至1062a提供到外部电极的连接(参见图18中的参考标号131至138),以将内部电极层1010至1060电连接至外部电极131至138。
由于如上所述的,将每个内部电极层分为一对电极板,且每个电极板都具有一条(即,单条)导线,所以有可能有效地防止电容器ESR过分降低。即,将内部电极层分为电极板,相对减小了电流通路的区域,从而增加流过内部电极层的电流的阻抗。而且,由于单个电极板具有一条导线,所以有可能防止由并联的多条导线导致的阻抗的锐减。结果,电容器能够在防止由于过低的ESR导致的电源电路的任何不稳定性的同时,将ESR保持在适当的水平。
另外,在垂直方向彼此邻近的具有相反极性的电极板(例如,1011和1021)中,导线(例如,1011a和1021a)贯穿电容器的整个内部结构,总是在水平方向彼此邻近排列。(术语“在水平方向彼此邻近”也将称为下文中“水平邻近”。)即,具有相反极性的垂直邻近的电极板的导线总是连接至彼此邻近的外部电极。例如,导线1011a和导线1021a排列为分别连接至相反极性的邻近外部电极131和132。
当相反极性的导线在水平和垂直方向相互邻近时,不同方向(特别地,相反方向)的电流流过邻近导线。然后,磁通量相互抵消,从而降低了寄生电感并进一步降低了电容器的ESL。结果,在将ESR保持在适当水平的同时,可以通过进一步降低的ESL改善电源电路的稳定性。
图3是示出图2中所示的导线排列的平面图(a)和侧视图(b)。图3(b)的侧视图对应于图3(a)的侧面A的侧视图。参考图3,显然,导线1011a、1021a、1031a、1041a、1051a、1061a以之字形或曲折形状沿着堆叠方向排列在电容器本体的侧面A上。(具体参见图3(b)的虚线)。
更加具体地描述,第一至第四外部电极131至134顺序排列在电容器本体的侧面A上(图3(a)中从左向右)。在一个块中,第一至第六电极板1011、1021、1031、1041、1051、和1061顺序地一个堆叠在另一个顶上,每个电极板都具有一条延伸至侧面A的导线1011a、1021a、1031a、1041a、1051a、以及1061a(参见图2)。如图3所示,第一电极板1011的导线1011a连接至外部电极131。以同样的方式,第二至第四电极板1021、1031、以及1041的导线1021a、1031a、以及1041a分别连接至第二至第四外部电极132、133、和134。另外,第五电极板1051的导线1051a连接至第三外部电极133,并且第六电极板1061的导线1061a连接至第二外部电极132。当这种导线排列在块中重复时,延伸至电容器本体的侧面的导线以之字形排列。应该理解的是,延伸至与侧面A相对的侧面的那些导线也以之字形排列(参见图2)。
如上所述的导线1011a至1061a的之字形排列具有降低“垂直邻近的相同极性的那些导线之间的互感”的优点。如图3(b)所示,连接至共用外部电极的两条垂直邻近导线之间的平均距离(即,连接共用外部电极的导线之间的平均间隔)大于两个介电层的厚度。例如,连接至外部电极131的垂直邻近导线1011a之间的距离基本对应于六个介电层的总厚度D。相同极性的垂直邻近导线之间的较大距离很容易被减小或抑制导线之间的强互感(其可能由它们的磁耦合导致)。从而进一步降低电容器的ESL。
图4是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图。图4中所示的实施例与图2所示的实施例的区别在于,共面电极板对具有相同的极性。
参考图4,形成在介电层1001上的六个内部电极层1110至1160连续地一个堆叠在另一个顶上,以组成块。将多个这样的块重复地一个堆叠在另一个顶上,以制造电容器本体(参见图18中的参考标号120)。
利用隔离缝将形成在介电层1001上的内部电极层1110分为一对共面电极板或共面电极板对1111和1112。以同样的方式,利用隔离缝也将内部电极层1120、1130、1140、1150、以及1160中的每个分为一对共面电极板。相反极性的相对电极板(例如,1111和1121)组成一个电容元件。每个电极板具有一条导线(参见参考标号1111a至1162a)。导线1111a至1162a提供到外部电极的连接(参见图18中的参考标号131至138),以将内部电极层1110至1160电连接至外部电极131至138。同样在这个实施例中,延伸至电容器本体的一个侧面的导线(例如,1111a、1121a、1131a、1141a、1151a、以及1161a)以之字形排列。(参见图5(a))。
图5(a)示出了延伸至图4中所示的电容器本体的侧面的导线的排列,而图5(b)示出了延伸至图1a和图1b所示的现有技术的多层芯片电容器本体的侧面的导线的排列。
参考图4和图5(a),第一至第四外部电极131至134顺序排列在电容器本体的一个表面上。第一至第六内部电极层1110、1120、1130、1140、1150、以及1160分别具有延伸至电容器本体的表面的第一至第六导线1111a、1121a、1131a、1141a、1151a、以及1161a。(每个内部电极层具有延伸至电容器本体的表面的“1”条导线)。第一至第四导线1111a、1121a、1131a、以及1141a排列为分别与第一至第四外部电极131、132、133、以及134连接。另外,第五导线1151a排列为与第三外部电极133连接,且第六导线1161a排列为与第二外部电极132连接。当重复堆叠这样的导线排列时,延伸至电容器本体的一个表面的导线1111a至1161a沿着堆叠方向以之字形排列。(参见图5(a)的虚线。)
如上所述的“导线1111a至1161a的之字形排列(zigzagarrangement)”具有降低“垂直邻近的相同极性的那些导线之间的互感”的优点。如图5(a)所示,连接至共用外部电极的两条垂直邻近导线之间的平均距离(即,连接共用外部电极的导线之间的平均间隔)大于两个介电层的厚度。例如,连接至外部电极131的垂直邻近导线1111a之间的距离基本对应于六个介电层的总厚度D。相同极性的垂直邻近导线之间的较大距离可以被很容易地减小,或抑制这些导线之间的强互感(其可以由他们的磁耦合导致)。从而进一步降低电容器的ESL。
相反,传统的电容器不具有如上所述的“导线的之字形排列”。因此,在传统的电容器(参见图1a和图1b)中,连接至共用电极的两条垂直邻近导线之间的平均距离相对较小。例如,共同连接至外部电极31的垂直邻近导线16之间的距离仅对应于两个介电层的总厚度d。结果,在相同极性的导线之间产生强互感,从而使得ESL变得比本实施例中的大。
根据本实施例,将每个内部电极层分为两个电极板,每个电极板具有一条导线,以防止电容器的ESR过低,且防止导致电源电路的不稳定性。
在相反电极的垂直邻近的电极板中(例如,1111和1121),导线(例如,1111a和1121a)总是水平邻近排列。然后,不同方向的电流(具体地,相反方向)流过邻近导线(例如,1111a和1121a),从而他们的磁通量相互抵消,降低了ESL。结果,适当水平的ESR和降低的ESL可以改善电源电路的稳定性。而且,如上所述的“导线的之字形排列”进一步增强了ESL降低效果。
图6是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图。在图6所示的实施例中,连接至相同外部电极131的垂直邻近导线1211a和1271a相互之间以预定角度沿不同方向延伸。以同样的方式,连接至共用外部电极(例如,132、133、137)的垂直邻近导线(例如,1221a和1261a;1231a和1251a;1232a和1252a)沿不同方向延伸。同样在这个实施例中,两个共面电极板(例如,1211和1212)具有与图4中的上述实施例一样的极性。
参考图6,形成在介电层1002上的十二(12)个内部电极层1210、1220、1230、1240、1250、1260、1270、1280、1290、1300、1310、以及1320顺序地一个堆叠在另一个顶上,以组成块。将多个这样的块重复地一个堆叠在另一个顶上,以制造电容器本体(参见图18中的参考标号120)。
利用隔离缝将形成在介电层1002上的内部电极层1210分为共面电极板对1211和1212。以同样的方式,利用隔离缝将其他内部电极层1220、1230、1240、1250、1260、1270、1280、1290、1300、1310、以及1320中的每一个都分为共面电极板对。诸如相反极性的1211和1221的相对电极板组成一个电容元件。每个电极板具有一条导线(参见参考标号1211a至1322a)。导线1211a至1322a为外部电极(参见图18中的参考标号131至138)提供连接,以将内部电极层1210至1320电连接至外部电极131至138。
具体地,在这个实施例中,连接至相同外部电极的导线(诸如导线1211a和1271a、1221a和1261a、1231a和1251a、1232a和1252a)相互之间以预定角度沿不同方向延伸。这个特点在图7的局部放大图中清楚示出。如图7所示,共同连接至外部电极131的导线1211a和1271a彼此之间以预定角度沿不同方向延伸。优选地,连接至相同外部电极的导线之间的角度α在从45°到135°的范围内。
当连接至共用外部电极的垂直邻近的导线(例如,1211a和1271a)相互之间以预定角度沿不同方向延伸时,流过邻近导线的电流方向不同。这引起了抑制邻近导线之间的磁通量增加的效果,从而不会在连接至相同的外部电极的邻近导线中发生强互感。结果,进一步降低了电容器的ESL。
根据这个实施例,与前述的实施例中一样,将每个内部电极层分为两个电极板,每个电极板具有一条导线,以防止电容器的ESR过低,且防止导致电源电路的不稳定。
而且,相反极性的垂直邻近电极板(例如,1211和1221)的导线(例如,1211a和1221a)总是水平邻近排列。然后,不同方向的电流流过邻近导线(例如,1211a和1221a),从而使它们的磁通量相互抵消。另外,延伸至电容器本体的一个表面的导线以之字形排列。结果,适当水平的ESR和降低的ESL可以改善电源电路的稳定性。
图8是示出根据本发明的其他实施例的多层芯片电容器的内部电极结构的平面图。在图8所示的这个实施例中,共面电极板对具有不同的区域。具体地,在两个垂直邻近的内部电极板中,当在平面图中看时,关联的隔离缝具有位于平面中的不同位置。(本文中,平面中的这种位置将成为“平面内位置”)。例如,内部电极层1410具有图中所示的位于靠近其下边缘的隔离缝,而内部电极层1420具有图中所示的位于靠近其上边缘的隔离缝。另外,邻近内部电极层1420的内部电极层1430具有图中所示的位于靠近其下侧的隔离缝。当以这种方式,将内部电极层一个堆叠在另一个顶上时,它们的隔离缝具有不同的平面内位置。
通过改变垂直邻近的隔离缝的平面内位置,有可能抑制在电容器的制造过程中发生的分层(delamination,也称层离)。该分层用作相反地影响电容器的可靠性的因素。
除了隔离缝的位置以外,图8中所示的实施例基本与图4中所示的实施例相同。所以,同样在图8所示的实施例中,将每个内部电极层分为电极板对(例如,1411和1412),每个电极板具有一条导线,以防止电容器的ESR过低,且防止造成的电源电路的不稳定。
另外,相反极性的垂直邻近电极板的导线总是水平邻近排列,以抑制ESL的增长。与图4所示的实施例中一样,延伸至电容器本体的一个表面的导线以之字形排列。在图8中,参考标号1004表示介电层,1410至1460表示内部电极层,以及1411a至1462a表示导线。
图9是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图。在图9中所示的实施例中,没有利用隔离缝分割一个块中的一些内部电极层。即,这个块具有至少一个内部电极层,其没有被分割。
参考图9,形成在介电层1005上的六(6)个内部电极层组成一个块,其中,利用隔离缝将三个内部电极层1510、1530、以及1550中的每个分为电极板对。除了块中的三个内部电极层1520、1540、以及1560没有被分割外,图9中所示的内部电极结构基本与图4中所示的内部电极结构相同。
更具体地描述,第一至第六内部电极层1510至1560顺序地一个堆叠在另一个顶上,以组成一个块。利用隔离缝将第一内部电极层1510分成两个电极板1511和1512,并且以同样的方式,分别将第三和第五内部电极层1530和1550分为两个电极板。分成的内部电极层的每个电极板具有一条导线1511a、1512a、1531a、1532a、1551a、1552a。例如,电极板1511和1512分别具有导线1511a和1512a。第二、第四、和第六内部电极层1520、1540、以及1560中的每个都是单一完整电极板。另外,第二、第四、以及第六内部电极层1520、1540、以及1560,每个都分别具有两条导线1521a和1522a、1541a和1542a、1561a和1562a。
通过使分成的内部电极层1510、1530、以及1550与完整的内部电极层1520、1540、以及1560相交替,有可能将基本一致的电压施加于制造过程中的压制和烧结(sintering)步骤,以及防止分层。
根据这个实施例,在一个具有六个内部电极层的块中,利用隔离缝将至少一个内部电极层(这种情况下的三个内部电极层)分为电极板对,分成的内部电极层的每个电极板仅具有一条导线。剩下的完整(undivided)电极板(这种情况中的1520、1540、以及1560)分别仅具有两条导线。从而,电容器的ESR通常可以具有适当的水平,而不具有过分小的值。
另外,如图9中所示,相反极性的垂直邻近电极板的导线水平邻近排列。而且,延伸至电容器本体的一个表面的导线以之字形排列。所以,这个实施例也可以抑制ESL的增加。
图10是示出根据本发明的另一实施例的多层芯片电容器的内部电极结构的平面图。除了用于分割内部电极层的隔离缝的方向外,图10中所示的实施例基本上与图4中所示的实施例相同。
参考图10,介电层1007上的内部电极层1710至1760的隔离缝对角延伸。另外,垂直邻近的内部电极层的隔离缝沿不同方向对角延伸。从而,内部电极层的隔离缝位于不同于一个堆叠在另一个顶上的内部电极层的位置。
通过改变垂直邻近的隔离缝的对角线方向,有可能将基本一致的电压应用于压制步骤。从而可以防止在电容器内的分层。
同样在这个实施例中,将每个内部电极层(例如,1710)分割为电极板对(例如,1711和1712),每个电极板均具有一条导线。例如,一个板1711具有一条导线1711a。从而可以将ESR保持在适当的水平。另外,相反电极的垂直邻近电极板的导线水平邻近排列,从而抑制了ESL的增长。延伸至电容器本体的一个表面的导线也以之字形排列。在图中,参考标号1712a至1762a表示导线。
图11是示出根据本发明的其他实施例的多层芯片电容器的内部电极结构的平面图。图11所示的这个实施例与图4和图8中所示的实施例的不同在于,共面电极板对(例如,1811和1812)具有不同的区域,但是内部电极层的隔离缝具有相同的平面内位置。通过位于相同位置的隔离缝,将每个内部电极层(例如,1810)分为具有不同区域的共面电极板对(例如,1811和1812)。
当利用相同平面内位置处的隔离缝将每个内部电极层分为相同极性但不同区域的电极板时,可以进一步降低图4中所示的实施例的电容器的ESL,而不使整个电容发生显著变化。同样在这个实施例中,可以将电容器的ESR保持在适当的值,并降低ESL。在图中,参考标号1008表示介电层,参考标号1810至1860表示内部电极层,以及参考标号1811a至1862a表示导线。
图12至图17是示出根据本发明的其他实施例的八端子多层芯片电容器的内部电极结构的平面图。图12至图17中所示的电容器可以具有与图18中所示的外部轮廓相同的外形。
参考图12,除了垂直邻近隔离缝排列为垂直相交外,这个实施例基本上与图4中所示的实施例相同。利用隔离缝等将形成在介电层3001上的每个内部电极层3010至3060分为共面电极板对3011和3012、3021和3022。电极板3011、3012、3021、3022等中的每个都具有一条导线3011a、3012a、.....,3061a、3062a。
如图12所示,在诸如3010和3020的垂直邻近内部电极层中,对应的隔离缝排列为相互垂直相交。具体地,平行于纵向方向的隔离缝(例如,内部电极层3010的隔离缝)与在垂直方向(沿着堆叠方向)垂直于纵向方向的隔离缝(例如,内部电极3020的隔离缝)相交替。通过在垂直方向彼此垂直相交的交替排列的隔离缝,有可能大大抑制可能发生在电容器的制造过程中的分层。
除了形成在每个电极板中不进行分割的缝隙外,图13中所示的实施例基本上与图2中所示的相同。(下文中,将这种缝隙称为“非隔离缝”。)参考图13,电极板4011、4012、....、4061、及4062中的每一个都具有从每个电极板的侧面延伸至中心非隔离缝。具体地,非隔离缝类似于隔离缝,平行于纵向方向L延伸。非隔离缝用于改变电极板中的电流。
非隔离缝延长了电极板(例如,4011)内的电流通道,从而增加了流过电极板的电流的阻抗。所以,非隔离缝用于防止电容器的ESR变得过低。另外,通过调节非隔离缝的长度,有可能适当地控制ESR,使得目标阻抗容易获得,并使得配电网容易设计。
参考图13,在诸如4011和4012的共面电极板对中,电流以相反的方向(参见箭头)流过电极板4011和4012(其在隔离缝周围)的邻近区域。从而获得了隔离缝周围的磁通量抵消的效果。这种磁通量抵消的效果用作用于降低电容器的ESL的因素。
另外,电流以相反的方向流过垂直邻近的电极板(例如,4011和4012),从而获得了垂直邻近的电极板之间的磁通量抵消的效果。结果,进一步降低了电容器的ESL,并进一步增强了电源电路的稳定性。
根据本发明的这个实施例,非隔离缝在诸如4011和4021的垂直邻近的电极板中具有相同的平面内位置。即,在垂直方向互相邻近的非隔离缝互相重叠。当垂直邻近的非隔离缝排列为互相重叠时,可以尽可能多地抑制非隔离缝导致的电容损耗。在图13中,参考标号4000表示介电层,参考标号4010至4060表示内部电极层,以及参考标号4011a至4062a表示导线。
除了在每个电极板中形成有非隔离缝以外,图14中所示的实施例基本上与图4中所示的实施例相同。即,电极板4111、4112、4121、4122等中的每个都具有从其侧面延伸至中心的非隔离缝。同样在这个实施例中,非隔离缝与隔离缝相类似,在纵向方向L延伸,以改变电极板中的电流。结果,同样在图14的实施例中,可以获得与参考图13的以上描述相同的效果(诸如ESR控制和ESL降低)。
同样在这个实施例中,垂直邻近的电极板(例如,4111和4121)的非隔离缝具有相同的平面内位置。所以,有可能抑制由非隔离缝导致的电容损耗。在图14中,参考标号4001表示介电层,参考标号4110至4160表示内部电极层,以及参考标号4111a至4162a表示导线。
图15是示出根据本发明的可选实施例的八端子多层芯片电容器的内部电极结构的平面图。在图15的实施例中,每个内部电极层包括没有被分割的单一电极板。图15的内部电极结构对应于通过将两个分割的、图4的内部电极结构的共面电极板(例如,1111和1112)连接为一个板而制造的结构。
参考图15,介电层1001上的第一至第六内部电极层1110’、1120’、1130’、1140’、1150’、以及1160’组成一个块。内部电极层1110’至1160’中的每个均由完整单一结构形成,即,一个电极板。每个电极板均具有两条延伸至电容器的两个相对表面的导线1111a和1112a、1121a和1122a、1131a和1132a、1141a和1142a、1151a和1152a、或1161a和1162a。(每个电极板均具有延伸至每个相对表面的两条导线。)导线1111a至1162a为外部电极提供电连接(参见图18的参考标号131至138),以将内部电极层1110’至1160’电连接至外部电极131至138。
根据这个实施例,内部电极层1110’至1160’中的每隔仅具有两条导线1111a和1112a、1121a和1122a、1131a和1132a、1141a和1142a、1151a和1152a、或1161a和1162a,从而使得电容器可以具有不过小的适当的ESR值。
另外,由于每个内部电极层均包括一个电极板(即,完整单一结构),所以,阶梯部分(stepped potion)(或厚度差异)仅发生在制造过程中,由这种阶梯部分导致的消极效果被减小了。由于没有由隔离缝导致的电容的任何损失,所以这个实施例具有大于具有隔离缝的那些实施例的电容。同样在这个实施例中,具有不同极性的垂直邻近电极板的导线(例如,1111a和1121a)总是相互垂直邻近排列。从而可以抑制ESL增长因素。在这个实施例中,延伸至电容器本体的一个表面的导线(例如,1111a、1121a、1131a、1141a、1151a、1161a)也与图4的实施例中一样,以之字形排列。
图16是示出图15中所示的八端子多层芯片电容器的改变的内部电极结构的平面图。在图16的实施例中,连接至共用外部电极的垂直邻近的导线(例如,1211a、1271a、1221a、1261a、1231a、1251a、1232a、1252a)相互之间以预定角度沿不同方向延伸。图16的内部电极结构对应于通过将分割的、图6的内部电极结构的共面电极板(例如,1211和1212)连接为一个板产生的结构。
参考图16,形成在介电层1002上的十二(12)端子内部电极层1210’至1320’顺序地一个堆叠在另一个顶上,以组成块。将多个这样的块重复地一个堆叠在另一个顶上,以制造电容器本体(参见图18中的参考标号120)。内部电极层1210’至1320’中的每个均包括一个电极板(即,完整单一结构),且每个电极板均具有延伸至电容器本体的相对表面的两条导线(1211a和1212a至1321a和1322a中的任何一对)。导线1211a和1212a至1321a和1322a提供到外部电极的连接(参见图18的参考标号131至138)。
通过仅具有两条导线的每个内部电极层1210’至1320’,有可能防止电容器ESR及关联电路稳定性的过分降低。另外,具有不同极性的垂直邻近的板的导线(例如,1211a和1121a)总是在水平方向彼此邻近排列。从而可以抑制ESL增长因素。另外,由于内部电极层1210’至1320’中的每个都包括完整单一电极板,所以仅在制造过程中出现阶梯部分,且由这种阶梯部分导致的消极效果降低了。由于不存在由于隔离缝导致的电容的损失,所以这个实施例具有高于具有隔离缝的那些实施例的电容。同样在这个实施例中,延伸至电容器本体的一个表面的导线(例如,1211a、1221a、1231a、1241a、1251a、1261a、1271a、1281a、1291a、1301a、1311a、及1321a)以之字形排列。
具体地,在这个实施例中,连接至共用外部电极的垂直邻近导线(例如,导线1211a和1271a、1221a和1261a、1231a和1251a、1232a和1252a)相互之间以预定角度沿不同方向延伸。这个特点在图17的局部放大图中清楚地示出。如图17所示,共同连接至外部电极131的导线1211a和1271a相互之间以预定角度沿不同方向延伸。优选地,角α在从45°到135°的范围内。
当连接至共用外部电极的诸如1211a和1271a的邻近导线相互之间以预定角度沿不同方向延伸时,电流以不同的方向流过邻近导线1211a和1271a。这导致了抑制邻近导线1211a和1271a之间的磁通量增强的效果,从而导致不会在连接至同一个外部电极的邻近导线中发生强互感。结果,进一步降低了电容器的ESL。
图9至图22是示出根据本发明实施例的十端子多层芯片电容器的内部电极结构的平面图。这种十端子电容器的外部结构在图23中示出。参考图23,电容器200包括形成在电容器本体220的外部的十个外部电极231至240。外部电极231至240排列在电容器本体220的外部,其电极交替。
参考图19,形成在介电层2000上的八(8)个内部电极层2010至2080顺序地一个堆叠在另一个顶上,组成一个块。重复堆叠这样的多个块,以制造电容器本体(参见图23的参考标号220)。利用隔离缝将内部电极层2010分为一对共面电极板或共面电极板对2011和2012。以同样的方式,也将其他内部电极层2020至2080中的每个分为共面电极板对。共面电极板对(例如,2011和2012)具有相反的极性。诸如2011和2021的相对电极板组成电容元件。
如图19所示,每个电极板(例如,2011)具有一条导线(例如,2011a)。导线2011a至2082a为外部电极(参见图23的参考标号231至240)提供连接,以将内部电极层2010至2080电连接至外部电极231至240。同样在这个实施例中,延伸至电容器本体的一个侧面的导线(例如,2011a、2021a、2031a、2041a、2051a、2061a、2071a、及2081a)沿着堆叠方向以之字形排列。具体地,第一至第五导线2011a、2021a、2031a、2041a、及2051a分别连接至第一至第五外部电极231至235。第六导线2061a连接至第四外部电极234,第七导线2071a连接至第三外部电极233,以及第八导线2081a连接至第二外部电极232。
根据这个实施例,将每个内部电极层分为两个(或一对)电极板,且每个电极板都具有一条导线。从而,有可能将电容器的ESR保持在适当水平,从而防止任何的由过低的ESR导致的电源电路的不稳定。
另外,相反极性的垂直邻近电极板(例如,2011和2021)的导线(例如,2011a和2021a)总是水平邻近排列。即,相反极性的垂直邻近电极板的导线总是分别连接至水平邻近的外部电极。例如,导线2011a排列为连接至外部电极231,以及导线2021a排列为连接至与外部电极231邻近的外部电极232。所以,有可能抑制ESL增强因素。另外,延伸至电容器本体的一个表面的这些导线沿着堆叠方向以之字形排列。结果,适当的ESR值和降低的ESL可以进一步增强电源电路稳定性。
图20是示出根据本发明的另一实施例的十端子多层芯片电容器的内部电极结构的平面图。图20中所示的实施例与图19中所示的实施例的不同在于,共面电极板对具有相同的极性。
参考图20,利用隔离缝将形成在介电层2001上的内部电极层2110至2180中的每个分为相同平面上的电极板对。每个电极板(例如,2111)均仅具有一条导线(例如,2111a)。这些导线2111a至2082a提供到外部电极的连接(参见图23中的参考标号231至240),以将内部电极层2110至2180电连接至外部电极231至240。
图21是示出延伸至图20中的电容器的一个表面的导线的排列的侧视图。参考图21,延伸至电容器本体的一个表面的导线(例如,2111a、2121a、2131a、2141a、2151a、2161a、2171a、及2181a)以之字形排列(参见图21的虚线)。如上所述,从而可以抑制连接至共用外部电极的导线之间的互感,并进一步降低ESL。这个实施例可以产生适当的ESR值和较低的ESL值。在图21中,参考标号D’表示导线2181a之间的距离。
图22是示出根据本发明的另一实施例的十端子多层芯片电容器的内部电极结构的内部电极结构的平面图。在图22的实施例中,每个内部电极层包括完整的电极板,即,没有被分割的单一电极板。图22的内部电极结构对应于通过将图20的内部电极结构的两个分割的、共面电极板连接为一个板形成的结构。
参考图22,介电层2001上的八个内部电极层2110’、2120’、2130’、2140’、2150’、2160’、2170’、及2180’组成一个块。内部电极层2110’至2180’中的每个由完整单一结构形成,即,一个电极板。每个电极板具有两条延伸至电容器本体的两个相对表面的导线(参考标号对2111a和2112a至2181a和2182a)。(每个电极板都具有两条导线,每条导线均延伸至每个相对表面。)导线2111a至2182a(参见图15的参考标号231至240)提供到外部电极的电连接,从而将内部电极层2110’至2180’电连接至外部电极231至240。
根据这个实施例,内部电极层2110’至2180’中的每个仅具有两条导线2111a和2112a、2121a和2122a、2131a和2132a、2141a和2142a、2151a和2152a、2161a和2162a、2171a和2172a、或2181a和2182a,从而使得电容器可以具有不过小的适当ESR值。
另外,由于每个内部电极层均包括一个电极板(即,完整单一结构),所以阶梯部分(或厚度差异)仅发生在制造过程中,从而减少了这种阶梯部分导致的消极效果。由于没有由于隔离缝导致的电容器中的损失,所以,这个实施例具有高于具有隔离缝的那些实施例的电容。同样在这个实施例中,具有不同极性的垂直邻近电极板的导线(例如,2111a和2121a)总是在垂直方向彼此邻近排列。这样可以抑制ESL增强的因素。同样,在这个实施例中,延伸至电容器本体的一个表面上的导线(例如,2111a、2121a、2131a、2141a、2151a、2161a、2171a、及2181a)以之字形排列。
图24示出了根据本发明的其他实施例的多层芯片电容器的内部电极结构。图24的电容器对应于其外部结构示出在图18中的八端子多层芯片电容器。
参考图24,介电层1006上的第一至第八内部电极层1610至1680组成一个块。在八端子电极层1610至1680中,两个内部电极层中的每个均具有两条导线,并且其他六个内部电极层中的每个均具有一条导线。即,第四和第八电极层1640和1680中的每个均具有两条延伸至电容器本体120的相对表面的导线1641a、1642a、或1681a、1682a,并且剩下的第一至第三和第五至第七内部电极层1610至1630和1650至1670中的每个均具有一条导线1610a、1620a、1630a、1650a、1660a、或1670a。
具体地,在这个实施例中,利用隔离缝将第四和第八内部电极层1640和1680中的每个分为两个电极板1641、1642、或1681、1682。第一至第三和第五至第七电极层1610至1630和1650至1670中的每个均包括没有被分割的一个电极板。
同样,在这个实施例中,具有不同极性的垂直邻近板的导线总是在垂直方向互相邻近。为了提供这个特点,图24的电容器采用了下列的导线排列结构。
第一至第三内部电极层1610至1630的导线1610a至1630a在垂直方向顺序邻近地排列。同样地,第五至第七内部电极层1650至1670的导线1650a至1670a在水平方向顺序邻近地排列。
第四内部电极层1640的第一导线1641a与第三内部电极层1630的导线1630a水平邻近排列。另外,第四内部电极层1640的第二导线1642a与第五内部电极层1650的导线1650a水平邻近排列。因此,第四内部电极层1640的导线1641a和1642a分别与第三和第五内部电极层1630和1650的导线1630a和1650a邻近排列(即,这两个内部电极层与第四内部电极层垂直邻近)。
第八内部电极层1680的第三导线1681a排列为与邻近块NB的第一内部电极层1610(NB)的导线1610a(NB)水平邻近。另外,第八内部电极层1680的第四导线1682a排列为与第七内部电极层1670的导线1670a水平邻近。因此,第八内部电极层1680的导线1681a和1682a分别与第一和第七内部电极层1610(NB)和1670的导线1610a(NB)和1670a水平邻近排列(即,这两个内部电极层与第八内部电极层1680垂直邻近)。
贯穿电容器的整个内部结构,这些垂直邻近且具有不同极性的电极板的导线总是在水平方向邻近排列。因此,不同极性的邻近导线相互作用,以抵消磁通量,从而降低电容器的ESL。另外,由于每个内部电极层仅具有一条或两条导线,所以电容器可以具有不过小的适当的ESR值。
另外,通过将完整的内部电极层1610、1620、1630、1650、1660、及1670排列在具有隔离缝的分割的内部电极层1640和1680之间,有可能将一致的电压应用于压制过程和烧结过程中,从而很好地防止分层。
图25示出了图24中所示的多层芯片电容器的改变的内部电极结构。图25的实施例对应于通过将图24的内部电极结构的两个分割的、共面电极板1641、1642、1681、1682连接为一个板形成的结构。
参考图25,第一至第八内部电极层1610、1620、1630、1640’、1650、1670、及1680’顺序堆叠在一个块中。内部电极层1610至1680’中的每个均包括一个完整电极板,其具有至少一条用于提供到外部电极的连接的导线。
第四和第八内部电极层1640’和1680’中的每个都具有延伸至电容器本体的相对表面的两条导线1641a、1642a、或1681a、1682a。剩下的第一至第三和第五至第七内部电极层1610至1630和1650至1670中的每个都具有一条导线1610a、1620a、1630a、1650a、1660a、或1670a。
第一至第三内部电极层1610至1630的导线1610a至1630a顺次水平排列。同样地,第五至第七电极层1650至1670的导线1650a至1670a顺次水平排列。
第四内部电极层1640’的导线1641a与第三内部电极层1630的导线1630a水平邻近排列,且第四内部电极层1640’的导线1642a与第五内部电极层1650的导线1650a水平邻近排列。
另外,第八内部电极层1680’的导线1681a与邻近块NB的第一内部电极层1610(NB)的导线1610a(NB)水平邻近排列。第八内部电极层1680’的导线1681b与第七内部电极层1670的导线1670a水平邻近排列。
贯穿电容器的整个内部结构,这些垂直邻近且具有不同极性的电极板的导线总是在水平方向邻近排列。从而可以抑制ESL增强因素。另外,由于每个内部电极层仅具有一条或两条导线,所以电容器可以具有不过低的适当的ESR值。
另外,由于每个内部电极层均包括一个电极板(即,完整单一结构),所以在制造过程中很少发生阶梯部分(或厚度差异),从而降低了相关的消极效果。由于没有由于隔离缝导致的电容器的损失,所以这个实施例具有高于具有隔离缝的那些实施例的电容。
尽管参考具体的说明性实施例和附图描述了本发明,但是本发明不限于此而是通过权利要求来限定。本领域技术人员将会明白,可以在不脱离本发明的范围和精神的条件下,将实施例替换、改变、或修改为各种形式。例如,可以对实施例中描述的内部电极层的形状或外部电极的数目进行修改或改变。
根据如上所述的本发明的实施例,可以防止电容器的ESR过低,且进一步降低了ESL。从而,改善了电源电路的稳定性,满足了目标阻抗,且可以稳定设计配电网。另外,可以通过调节非隔离缝的长度容易地控制ESR。

Claims (38)

1.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,所述外部电极的总数为八个;
其中,每个所述块均包括沿所述堆叠方向顺序排列的六个所述内部电极层;
其中,第一至第四外部电极顺次排列在所述电容器本体的表面上;
第一至第六电极板在每个块中顺序地一个堆叠在另一个顶上,所述第一至第六电极板中的每个都具有一条延伸至所述电容器本体的所述表面的导线;
所述第一至第四电极板的所述导线分别连接至所述第一至第四外部电极;以及
所述第五电极板的所述导线连接至所述第三外部电极,并且所述第六电极板的所述导线连接至所述第二外部电极。
2.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,所述外部电极的总数为十个;
其中,每个所述块均包括沿所述堆叠方向顺序排列的八个所述内部电极层;
其中,第一至第五外部电极顺次排列在所述电容器本体的表面上;
第一至第八电极板在每个块中顺序地一个堆叠在另一个顶上,所述第一至第八电极板中的每个均具有一条延伸至所述电容器本体的所述表面的导线;
所述第一至第五电极板的所述导线分别连接至所述第一至第五外部电极;以及
所述第六电极板的导线连接至所述第四外部电极,所述第七电极板的所述导线连接至所述第三外部电极,并且所述第八电极板的所述导线连接至所述第二外部电极。
3.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,连接至共用外部电极的所述导线的垂直邻近导线相互之间以预定角度沿不同方向延伸。
4.根据权利要求3所述的多层芯片电容器,其中,所述角度在从45°到135°的范围内。
5.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层由隔离缝分成共面电极板,每个所述电极板具有用于将所述电极板电连接至对应外部电极的导线,
其中,所述共面电极板具有不同的区域。
6.根据权利要求5所述的多层芯片电容器,其中,每个所述电极板都具有一条导线。
7.根据权利要求5所述的多层芯片电容器,其中,每个所述内部电极层由隔离缝分成共面电极板对。
8.根据权利要求7所述的多层芯片电容器,其中,该对共面电极板具有相反的极性。
9.根据权利要求7所述的多层芯片电容器,其中,该对共面电极板具有相同的极性。
10.根据权利要求5所述的多层芯片电容器,其中,所述隔离缝平行于所述电容器本体的所述纵向方向延伸。
11.根据权利要求5所述的多层芯片电容器,其中,所述垂直邻近的内部电极层的所述隔离缝具有不同的平面内位置。
12.根据权利要求5所述的多层芯片电容器,其中,所述垂直邻近的内部电极层的所述隔离缝具有相同的平面内位置。
13.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至
所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层由隔离缝分成共面电极板,每个所述电极板具有用于将所述电极板电连接至对应外部电极的导线,
其中,所述隔离缝在所述电容器本体的对角线方向延伸。
14.根据权利要求13所述的多层芯片电容器,其中,所述垂直邻近的内部电极层的所述隔离缝沿不同的对角线方向延伸。
15.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层由隔离缝分成共面电极板,每个所述电极板具有用于将所述电极板电连接至对应外部电极的导线,
其中,所述垂直邻近的内部电极层的所述隔离缝排列为彼此垂直延伸。
16.根据权利要求15所述的多层芯片电容器,其中,所述隔离缝包括沿着所述电容器本体的所述纵向方向延伸的纵向隔离缝和垂直于所述纵向方向的所述电容器本体延伸的横向隔离缝,所述纵向隔离缝和所述横向隔离缝沿着所述堆叠方向彼此交替。
17.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至
所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层由隔离缝分成共面电极板,每个所述电极板具有用于将所述电极板电连接至对应外部电极的导线,
其中,每个所述电极板都具有从所述电极板的侧面向所述中心延伸的非隔离缝,以改变所述电极板内的电流,
其中,所述隔离缝和所述非隔离缝平行于所述电容器本体的所述纵向方向延伸。
18.根据权利要求17所述的多层芯片电容器,其中,所述垂直邻近的电极板中的对应非隔离缝具有相同的平面内位置。
19.根据权利要求17所述的多层芯片电容器,其中,所述共面电极板对允许电流以相反方向流过其邻近区域。
20.根据权利要求17所述的多层芯片电容器,其中,所述垂直邻近的电极板允许电流以相反方向流过。
21.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个块中的所述内部电极层中的至少一个由隔离缝分成共面电极板,并且其中,每个所述电极板都具有用于将所述电极板电连接至对应的所述外部电极的导线,
其中,所述隔离缝沿着所述电容器本体的所述纵向方向延伸。
22.根据权利要求21所述的多层芯片电容器,其中,所述分成的内部电极层的每个电极板均具有用于电连接至所述外部电极的一条导线。
23.根据权利要求21所述的多层芯片电容器,其中,所述外部电极的总数为八个。
24.根据权利要求23所述的多层芯片电容器,其中,每个所述块均包括沿堆叠方向顺序排列的六个所述内部电极层,并且所述六个内部电极层中的三个中的每个被分成一对所述共面电极板。
25.根据权利要求24所述的多层芯片电容器,其中,每个所述块均包括顺序堆叠的所述内部电极层中的第一至第六内部电极层;
所述第一、第三、和第五内部电极层中的每个被分成一对所述电极板,所述分成的内部电极层的每个电极板具有一条导线;以及
所述第二、第四、和第六内部电极层中的每个均是具有
两条导线的单一完整结构。
26.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层均包括一个完整的电极板,且每个电极板均具有电连接至所述外部电极的导线,
其中,每个所述电极板均具有延伸至所述电容器本体的相对表面的两条导线;以及
延伸至所述相对表面中的每个的所述导线在每个所述表面上沿着所述堆叠方向以之字形排列。
27.根据权利要求26所述的多层芯片电容器,其中,所述外部电极的总数为八个。
28.根据权利要求27所述的多层芯片电容器,其中,每个所述块均包括顺序堆叠的所述内部电极层中的第一至第六内部电极层。
29.根据权利要求28所述的多层芯片电容器,其中,所述外部电极层中的第一至第四外部电极顺序排列在所述电容器本体的表面上;
所述第一至第六内部电极层分别具有延伸至所述电容器本体的表面的第一至第六导线;
所述第一至第四导线分别连接至所述第一至第四外部电极;以及
所述第五导线连接至所述第三外部电极,并且所述第六导线连接至所述第二外部电极。
30.根据权利要求26所述的多层芯片电容器,其中,所述外部电极的总数为10个。
31.根据权利要求30所述的多层芯片电容器,其中,每个所述块均包括顺序堆叠的所述内部电极层中的第一至第八内部电极层。
32.根据权利要求31所述的多层芯片电容器,其中,所述外部电极中的第一至第五外部电极顺序排列在所述电容器本体的表面上;
所述第一至第八内部电极层分别具有延伸至所述电容器本体的所述表面的第一至第八导线;
所述第一至第五导线分别连接至所述第一至第五外部电极;以及
所述第六导线连接至所述第四外部电极,所述第七导线连接至所述第三外部电极,并且所述第八导线连接至所述第二外部电极。
33.一种多层芯片电容器,包括:
电容器本体,具有一个堆叠在另一个顶上的多个介电层;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层具有一条或两条延伸至所述电容器本体的外表面的导线,并包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上,并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层组成重复地一个堆叠在另一个顶上的多个块,每个块包括沿堆叠方向顺序排列的多个所述内部电极层;
每个所述电极板都具有一条延伸至所述电容器本体的表面的导线;
延伸至所述电容器本体的所述表面的所述导线沿着所述堆叠方向以之字形排列;以及
具有相反极性的垂直邻近的所述电极板的所述导线排列为彼此水平邻近;
其中,每个所述内部电极层均包括一个完整的电极板,且每个电极板均具有电连接至所述外部电极的导线,
其中,连接至共用外部电极的导线中的垂直邻近的导线相互之间以预定角度沿不同方向延伸。
34.根据权利要求33所述的多层芯片电容器,其中,所述角度在从45°到135°的范围内。
35.一种多层芯片电容器,包括:
一个堆叠在另一个顶上的多个介电层的电容器本体;
多个内部电极层,在所述电容器本体中通过所述介电层彼此分离,其中,每个所述内部电极层均具有向所述电容器本体的外表面延伸的一条或两条导线,且包括至少一个共面电极板;以及
多个外部电极,排列在所述电容器本体的所述外表面上并通过所述导线电连接至所述内部电极层,
其中,所述内部电极层构成一个堆叠在另一个顶上的重复堆叠的多个块,每个所述块均包括沿堆叠方向顺序排列的多个所述内部电极层;以及
具有相反极性的所述电极板中的垂直邻近的电极板的所述导线排列为彼此水平邻近,
其中,所述外部电极的总数为八个,
其中,每个所述块均包括顺序堆叠的第一至第八内部电极层;
所述第四至第八内部电极层中的每个均具有延伸至所述电容器本体的相对面的一对导线;以及
所述第一至第三和第五至第七内部电极层中的每个均具有一条导线。
36.根据权利要求35所述的多层芯片电容器,其中,所述第四内部电极层具有延伸至所述电容器本体的相对表面中的第一相对表面的第一导线以及延伸至所述电容器本体的相对表面中的第二相对表面的第二导线,以及所述第八内部电极层具有延伸至所述第一表面的第三导线和延伸至所述第二表面的第四导线;
所述第一导线与所述第三内部电极层的所述导线水平邻近排列,并且所述第二导线与所述第五内部电极层的所述导线水平邻近排列;以及
所述第三导线与邻近块的所述第一内部电极层的所述导线水平邻近排列,并且所述第四导线与所述第七内部电极层的所述导线水平邻近排列。
37.根据权利要求36所述的多层芯片电容器,其中,所述第四内部电极层包括由隔离缝分成的第一和第二电极板,所述第一电极板具有所述第一导线,所述第二电极板具有所述第二导线;
所述第八内部电极层包括由隔离缝分成的第三和第四电极板,所述第三电极板具有所述第三导线,所述第四电极板具有所述第四导线;以及
所述第一至第三和第五至第七内部电极层中的每个都是完整的且具有一条导线。
38.根据权利要求36所述的多层芯片电容器,其中,每个所述内部电极层包括一个完整的电极板,每个所述完整的电极板具有一条用于电连接至所述外部电极中的对应外部电极的导线。
CN200610145204XA 2005-11-17 2006-11-17 多层芯片电容器 Active CN1967750B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2005-0110394 2005-11-17
KR1020050110394 2005-11-17
KR20050110394 2005-11-17
KR1020060099092A KR100790708B1 (ko) 2005-11-17 2006-10-11 적층형 칩 커패시터
KR10-2006-0099092 2006-10-11
KR1020060099092 2006-10-11

Publications (2)

Publication Number Publication Date
CN1967750A CN1967750A (zh) 2007-05-23
CN1967750B true CN1967750B (zh) 2011-04-13

Family

ID=38076452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610145204XA Active CN1967750B (zh) 2005-11-17 2006-11-17 多层芯片电容器

Country Status (3)

Country Link
JP (2) JP2010153902A (zh)
KR (1) KR100790708B1 (zh)
CN (1) CN1967750B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946007B1 (ko) * 2007-12-07 2010-03-09 삼성전기주식회사 적층형 칩 커패시터 및 회로 기판 장치
US7961453B2 (en) 2007-01-09 2011-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor
US8098477B2 (en) 2007-07-09 2012-01-17 Tdk Corporation Feedthrough multilayer capacitor with capacitance components connected in parallel
JP4412386B2 (ja) * 2007-07-09 2010-02-10 Tdk株式会社 貫通型積層コンデンサ
KR100887124B1 (ko) * 2007-08-06 2009-03-04 삼성전기주식회사 적층형 칩 커패시터
KR100925623B1 (ko) * 2007-08-31 2009-11-06 삼성전기주식회사 적층형 칩 커패시터 및 이를 구비한 회로기판 장치 및회로기판
KR100925624B1 (ko) * 2008-02-21 2009-11-06 삼성전기주식회사 적층형 칩 커패시터
KR100956237B1 (ko) 2008-05-08 2010-05-04 삼성전기주식회사 적층형 칩 커패시터
KR101141328B1 (ko) 2009-03-17 2012-05-03 삼성전기주식회사 적층형 칩 캐패시터, 적층형 칩 캐패시터 어셈블리 및 그 제조방법
KR101079509B1 (ko) 2009-10-09 2011-11-03 삼성전기주식회사 적층형 칩 커패시터
JP2012035668A (ja) * 2010-08-04 2012-02-23 Kawasaki Heavy Ind Ltd 自動二輪車のブレーキ配管構造
KR101452067B1 (ko) 2012-12-14 2014-10-16 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
KR101452074B1 (ko) * 2012-12-27 2014-10-16 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
KR101832611B1 (ko) 2016-06-21 2018-02-26 삼성전기주식회사 적층형 커패시터 및 그 실장 기판
US20220416011A1 (en) * 2021-06-23 2022-12-29 Mediatek Singapore Pte. Ltd. Capacitor structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261457A (zh) * 1997-06-27 2000-07-26 阿维科斯公司 表面安装的多层电容器
CN1530977A (zh) * 2003-03-12 2004-09-22 Tdk��ʽ���� 叠层电容器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910009028B1 (ko) * 1989-03-10 1991-10-28 삼화콘덴서공업 주식회사 적층형콘덴서 자동조립방법 및 그 장치
KR200234435Y1 (ko) * 1997-12-13 2001-09-06 이형도 콘덴서 내장 표면실장형 압전공진부품
JP3930245B2 (ja) * 2000-11-14 2007-06-13 Tdk株式会社 積層型電子部品
JP3788329B2 (ja) * 2001-11-29 2006-06-21 株式会社村田製作所 コンデンサアレイ
JP3833145B2 (ja) * 2002-06-11 2006-10-11 Tdk株式会社 積層貫通型コンデンサ
JP3847234B2 (ja) * 2002-09-10 2006-11-22 Tdk株式会社 積層コンデンサ
JP3988651B2 (ja) * 2003-01-31 2007-10-10 株式会社村田製作所 積層コンデンサ、配線基板、デカップリング回路および高周波回路
JP3821790B2 (ja) * 2003-04-10 2006-09-13 Tdk株式会社 積層コンデンサ
US7599166B2 (en) * 2005-11-17 2009-10-06 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261457A (zh) * 1997-06-27 2000-07-26 阿维科斯公司 表面安装的多层电容器
CN1530977A (zh) * 2003-03-12 2004-09-22 Tdk��ʽ���� 叠层电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-111951A 2004.04.08

Also Published As

Publication number Publication date
JP5172932B2 (ja) 2013-03-27
KR100790708B1 (ko) 2008-01-02
KR20070052656A (ko) 2007-05-22
CN1967750A (zh) 2007-05-23
JP2011049590A (ja) 2011-03-10
JP2010153902A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
CN1967750B (zh) 多层芯片电容器
KR100884902B1 (ko) 적층 커패시터 및 그 실장구조
US7599166B2 (en) Multilayer chip capacitor
US7974072B2 (en) Multilayer capacitor array
EP1085539B1 (en) Multilayer capacitor
CN100550234C (zh) 多层片式电容器及嵌有多层片式电容器的印刷电路板
US6191932B1 (en) Monolithic capacitor
US7292430B2 (en) Multi-layer chip capacitor
KR100678496B1 (ko) 적층 콘덴서
KR101018254B1 (ko) 적층형 칩 캐패시터
US6292350B1 (en) Multilayer capacitor
JP2000114096A (ja) 積層コンデンサ
US7961453B2 (en) Multilayer chip capacitor
JP2000323354A (ja) 積層コンデンサ
KR20080055651A (ko) 적층 콘덴서
KR20080030501A (ko) 적층 콘덴서
US20210407728A1 (en) Coil component and filter circuit including the same
JP2000208361A (ja) 積層コンデンサ
JP3930245B2 (ja) 積層型電子部品
US20080225463A1 (en) Layered capacitor and mounting structure
JP3563665B2 (ja) 積層型電子回路部品
KR101053410B1 (ko) 적층형 칩 커패시터
JP3563664B2 (ja) 積層型電子回路部品及び積層型電子回路部品の製造方法
JP4287807B2 (ja) 積層型コンデンサ
US7733628B2 (en) Multilayer chip capacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant