CN1938875B - 功能性分子元件 - Google Patents

功能性分子元件 Download PDF

Info

Publication number
CN1938875B
CN1938875B CN2005800099798A CN200580009979A CN1938875B CN 1938875 B CN1938875 B CN 1938875B CN 2005800099798 A CN2005800099798 A CN 2005800099798A CN 200580009979 A CN200580009979 A CN 200580009979A CN 1938875 B CN1938875 B CN 1938875B
Authority
CN
China
Prior art keywords
electric field
electrode
molecule
metal
functional molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800099798A
Other languages
English (en)
Other versions
CN1938875A (zh
Inventor
松居惠理子
渡辺春夫
奥利弗·哈纳克
松泽伸行
安田章夫
水谷义
山内贵惠
北川进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Deutschland GmbH
Sony Corp
Original Assignee
Sony International Europe GmbH
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony International Europe GmbH, Sony Corp filed Critical Sony International Europe GmbH
Publication of CN1938875A publication Critical patent/CN1938875A/zh
Application granted granted Critical
Publication of CN1938875B publication Critical patent/CN1938875B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5664Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using organic memory material storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/14Use of different molecule structures as storage states, e.g. part of molecule being rotated
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • H10K10/482Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors the IGFET comprising multiple separately-addressable gate electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明涉及一种功能性分子元件,其中形成柱状排列结构且形状近似于圆盘的有机金属络合物分子(1)的构型通过施加电场而改变,由此来表达功能,更具体地说,该有机金属络合物分子的结构因为施加电场而改变,它诱导该分子介电常数各向异性的变化。因此,上述功能性分子元件能切换被测电极之间的导电率,具有三个或更多的稳定值,并因此能利用它的多值存储性能来形成实际应用元件。

Description

功能性分子元件
技术领域
本发明涉及一种在电场作用(施加)下发挥功能的新的功能性分子元件。
本申请要求2004年2月10日递交的日本专利申请No.2004-033055(其整个内容在此作为参考并入本发明)的优先权。
背景技术
迄今,纳米技术是用于观察、制备(制造)和采用尺寸约万万分之一(10-8m=10nm)的精细结构的技术。
在1980年的后半年,已发明出称作扫描型隧道显微镜的超高精度显微镜,由此可观察到一个原子和/或一个分子。如果使用这种扫描型隧道显微镜,不仅可观察到原子或分子,而且可逐个操作(利用)原子或分子。
例如,已经报道了原子排列在晶体表面以写入字母等的例子。但是,即使是据说原子或分子是可操作或利用的,逐个操作或利用大量的原子或分子以组装新材料(物质)或器件也是不切实际的。
为了操作或利用原子或分子或它们的集合体以形成纳米尺寸的结构,需要一种新的超精度处理技术以实现这种结构。作为纳米精度的这种精细处理技术,已知大致分为两种体系。
一种体系是常在各种半导体器件的制造工艺中所使用的方法。该方法是,如所谓自上而下型的这样一种方法,其中将大硅片精确地切成最小尺寸以制备集成电路。另一体系是自下而上型方法,将原子或分子作为用作微小(非常小)元件的小部件或元件加以组装以制造目标纳米结构。
关于自上而下体系能制造小尺寸的什么结构的限制问题,英特尔公司共同创始人Gordon Moore在1965年提出著名的Moore定律。该定律内容为:“晶体管的集成度每十八个月加倍”。从1965(年)以来的三十多年中,半导体企业界根据Moore定律已提高了晶体管的集成度。
U.S.半导体工业协会(SIA)宣布的今后十五年的半导体国际技术路线图(ITRS)表明,Moore定律仍有效。
ITRS由2005(年)之前的短程路线图和2014(年)之前的长程路线图组成。按照短程路线图,半导体芯片的加工标准被假定为等于约100nm且微处理器的栅极(gate)长度被假定为等于65nm(在2005年)。按照长程路线图,栅极长度被假定为等于20-22nm(在2014年)。
随着半导体芯片微型化的进展,操作速度变高,同时抑制功率消耗。另外,从单个晶片取得的产品(芯片)的数目增加,而且生产成本也下降。这是因为,微处理器的制造者竞争该加工标准和新产品的晶体管集成度。
在1999年11月,USA的科研小组提出了划时代的微型化技术研究成果。该研究成果涉及一种设计称作FinFET的FET(场效应晶体管)栅极的方法,Chainmin Fuh教授(在加利福尼亚大学的Barkley分校负责计算机科学)等的小组开发了这种方法。该方法能够在半导体芯片上形成比已有技术大400倍的晶体管。
栅极是控制电子在FET的通道处流动的一种电极,和根据目前的典型设计而具有这样的结构,该结构中栅极平行于半导体的表面而放置和用于控制一侧的通道。对于该结构,人们认为,如果栅极不具有预定长度或较长,那么不可能截断(中断)电子的流动,因此栅极长度是限制晶体管微型化的一个原因(因素)。
相反,在FinFET的情况下,栅极是跨越在通道两面上的叉型,这样有效地控制通道。在FinFET的结构中,与常规结构相比,栅极长度和晶体管可进一步减小。
如上相同的科研小组已制造出的原型FET的栅极长度是18nm,这是目前典型的栅极长度的十分之一。该栅极长度相当于ITRS的路线图所指出的2014(年)的尺寸。另外据说,可实现其一半的栅极长度。由于Fuh等人无意于先行获得专利,使得这些结构被广泛用于半导体企业界,FinFET,也有可能成为制造技术的主流。
但是,还要指出,“Moore’s Law”终究能达到该自然定律的极限。
例如,在目前成为主流的半导体技术中,电路图案在硅晶片上通过平版印刷技术而烘烤以制造半导体芯片。为了实现进一步微型化(精细结构),必须增加分辨率。为了增加分辨率,必须使用具有较短波长的光的技术。
另外,每个半导体芯片的卡值随着集成度的增加而可能变得太大。结果,造成高温的半导体芯片可能发生操作错误,或热破碎。
另外按照专家的预计认为,如果半导体企业界继续实际上使芯片微型化(缩小),器件成本和/或加工费增加,这样从经济观点上在约2015年半导体芯片的制造将变得不可能,除了上述原因,还由于产率的下降。
作为一种克服如上所述的自上而下体系的技术障碍的新技术,注意力的焦点集中在研究如何使各个分子具有作为电子部件(元件)的功能。基于这样研究的器件是由单个分子(分子开关等)组成的电子器件,并通过自下而上体系而制造(装配)。
另外对于金属、陶瓷和/或半导体,正在进行通过自下而上体系来制备(制造)纳米尺寸的结构的研究。但如果注意力被吸引到原本各自独立且具有多达数百万种形状各异和/或功能各异等以显示其性能的分子上,那么可通过自下而上体系设计制造出这样的器件(分子器件),其特点完全不同于常规器件。
例如,导电分子的宽度仅是0.5nm。该分子的线能够实现的布线密度是目前集成电路技术所实现的约100nm线宽度的数千倍。另外,如果例如一个分子用作存储元件(器件),则可记录的量可以是DVD(数字通用盘)的一万倍或更多倍。
分子器件的合成方法是不同于常规半导体硅的化学方法。1986年,Mitsubishi Denki Kabushiki Kaisha的Yuji Hizuka开发出世界上第一个由聚噻吩(聚合物)组成的有机晶体管。
另外,U.S.Hewlett-Packard(HP)公司和加利福尼亚大学洛杉矶分校的研究小组成功地制造出有机电子器件并将其内容在1999年7月的ScienceMagazine上宣布。这些有机器件公开于U.S.专利No.6256767说明书和U.S.专利No.6128214说明书。它们在制备(制造)开关时使用由数百万个轮烷作为有机分子组成的分子膜连接这些分子开关,制成用作基本逻辑电路的AND栅极。
另外,U.S.A.的Rice大学和耶鲁大学的合作研究小组成功地制成分子开关,其中分子结构通过在电池作用下注射电子而改变以进行切换操作并在1999年11月在Science Magazine上宣布了这些分子开关(J.Chen,M.A.Reed,A.M.Rawlett和J.M.Tour,“Large on-off ratios and negaive differential resistancein a molecular electronic device”,Scienee,1999,Vol.286,1551-1552,J.Chen,M.A.Reed,C.Zhou,C.J.Muller,T.P.Burgin和J.M.Tour,“Conductance of amolecular junction”,Science,1997,Vol.278,252-2)。重复执行开-关操作的功能是HP(Hewlett-Packard)公司和加利福尼亚大学洛杉矶分校的小组所没有实现的功能。其尺寸是普通晶体管的百万分之一,并构成了用于制造小型高性能计算机的基础。
Professor J.Tour(Rice大学,化学)在成功合成后表明,因为无需高成本的清洁室用于普通半导体制造工艺,分子开关的生产成本可被降低至已有技术的数千分之一。在五至十年内,他计划制造分子和硅的混合型计算机。
1999年,Bell实验室(Lucent技术公司)通过使用并五苯单晶而制造出有机薄膜晶体管。该有机薄膜晶体管具有相当于无机半导体的特性。
尽管说对用作电子元件的分子器件的研究正在进行,但迄今涉及分子器件的大多数研究是与通过光、热、质子或离子等进行驱动的研究有关(BenL.Feringa,“Molecular Switches”,WILEY-VCH,Weinheim,2001)。
发明内容
本发明所要解决的问题
作为电场驱动的常规分子元件,现在只有利用已经历电场作用(施加)的分子自身的材料性能变化的元件,即其中被认为是单个元件的分子自身的电子态通过电场而改变的元件。例如,在有机FET中,有机分子中的载流子转移(运动)通过作用在通道区域内的有机分子上的电场变化而调节。
考虑到上述实际情况,本发明的一个目的是提供一种在新原理的基础上有效地通过电场而控制的功能性分子元件(器件)。
本发明涉及一种功能性分子元件,其中介电常数的各向异性是由电场所引起的分子结构的改变而改变的。
在本发明中,因为功能性分子元件通过使用这样的体系而构成,其中介电常数的各向异性通过电场所引起的分子结构改变而改变,因而可得到作为功能分子元件的电特性,如,导电性,等,且其电特性可通过电场改变所引起的分子结构改变而调节。
这种电场作用机理涉及一种适合于通过电场直接控制功能性分子元件的介电常数以调节其功能的机理,并且该机理不存在于在常规功能性分子元件或器件中,如,场效应晶体管等。在新电场作用机理的基础上,可组成功能性分子元件,该元件能以电池的高响应控制电特性。
根据以下参考附图解释的实施方案更显然得出本发明的其它目的和通过本发明得到的优点。
附图说明
图1A至1C是示意图,说明根据本发明的功能性分子元件所显示的三种切换操作模式,其中图1A显示其中没有施加电场的起始态,图1B显示其中施加低电场(电压)的状态,和图1C显示其中施加高电场(电压)的状态。
图2显示构成功能性分子元件的二次甲基胆色素酮(biladienone)金属络合物的结构式。
图3是模型图,显示二次甲基胆色素酮金属络合物的化学结构和其螺旋结构的模型。
图4A显示采用本发明的场效应型分子器件的示意横截面视图,和图4B是梳形电极的平面视图。
图5是示意横截面视图,以放大方式显示场效应型分子器件的基本部分。
图6A是示意透视图,显示当场效应型分子器件的电压接通时的行为,和图6B是示意透视图,显示当场效应型分子器件的电压关闭时的行为。
图7显示,每次开/关时,根据本发明实际实施例1的场效应型分子器件的电流和电压之间的关系。
图8显示场效应型分子器件的介电常数和电压之间的关系。
图9显示根据本发明对比例1的场效应型分子器件的电流和电压之间的关系。
具体实施方式
作为根据本发明的功能性分子元件,优选使用具有,如,正(直)链形式的侧链的期望为圆盘形或类圆盘状有机分子和金属离子的有机金属络合物分子,该有机分子具有介电常数各向并性和适合在电场的作用(施加)下改变结构。有机分子具有偶极矩的事实也导致相当于介电常数各向异性的作用。
如果使用在形式上类似于圆盘形状的具有这些侧链的有机分子,那么表现出盘形液晶的性能,从而使分子发生取向。因此,可表现出高介电常数的各向异性。关于此可参见‘S.T.Trzaska,H-F.Hsu和T.M.Swager,“CooperativeChiralith in Columnar Liquid Crystals:Studies of Fluxional OctahedralMetallomesogens.”,J.Am.Chem.Soc.,1999,Vol.121,4518-4519,和Yo Shimizu,“Columnar Liquid Crystals:Versatile molecular structures thereof andIntermolecular interaction”,Liquid Crystal,2002,Vol.6,147-159,以下进行描述’。
另一方面,因为有机分子具有介电常数各向异性和其结构或取向在电场作用下改变,这样其中形成络合物的部分等的构象根据电场改变而改变。因此,介电常数各向异性,即,电特性改变。
另外,优选的是,将具有侧链的圆盘状有机金属络合物分子的液晶溶液以在用于施加电场的电极上进行取向的状态配置在至少相对的电极之间,这样从相对电极的至少一个电极上得到对应于该电场的输出。
另外优选的是,在形成的柱状排列结构体中具有侧链的圆盘状有机金属络合物分子以柱状形式排列在这些相对的电极对之间。
另外优选的是,有机金属络合物分子的结构通过改变施加在具有侧链的圆盘状有机金属络合物分子上的电场的改变而改变,因此使介电常数张量的主轴与相对电极对的形成平面形成的角度发生改变。
在这种情况下,优选的是,绝缘层被提供在用于施加电场的第一电极上,第二和第三电极作为相对电极以它们相互不接触的方式形成在绝缘层上,在至少这些第二和第三电极之间配置柱状排列结构体,和用于施加电场的第四电极直接或通过绝缘层被提供在具有形成柱状排列结构体的侧链的圆盘状有机金属络合物分子上。
另外,优选的是,具有侧链的圆盘状有机分子是二次甲基胆色素酮衍生物如胆绿素或二次甲基胆色素酮,等,和金属离子是锌离子、铜离子或镍离子,等。
除了二次甲基胆色素酮衍生物,可以使用胆汁三烯衍生物、氟(florine)衍生物或氯衍生物等作为上述金属,可以使用其它典型的元素和/或过渡金属。
另外,侧链可具有3至12个碳原子数的直链形状。例如,可以提及-C10H21或-C8H17。因为侧链具有这样数目的碳原子,有机分子可令人满意地取向而不结晶。合成也变得容易了。即,如果碳原子的数目1~2,有机分子变得容易结晶,这样不能表现出液晶状的材料性能。结果,发生令人满意的取向。另外,如果碳原子的数目变得等于13或更多,有机分子难以经历取向。合成也变得困难。
另外,作为用于溶液的溶剂,可以使用的如极性溶剂如联苯体系液晶如4-戊基-4’-氰基联苯(5CB)或四氢呋喃等。优选的是,有机分子如二次甲基胆色素酮金属络合物等在该液晶溶液中的浓度是0.1~80%重量。另外理想的是,这些浓度是10~30%重量。
应该注意,上述“功能分子元件”不限于作为元件而构成的元件,而且可包括如上所述的分子器件,该器件中这些元件被组装起来(这同样适用于下述)。
以下根据附图具体说明本发明优选的实施方案。
实施方案1(功能分子元件)
作为其中三维结构通过施加电场而改变以显示功能的分子元件的功能的一个例子,切换操作是可想得到。图1A至1C以其中金属离子3和具有侧链5的圆盘状有机分子2形成络合物4的功能分子元件1为例,在一个模型中,示意地说明当向功能分子元件1施加电场时在金属离子3的外周所发生的改变。
因为具有侧链5的圆盘状有机金属络合物分子(功能分子1)具有多个针对金属3的活性部分,存在多个产生能量基本上彼此相等的结构异构体。在图1A所示没有施加电场(电压)的起始态中,有机金属络合物分子呈现具有最低产生能量的结构1a。
但是,当例如施加低电场(电压)时,有机金属络合物分子1进行结构改变,与其生成能量差异和所施加的电场(电压)强度相平衡由此得到结构1b,其中介电常数的各向异性沿着所施加的电场方向(电场施加方向)以使介电常数各向异性与图1B所示的所加电场方向相一致。
另外,当例如施加较高电场(电压)时,有机金属络合物分子进行结构改变以得到结构1c,其中其生成能量高和介电常数各向异性变得更大程度上与图1C所示的电场施加方向相一致。
如上所述,关于功能分子在施加电场时所进行的切换操作的动力学,可想得到的有至少两种图1B,1C所示的操作模式,这取决于电场强度的差异。这将进一步详细描述。
在图1A所示的没有施加电压的起始态中,具有功能分子元件1的侧链5的盘状有机金属络合物分子1a倾向呈现尽可能闭合的圆形结构。
如果在该状态下如图1B所示施加电场(电压),那么具有侧链5的盘状有机金属络合物分子1倾向呈现如打开的(展开的)圆形结构1b使得介电常数各向异性的方向倾向变得与电场方向相一致。另外,如果如图1C所示施加较高电场(电压),那么有机金属络合物分子1的结构改变成展开的圆形结构1c,使得介电常数各向异性的方向进一步与电场施加方向相一致,同时生成能量高于没有施加电场时的值。
如果这种状态被视为圆柱的全部,那么进行的变化似乎是螺旋节距在膨胀或收缩。
如上所述,具有侧链的圆盘状有机金属络合物分子1的结构或取向通过施加电场而改变。这造成针对金属离子3的络合物形成部分4的结构的变化以改变功能分子1的介电常数,即,导电率。
作为功能分子1,根据具有侧链5的圆盘状有机分子2或络合物形成部分4等的构型等的不同,可能有几种组合,。
例如,图2显示具有由取代基(R)(如,-C10H21)组成的侧链5的圆盘状有机分子2的有机金属络合物分子1,例如具有在其末端相互面对的C=O基团和金属离子(M),如,Zn(II)离子的二次甲基胆色素酮衍生物。
在该有机金属络合物分子1中,分子通过存在相互面对的末端的C=O基团(羰基基团)而呈现扭曲结构,和多个分子在它们之间呈现π-π堆叠结构以卷绕成螺旋。在图3中,显示其分子结构的模型。在这种情况下,螺旋结构通过M-基团或P-基团的光学异构体而形成。螺旋结构的分子之间的节距通过电场的作用(施加)而改变。
该有机金属络合物1,如,二次甲基胆色素酮金属络合物在没有施加电场(电压)的普通态下呈现蓝色,和在电场作用下由绿色改变为淡棕色。另外,如果电场被关闭,有机金属络合物1可逆地返回至原始态。应该注意,这些变化还因为温度而发生,因此认为,如果电场和温度都被控制,同样也可改变分子结构。
实施方案2(场效应型分子器件)
在此,作为形成柱状排列结构体的圆盘状有机金属络合物分子1,使用图2中所用的二次甲基胆色素酮2和作为金属离子3的锌(II)离子的络合物,并解释如图4A和4B所示而组装的这些络合物的场效应型分子器件21和其制造工艺。
图4A是示意横截面视图,显示场效应型分子器件21的结构,和图4B显示其中使用的梳形电极33和34。图4A是示意横截面视图,其中场效应型分子器件21沿着图4B所示的A-A线切开。
在场效应型分子器件21中,绝缘层32形成在兼任作为用于施加控制电场的电极的第一基底(基材)31上,和在其上形成用于测量二次甲基胆色素酮金属络合物1的导电率的梳形电极33和34。另一方面,用作控制电场的另一电极的ITO(氧化铟锡)膜36在第二基底(基材)35上形成,和在其上层压均一取向膜(绝缘膜)。将由二次甲基胆色素酮和锌(II)离子3组成的有机金属络合物1的液晶溶液22与垫片(省略其例示)一起放在两个基底31和35之间,和外周部分通过密封材料38而密封。
兼任作为用于施加控制电场的电极的第一基底31和用作用于施加控制电场的另一电极的ITO膜36被电连接到用于施加控制电场的电源41上。另外,梳形电极33和34被电连接到适用于测量导电率的电压表42和电流计43上。
图5是概念性的横截面示意图,用于在分子水平基础上解释场效应型分子器件21的结构。尽管图5中举例说明的只有二次甲基胆色素酮2和锌(II)离子3的络合物分子1的5个元件,这种例示是代表性的,因此理所当然的是,实际上包括大量的如上相同的分子(注意,省略了液晶分子的例示)。
如图5所示,在电场被关闭的状态下,络合物分子1在上和下方向上在图中沿着梳形电极,如,金电极33,34的侧表面进行取向以形成柱状排列结构体44,因此上述结构改变通过施加电场从该取向态发生。以下参考图5解释一种场效应型分子器件21的制造方法。
首先制造出用于向二次甲基胆色素酮金属(锌)络合物施加控制电场的控制电场施加电极31和36,和用于测量二次甲基胆色素酮导电率的梳形电极33和34。
作为兼任作为用于电极以施加控制电场的电极的第一基底(基材)31,使用如,高浓度掺杂的硅基材。氧化硅膜通过热氧化在第一基底31的表面上形成,从而提供绝缘层32。梳形电极33和34如金电极等通过溅射或图案化在绝缘层32上形成。
另一方面,作为第二基底35,使用如玻璃基底。ITO(氧化铟锡)膜在其表面上通过真空沉积等方法形成,使得如此形成的ITO膜成为用于施加控制电场的另一电极36。另外,绝缘层37如聚乙烯醇等在ITO膜36上通过涂覆等方法而形成。这些绝缘层37可以是通过摩擦等的液晶取向膜。
然后,将功能分子元件的材料组装到上述电极31和36之间的部分,以制备(制造)可测量导电率调节的场效应型分子器件21的主要部分。
首先将二次甲基胆色素酮2的锌络合物1溶解到具有正介电常数各向异性的4-戊基-4’-氰基联苯(5CB)液晶40中,将液晶溶液22涂覆到绝缘层32上。
将第一和第二基底31和35堆叠使得在第二基底35上形成的绝缘膜37变得与二次甲基胆色素酮的4-戊基-4’-氰基联苯(5CB)液晶溶液22紧密接触。
最后,将已被堆叠的两个基底31和35的外周部分用密封材料38如环氧树脂等密封,完成了场效应型分子器件21。
将如此制造的场效应型分子器件21的用于施加控制电场的电极31和36之上所施加的电压变成开和关以进行梳形电极33和34之间的二次甲基胆色素酮金属络合物2的导电率测量(对应于晶体管特性的测量)。图6A以模型的形式显示在电场处于关状态时的分子行为(结构改变),和图6B以模型的形式显示在电场处于开状态时的分子行为(结构改变)。
结果,如以下要描述的图7所示,例如,观察到一种调节作用使得在电场处于关状态时显示低电阻值,但即使施加非常低的电压,电阻值仍增加了一位(数位)或更多,和如果电压进一步增加,电阻值增加。即,作为该结构的稳定状态,存在至少三种稳定状态,即,具有栅压0V、40μV/μm和2mV/μm的三个阶段,因此能够应用这些多值记忆特性。尤其非常有利的是,该多值记忆甚至在低电压下也可实现。
如上所述,用于驱动二次甲基胆色素酮金属络合物的电场强度非常小,而且例如与4-戊基-4’-氰基联苯液晶进行切换操作时的电场强度相比,大约低了两位(数位)。因此,上述电阻调制作用当然不基于4-戊基-4’-氰基联苯液晶分子的切换。
另外,当施加在用于施加控制电场电极31和36上的电压被置于关闭状态以改变梳形电极33和34上的测量电压来进行梳形电极33和34之间的二次甲基胆色素酮金属络合物的导电率测量(对应于二极管特性的测量)时,显示与测量偏压值无关的预定电阻值。即,不显示任何二极管特性。
如上所述,没有事实表示上述是显示出导电率通过施加控制电场(栅压)而改变的晶体管特性,而二极管特性不被显示的事实表明,二次甲基胆色素酮金属络合物具有非常优异的取向态和具有高阶参数。
因为所用的二次甲基胆色素酮分子基团具有液晶特性,但无需自身进行切换以显示液晶性能(液晶性能可不通过单个分子显示,这是不可能的),当然,二次甲基胆色素酮金属络合物也可用作基于分子水平的元件。
应该注意,根据该实施方案的分子元件可应用于各种电子器件领域如开关,晶体管,储存器,逻辑电路和/或显示器,等。
按照上述的本发明,能提供一种新颖的功能性分子元件,其适合于通过施加电场而相对电场方向进行形成柱状排列结构体的圆盘状有机金属络合物分子1的结构改变,以调节络合物分子的结构,最终控制介电常数的各向异性。
换句话说,本发明从完全崭新的观点提出了实现分子元件的一种体系,该体系与分子本身被认为是n-型或p-型半导体的类似于硅体系半导体通常通过改变分子的电子态而改变导电率的体系不同。
根据以上事实,基于本发明的功能分子元件的优点,除了能用相同材料的分子构成从标准尺寸到纳米尺寸的元件和/或能从很多种材料分子中选择适合于目标的材料分子之外,还具有以下优点。
1.低能量消耗
因为使用一个分子或一个电子作为元件而进行操作,所以功能分子元件基本上在低功率消耗下操作。在以上使用的二次甲基胆色素酮中,与室温能量相比仅有超过一位(数位)的非常小的功率消耗。由于热量小,即使进行高集成,也难以发生热问题。
2.无需选择驱动频率
从最近液晶在高速响应特性方面的改进可以看出,材料或结构被设计成可预期大于常规的无机半导体的高速响应。
3.低环境污染特性
在合成普通有机化合物时,几乎不需要用于无机半导体制造工艺的对人类或环境有害的试剂,等。
以下更详细描述本发明的实施例。
实施例1
制备图5所示的场效应型分子器件21。首先,形成用于向具有M=Zn,R=-C10H21(示于图2)的二次甲基胆色素酮金属络合物1施加控制电场的控制电场施加电极31和36,和用于测量导电率的导电率测量电极33和34。
作为第一基底(基材)(用于施加控制电场的电极)31,使用高浓度掺杂的硅基材。在第一基底31的表面上进行热处理以形成氧化硅薄膜,这样使如此形成的氧化硅膜成为绝缘层32。由金组成的梳形电极33和34在绝缘层32上通过溅射或图案化而形成为用于测量二次甲基胆色素酮金属络合物1的导电率的电极。
然后,ITO透明电极36在第二基底(玻璃基底)35上通过真空沉积而形成作为用于施加控制电场的另一电极,随后在ITO透明电极36上形成绝缘层37。作为该材料,选择聚乙烯醇。制备聚乙烯醇的10%重量水溶液,通过旋涂工艺将如此制备的水溶液涂覆到ITO 36上,在110摄氏度下进行热处理30分钟,然后在真空中干燥72小时。
另外,第一和第二基底31和35通过垫片相互粘附,使这两个基底之间的间隙变得等于5mm。
然后,将由10%重量二次甲基胆色素酮2的锌络合物1和90%重量4-戊基-4’-氰基联苯(5CB)40组成的液晶溶液22利用毛细管现象注入第一和第二基底31和35之间的部分。
最后,将已被粘附的两个基底31和35的外周部分通过密封材料38密封,完成了场效应型分子器件21。
当如此制成的场效应型分子器件21的控制电场施加电极31和36上所施加的电压变成开和关以通过交流偏压测定梳形电极33和34之间的二次甲基胆色素酮2的导电率时,在电场处于切断状态时显示大的电流量,但观察到调制作用使得电流量通过施加电场而在两个阶段下降。
图7显示了对于施加电压大小,通过在如此制成的场效应型分子器件21的控制电场施加电极31和36上施加直流电场来测定在这种情况下梳形电极33和34之间的电流值所得的结果。
按照该图,如果从外加电压来看,整体被划分为三个区域。在图7中例证,电极31和36之间的二次甲基胆色素酮2的结构图被加到相关的模式区域。即,在外加电压处于切断状态的区域I时,显示相对高的电流值,即,低电阻特性。在外加电压是40μV/μm的区域II内,发生第一结构改变显示中间电阻值。另外,在外加电压是2mV/μm的区域III时,发生第二结构改变,显示相对低的电流值,即,高电阻特性。在这种情况下,得到开/关比率>100。这非常令人满意。
因此,该结构存在至少三种稳定状态。因此,可以应用这样的多值记忆特性。
另外,梳形电极33和34之间的介电常数的测量与电流量测量同时进行。图8的结果检验了介电常数改变之后电流量改变的机理且图7所示的电阻变化由介电常数改变而引起。
如上所述,因为形成了适合通过施加电场而改变圆盘状有机金属络合物分子1(其形成柱状排列结构体以显示功能)的构型的功能性分子元件,有机金属络合物分子1的结构在施加电场时改变。即,介电常数的各向异性改变。因此,测量电板之间的导电率允许被切换。作为其稳定值,有两种或三种稳定状态,和/或超过三种。因此,可以应用其多值记忆特性。
这样的电场作用机理不存在于通过电场直接控制功能分子元件的电子态的常规功能分子元件或器件,如,场效应晶体管等。在这种新电场作用机理的基础上,可形成一种能够以良好的电场响应的控制电特性的功能性分子元件。
对比例1
将在梳形电极33和34上施加的偏压增加或下降而在控制电场施加的电极31和36上不施加电场,由此来观察实施例1的二极管特性以测定电流量。
如图9所示,没有发现(观察到)基于施加偏移电场的任何变化。该结果表明,二次甲基胆色素酮分子2具有非常高的取向。这是因为二次甲基胆色素酮分子(功能性分子元件)显示如图7所示的晶体管特性,它对施加到控制电场施加电极31和36上的电场,即,甚至40μV的非常低的电压也高灵敏度地响应,但对施加到梳形电极33和34上的电场无论如何也不响应。另外,该结果检验了如图1所示的原理,其中结构改变根据所加电场的方向而发生。
当然,本发明的上述实施方案1,2不以任何方式限制本发明,但可在不背离本发明主旨的范围内根据情况需要进行改变或改进。
应该注意,尽管本发明已根据在附图中说明和被详细描述的某些优选的实施方案已描述了本发明,但本领域普通技术人员应该理解,本发明不限于这些实施方案,而是可在不背离由所附权利要求所给出的本发明的范围和构思的情况下实现各种改进,替代结构或等同物。
工业实用性
本发明的功能性分子元件用于元件或器件如场效应型分子器件等。

Claims (5)

1.一种功能性分子元件,其特征在于,
由电场引起的分子结构改变而使介电常数的各向异性发生改变,
所述功能性分子元件由有机金属络合物分子组成,该分子包括侧链和金属离子,每个侧链的结构在电场作用下发生改变,
其中侧链具有介电常数的各向异性或偶极矩,
其中该侧链呈现直链形状,并与为圆盘形的有机分子结合。
2.根据权利要求1的功能性分子元件,
其中包括侧链和金属离子的有机金属络合物分子的液晶溶液以用于在施加电场的电极上进行有机金属络合物分子取向的状态配置在一对相对电极之间,并从该相对电极的至少一个电极上输出相应于该电场的输出。
3.根据权利要求2的功能性分子元件,
其中在上述一对相对电极之间形成柱状排列结构体,该结构体中的有机金属络合物分子以柱状排列。
4.根据权利要求2的功能性分子元件,
其中有机金属络合物分子的结构通过作用在该有机金属络合物分子上的电场的改变而改变,从而改变介电常数张量的主轴方向与上述一对相对电极的形成平面形成的角度。
5.根据权利要求3的功能性分子元件,
其中绝缘层被提供在用于施加电场的第一电极上,第二和第三电极作为相对电极形成在该绝缘层上,且第二和第三电极相互不接触,至少在该第二和第三电极之间配置柱状排列结构体,并且用于施加电场的第四电极直接或通过绝缘层被提供在该柱状排列结构体上。
CN2005800099798A 2004-02-10 2005-02-10 功能性分子元件 Expired - Fee Related CN1938875B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004033055A JP4676704B2 (ja) 2004-02-10 2004-02-10 機能性分子素子
JP033055/2004 2004-02-10
PCT/JP2005/002084 WO2005076379A1 (ja) 2004-02-10 2005-02-10 機能性分子素子

Publications (2)

Publication Number Publication Date
CN1938875A CN1938875A (zh) 2007-03-28
CN1938875B true CN1938875B (zh) 2010-06-09

Family

ID=34836118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800099798A Expired - Fee Related CN1938875B (zh) 2004-02-10 2005-02-10 功能性分子元件

Country Status (6)

Country Link
US (1) US7902535B2 (zh)
EP (1) EP1715530B1 (zh)
JP (1) JP4676704B2 (zh)
KR (1) KR101100339B1 (zh)
CN (1) CN1938875B (zh)
WO (1) WO2005076379A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910314B2 (ja) * 2005-06-13 2012-04-04 ソニー株式会社 機能性分子素子及び機能性分子装置
JP2008124360A (ja) * 2006-11-15 2008-05-29 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置
JP5104052B2 (ja) * 2007-06-14 2012-12-19 ソニー株式会社 抵抗素子、ニューロン素子、及びニューラルネットワーク情報処理装置
JP5304050B2 (ja) 2008-06-19 2013-10-02 ソニー株式会社 機能性分子素子及びその製造方法、並びに機能性分子装置
JP5181962B2 (ja) * 2008-09-19 2013-04-10 ソニー株式会社 分子素子およびその製造方法ならびに集積回路装置およびその製造方法ならびに三次元集積回路装置およびその製造方法
JP5816176B2 (ja) * 2010-07-05 2015-11-18 学校法人同志社 原子フラックス測定装置
JP2015077594A (ja) 2013-09-12 2015-04-23 パナソニックIpマネジメント株式会社 多孔性金属有機骨格材料に二酸化炭素を吸着させる方法、多孔性金属有機骨格材料を冷却する方法、多孔性金属有機骨格材料を用いてアルデヒドを得る方法、および多孔性金属有機骨格材料を加温する方法
CN112631005B (zh) * 2019-10-08 2024-06-11 群创光电股份有限公司 显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128214A (en) * 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316885A (ja) * 1987-06-19 1988-12-26 キヤノン株式会社 液晶装置及び液晶パネルの接続法
JPH06302805A (ja) * 1993-04-15 1994-10-28 Mitsubishi Electric Corp 電子素子とその集積化電子素子及びそれらの使用方法
JP3465776B2 (ja) 1996-10-04 2003-11-10 シャープ株式会社 液晶表示装置
FR2759495B1 (fr) 1997-02-10 1999-03-05 Commissariat Energie Atomique Dispositif semiconducteur en polymere comportant au moins une fonction redresseuse et procede de fabrication d'un tel dispositif
JP4701372B2 (ja) * 2000-02-23 2011-06-15 独立行政法人産業技術総合研究所 新規なターフェニル骨格含有硫黄化合物
US6805817B2 (en) 2000-12-14 2004-10-19 Hewlett-Packard Development Company, L.P. Molecular devices activated by an electric field for electronic ink and other visual display
US6701035B2 (en) 2000-12-14 2004-03-02 Hewlett-Packard Development Company, L.P. Electric-field actuated chromogenic materials based on molecules with a rotating middle segment for applications in photonic switching
AU2002339876A1 (en) * 2001-09-04 2003-03-18 Wisconsin Alumni Research Foundation Liquid crystal switching mechanism
US7498084B2 (en) 2001-09-05 2009-03-03 Sharp Kabushiki Kaisha Macromolecular structure, functional device having the same, transistor, and display apparatus using the same
US7193237B2 (en) 2002-03-27 2007-03-20 Mitsubishi Chemical Corporation Organic semiconductor material and organic electronic device
WO2004059756A1 (ja) 2002-12-25 2004-07-15 Sony Corporation 機能性分子素子及び機能性分子装置
JP4117559B2 (ja) * 2002-12-25 2008-07-16 ソニー株式会社 機能性分子素子及び機能性分子装置
JP4347095B2 (ja) * 2004-03-12 2009-10-21 ソニー株式会社 面積変調素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128214A (en) * 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)

Also Published As

Publication number Publication date
EP1715530A4 (en) 2010-04-21
KR20070004620A (ko) 2007-01-09
CN1938875A (zh) 2007-03-28
KR101100339B1 (ko) 2011-12-30
US20090224223A1 (en) 2009-09-10
EP1715530B1 (en) 2012-04-25
WO2005076379A1 (ja) 2005-08-18
US7902535B2 (en) 2011-03-08
EP1715530A1 (en) 2006-10-25
JP4676704B2 (ja) 2011-04-27
JP2005228773A (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
CN1938875B (zh) 功能性分子元件
TWI701826B (zh) 電子組件及其操作方法
KR102375199B1 (ko) 전자 전환 소자
Zhong et al. Robust threshold-switching behavior assisted by Cu migration in a ferroionic CuInP2S6 heterostructure
JP4901137B2 (ja) 機能性分子素子及び機能性分子装置
JP5304050B2 (ja) 機能性分子素子及びその製造方法、並びに機能性分子装置
KR20090095549A (ko) 기능성 분자 소자 및 그 제조 방법과 기능성 분자 장치
US7408184B2 (en) Functional molecular element and functional molecular device
CN1973385B (zh) 功能性分子器件
EP1726564B1 (en) Area modulation element
JP4117559B2 (ja) 機能性分子素子及び機能性分子装置
KR101193581B1 (ko) 기능성 분자 소자 및 기능성 분자 장치
Zhang et al. Single-Molecule Functional Chips: Unveiling the Full Potential of Molecular Electronics and Optoelectronics
Harnack US PATIENT DOCUMENTS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100609

Termination date: 20150210

EXPY Termination of patent right or utility model