CN1925870A - 表达马-2型流感病毒ha1的dna疫苗 - Google Patents

表达马-2型流感病毒ha1的dna疫苗 Download PDF

Info

Publication number
CN1925870A
CN1925870A CNA2004800133169A CN200480013316A CN1925870A CN 1925870 A CN1925870 A CN 1925870A CN A2004800133169 A CNA2004800133169 A CN A2004800133169A CN 200480013316 A CN200480013316 A CN 200480013316A CN 1925870 A CN1925870 A CN 1925870A
Authority
CN
China
Prior art keywords
vaccine
dna
virus
carrier
coded sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800133169A
Other languages
English (en)
Inventor
A·赖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oklahoma State University Council
Oklahoma State University
Original Assignee
Oklahoma State University Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oklahoma State University Council filed Critical Oklahoma State University Council
Publication of CN1925870A publication Critical patent/CN1925870A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Abstract

本发明涉及表达马-2型流感病毒血凝素(HA1)基因的DNA疫苗。通过工程化HA1内的终止密码子确保HA1表达。通过将DNA疫苗包囊在脂质体中并通过鼻内接种,与表达全长HA基因的DNA疫苗相比,在显著更低的剂量足以引起保护性免疫。更低剂量降低诱导抗DNA抗体的风险。直接鼻内接种到呼吸道上皮细胞降低DNA整合的风险。本发明疫苗具有超过当前灭活或减毒活疫苗的优点,因为疫苗的更新只要求用新病毒替换编码序列。

Description

表达马-2型流感病毒HA1的DNA疫苗
                    发明背景
技术领域
本发明涉及马流感病毒的疫苗,更具体的,涉及含马2型流感病毒的HA1编码序列的DNA疫苗,所述疫苗可以鼻内给予比典型剂量更低的剂量,而仍引起良好粘膜免疫。
背景:
马流感病毒(EIV)是马上呼吸道感染的首要致病剂。它已经被认为是几个世纪来马呼吸道疾病流行性爆发的原因。该病毒传播迅速且发病率极高。感染马出现典型“流感”症状:快速发作呼吸窘迫、咳嗽、发热和粘液流出。在罕见情况下,由于继发性细菌性支气管肺炎导致死亡。尽管死亡率低,马流感病毒感染的影响是显著的。估计在1992年香港爆发中暂停赛马导致1亿2千万美元的收入损失。其它马术运动的经济学重要性可能较低,但马流感爆发几次中断国际马术赛事。没有临床体征但经历勤奋训练的感染马可能要忍受长期后果如肺功能降低。临床疾病的马要忍受丧失培训时间的明显缺点。
马流感病毒是甲型流感病毒,正粘病毒科(Orthomyxoviridae)的成员。病毒基因组由八段负链RNA组成。病毒衣壳包裹在脂质包膜内,包膜上锚定两个表面病毒糖蛋白:血凝素(HA)和神经氨酸酶(NA)。HA被认为是EIV最具有抗原性的病毒蛋白。HA分子量约77kD。该病毒蛋白合成为HA0,并经蛋白酶作用切割,随后还原单个二硫键成氨基末端HA1部分(50kD)和羧基末端HA2部分(27kD)。HA2部分锚定于膜的脂双层上,而HA1部分通过非共价键结合到HA2上。血凝素参与结合病毒到宿主细胞膜上的受体,导致随后病毒穿透和脱壳,从而启动病毒复制。疫苗接种的主要目的是诱导针对这种病毒编码分子的免疫。
有两种马流感病毒亚型。1型或马-1型流感病毒(H7N7),最近15年已经没有在发达国家中分离到。然而,马-2型流感病毒(H3N8)连续在世界流行,尽管有大量疫苗接种计划。H3N8病毒的成功可能是由于抗原性漂移:通过氨基酸替换连续变化HA的抗原性[1]。最近分离的马-2型流感病毒可分类成“美洲”谱系或“欧亚”谱系。另外,更近的马-2型流感病毒已经分叉成多个谱系[2],并且至少在北美,两个进化谱系隔年流行[3]。
当前的EIV疫苗一般由福尔马林或β-丙内酯灭活的完整病毒组成。抗原性组分由马流感病毒1型和2型组成。A/Eq/Prague/56是唯一的1型疫苗株,而2型组分是原型A/Eq/Miami/63和更晚的毒株如A/Eq/Kentucky/81或A/Eq/Fontainebleau/79。最近的WHO/OIE控制马流感协商会议肯定了较早的推荐方案,其中疫苗应包括“美洲”病毒(A/Eq/Kentucky/94)和“欧亚”病毒(A/Eq/Newmarket/2/93),并且应该中断原型(A/Eq/Miami/63)[4]。
在最近的前瞻性研究中,Morley等人[5]已经表明当前的商业疫苗不防止病毒感染,而仅有少量的抑制临床症状的作用。当前商业疫苗的保护性缺乏是由于一个或多个以下因素的组合:
-缺乏免疫原性;
-疫苗株选择差;和/或
-引起不适当的免疫。
马-2型流感病毒(H3N8)的连续进化要求定期更新疫苗株以诱发保护性免疫。然而,在不同疫苗制造商中间有广泛的疫苗株选择谱。
由于氨基酸替换(抗原性漂移)的一个结果即HA抗原性的改变由早期EIV产生的免疫将不能预防后期分离株。病毒的这种特性是”fail-proof”有效疫苗的主要障碍。已经推荐通过用更近的病毒株替换和以更频繁的间隔来更新疫苗[6]。一些制造商仍在其产品中保留过时的病毒株。尽管特异性针对马流感病毒的抗体仍可被诱导,然而这些疫苗是有问题的。首先,血清抗体水平不是好的保护指标。其次,因为流行病毒株与疫苗株足够不同,它们有最小的交叉活性。由这种过时疫苗诱发的“部分”免疫使受感染宿主成为无症状携带者,也就是说,宿主被感染,但因为部分免疫而使临床症状被抑制。这些受感染宿主不被识别,这有助于病毒的扩散。
流感病毒通过附着于呼吸道的纤毛上皮细胞而启动感染。因此,粘膜抗体提供对病毒的有效防御。实际上,认识到鼻抗体在预防马流感病毒中的重要性已经有很多年。在小鼠模型中,已经表明转移IgA提供抗流感病毒感染的保护[7]。
尽管当前的疫苗诱导血清抗体,却没有目标粘膜免疫。由于缺乏针对抗原和抗体的标准化测量方法,血清抗体水平和疫苗功效的相关性不清楚[8]。
                    *****
几种策略,包括使用免疫刺激复合物(ISCOM)[9]、以及通过直接接种到粘膜区[10],已经用于加强对当前马流感疫苗的粘膜免疫应答。然而,结果显示使用这些策略只有很有限的改善。
基于重组冷适应(温度敏感突变体)和减毒马流感病毒,近来批准的Heska Corp.(Fort Collins,Colorado)的疫苗是诱发粘膜免疫的一个尝试。所述疫苗通过鼻内接种以诱发粘膜免疫。直接鼻内接种冷适应的减毒病毒到粘膜位点提供对粘膜相关淋巴组织(MALT)的强烈刺激。因此这种疫苗是高度免疫原性的并诱发粘膜免疫。然而,因为该疫苗基于通过再分配而得的重组病毒,更新疫苗要求再次工程化冷适应的减毒病毒。在更新疫苗被许可之前不得不进行所有必需的安全和效能测试。
DNA疫苗或遗传免疫领域是快速出现的技术。这是一个偶然发现,当含蛋白质编码序列的DNA质粒肌肉注射给小鼠时,不仅表达抗原,而且针对该抗原的免疫应答也被诱发[11,12]。已经相信细胞以和体外DNA转染相似的方式体内摄入DNA质粒。所述DNA质粒不在宿主细胞内复制但编码的抗原被宿主细胞转录并翻译。所述抗原也表达在细胞表面或分泌,并诱发免疫应答[13]。这种新免疫方法已经被很多研究人员显示为有效,并且可用于宽范围的感染性物质,通常包括流感病毒[14],并特异性针对马流感病毒[15]。已经表明表达A/Eq/Kentucky/81的HA基因的DNA疫苗在通过皮肤和粘膜给予后保护马免受同源病毒侵袭[15]。
在专利领域,抗EIV的疫苗和方法在以下美国专利中描述:6,482,414;6,436,408;6,398,774;6,177,082;6,045,790;4,920,213;4,693,893;4,689,224;4,683,137;4,631,191;和4,619,827,所有这些都在此引作参考。美国专利4,920,213和4,631,191涉及免疫马抵抗马流感病毒的重组疫苗。编码来自两株的HA和HN糖蛋白的DNA序列被用于构建牛痘携带的疫苗,设计合成肽用于激发和加强给药,并允许重组合成HA和/或NA蛋白基的疫苗。
通过解决当前疫苗的以上缺陷,马流感病毒的理想疫苗应该具有高度免疫原性,诱发粘膜免疫,并可易于“更新”。
                    发明内容
本发明基于以下发现,当鼻内给予时含马-2型流感病毒HA糖蛋白的HA1片段编码序列的DNA疫苗可提供保护性免疫。表达HA1的DNA疫苗被包囊在脂质体载体中并接种到Balb/c小鼠的鼻腔。两次加强免疫后,用亚致死剂量的传染性同源病毒侵袭小鼠。对于非免疫对照组,观察到7.9%最大体重丧失。对于DNA疫苗免疫组和阳性对照组(用灭活的同源病毒免疫),观察到的体重丧失分别是1.8%和1.6%。此外,病毒特异性IgG和IgA抗体被诱发。HA前体被切割成HA1和HA2。HA1是免疫原性病毒糖蛋白,因为免疫原性位点位于所述病毒蛋白的此部分。上述这些结果表明,单独表达HA1足以诱发保护性免疫。进而,已经发现与表达全长HA基因的DNA疫苗相比,提供保护作用要求剂量低得多的HA1 DNA疫苗。
本发明的DNA疫苗具有超过当前灭活疫苗或减毒活疫苗的其它优点,其中如更新疫苗只要求通过在新病毒中插入HA1编码序列而替换抗原。还有,所述疫苗可以鼻内接种以靶向粘膜免疫。所述疫苗也能被工程化以优化所表达抗原的免疫原性。
本发现超过现有技术的另一个主要优点在于对于通过基因枪、肌肉内或皮内注射递送DNA疫苗,有将所导入DNA整合到宿主细胞染色体上的风险。不利结果的突变或产生癌症是潜在的风险。对于脂质体包囊后的鼻内接种,DNA疫苗被直接递送到呼吸道的上皮细胞。因为上皮细胞以高速替换,整合入染色体的风险显著减小。从而如下述,单独使用HA1(带工程化终止密码子)降低需要的剂量,进一步降低整合风险以及降低诱发抗DNA抗体的风险。
因此,在本发明的一个实施方案中提供DNA疫苗组合物,其中含有编码马-2型流感病毒HA1或其表位的序列的DNA,其中所述疫苗进一步含有药理学可接受的载体或稀释剂。编码HA1的序列可以选自马-2型流感病毒的已知毒株,并在一个实施方案中优选来自毒株A/Eq/Kentucky/98。在一个具体实施例中,编码HA1的序列含有SEQ IDNO:1的核苷酸序列。
在本发明另一个实施方案中,DNA疫苗与佐剂组合以增强免疫应答和/或接种后促进恰当的吸收速率。
在本发明的另一个实施方案中,提供在马中诱导免疫应答以预防马流感病毒感染或降低其严重程度的方法,所述方法包单独或与佐剂或其它抗原性成分或编码序列组合给予有危险的动物有效免疫量的本发明疫苗,以提供控制马流感病毒感染的方法,其中疫苗还含有药理学可接受的载体或稀释剂。
优选的,所述DNA疫苗包括载体,更优选的,所述DNA疫苗包囊在脂质体中并鼻内递送入处理对象的呼吸道以诱发良好的粘膜免疫。
从以下详细描述中,本领域的技术人员明显可以理解本发明和其目标及优点,其中简单通过举例说明欲实施本发明的最佳方式的方式,仅描述本发明的优选实施方案。可以意识到,本发明可以在多种显而易见的方面修改,而全部都不偏离本发明的范围和精神。因此,所述描述本质上应该被当作举例说明而非限制性的。
                    附图说明
图1是本发明DNA疫苗的实施方案实例的示意图。A/Eq/Kentucky/98的HA1基因插入以下真核表达载体中:pcDNA3.1/V5-His-TOPO或pVAX1,它们都可以从Invitrogen(Carlsbad,California)获得。在构建的表达马-2型流感病毒(A/Eq/Kentucky/98作为例子)HA1的载体中,pTOPO/KY98-6使用载体提供的终止密码子,而pTOPO/KY98-11和pVAX/KY98-11的终止密码子由反向引物在PCR过程中提供。插入:A/Eq/Kentucky/98的HA1的氨基酸序列(GenBank Accession No.AF197241)。信号肽在第一行显示。框中的序列:抗原性位点A(132-146);位点B(187-199);位点C(51-55,273-278);和位点D(171-174,209-217,241-246)。V5:V5表位;His6:6组氨酸标记;BGHpA:牛生长激素多腺苷酸信号。
图2表示所述体重丧失研究的试验结果。受感染小鼠体重丧失百分率对病毒侵袭后天数作图。灭活KY98:阳性对照组;PBS和pGFP:阴性对照组。pTOPO/KY98-6和pTOPO/KY98-11:DNA疫苗免疫组。PBS对照组和pTOPO/KY98-6与pTOPO/KY98-11免疫组之间Student’s t检验的P值分别是0.001和0.006。
图3A表示所述血清病毒特异性IgG的ELISA试验结果。第21和35天给予加强免疫。第二次加强免疫后15天即第50天、和感染后15天给予病毒侵袭,以*表示。
图3B是所述另一个血清病毒特异性IgA的ELISA试验结果。第21和35天给予加强免疫。第二次加强免疫后15天即第50天、和感染后15天给予病毒侵袭,以*表示。
                    发明详述
详细解释本发明之前,明白以下内容很重要,即本发明不限制其应用到此处描述的步骤和举例说明的构建细节。本发明可以有其它实施方案并可以多种方式实现或实施。还应该明白,此处所用的词组和术语的目的仅是描述而非限制。
本发明提供设计用于预防EIV的新DNA疫苗和方法。本发明涉及DNA介导的疫苗接种并优选涉及通过直接导入编码选自任何当前株的HA1或其表位的分离DNA的载体,然后在接种的马细胞中表达。本发明疫苗可单独给予或与其它抗原性成分或编码序列组合或与其它疫苗组合一起给予,这些对本领域技术人员是已知的。
优选的,分离HA1编码序列选自以下毒株:A/Eq/Kentucky/98,A/Eq/Miami/63,A/Eq/Kentucky/81,A/Eq/Fontainebleau/79,A/Eq/Saskatoon/90,A/Eq/Kentucky/92,A/Eq/Kentucky/94和A/Eq/Newmarket/2/93,A/Eq/New York/99,A/Eq/Oklahoma/00,和更优选的选自毒株A/Eq/Kentucky/98。最优选的,HA1编码序列含有来自Kentucky/98的SEQ ID NO:1的核苷酸序列。但如此处意思表示,本发明包括其它株的HA1编码序列及其类似物、片段、突变体、替换、合成产物或变体,它们可有效编码HA1、其表位和/或模拟物。(例如,见以下参考文献[2]、表1和3,引入此处作为参考,参见其中多种病毒株的列表及其对应GenBank编号,从中可以获得HA1基因的核苷酸序列)。作为结果,本发明包括在适当转化细胞中编码和/或表达的蛋白,所述蛋白可以是全长抗原、抗原片段、这种抗原的抗原衍生物或这种抗原、抗原片段或抗原衍生物与另一种蛋白的融合产物。本发明也包括具有分离重组毒株的DNA疫苗,所述毒株具有当前毒株的免疫原特性,其中包括此处描述的毒株。
如此处定义“分离”DNA是与天然伴随天然序列的其它细胞成分基本分离的DNA。该术语包括已经从其天然存在环境中去除的核酸序列,还包括重组或克隆的DNA分离物和化学合成的类似物或生物合成的类似物。
术语“载体”一般表示任何DNA疫苗载体,它们中的很多在本领域已知,它们自身是“惰性的”(不诱发对自身的免疫),容易导入接受对象(以诱发对插入物的免疫),并且不整合到宿主染色体中。请参考美国专利6,468,984和6,339,068,所述专利在此引入作为参考,其中描述本领域已知的多种载体和递送系统。优选载体是pVAX1和pcDNA3.1/V5-His-TOPO,它们是由Invitrogen,Carlsbad,California商业供应的真核表达载体。
本发明疫苗可以包括与HA1编码序列可操作连接并调节其表达的核酸序列。当表达调控序列控制和调节一段核酸序列的转录及适当的翻译时,表达调控序列可操作连接到这段核酸序列上。因此表达调控序列可包括适当的启动子、增强子、转录终止子、蛋白编码基因前面的起始密码子(即ATG)、内含子剪接信号、维持该基因正确的读码框以允许正确翻译mRNA、和终止密码子。
本发明疫苗还含有药理学可接受的载体或稀释剂。所述疫苗的合适载体对本领域技术人员是公知的,并包括但不限于蛋白质、糖等。这些载体可以是水或非水溶液、悬液和乳液。非水性载体的实例是丙二醇、聚乙二醇、植物油如橄榄油和可注射有机酯如油酸乙酯。水性载体包括水、醇/水性溶液、乳液或悬液,包括盐水和缓冲介质。肠道外载体包括氯化钠溶液、Ringer’s右旋糖、右旋糖和氯化钠、乳酸化Ringer’s液或不挥发性油。静脉内载体包括流体和营养补充剂、电解质补充剂如基于Ringer’s右旋糖的那些等。也可以有防腐剂和其它添加剂,例如抗微生物剂、抗氧化剂、螯合剂、惰性气体等。优选的防腐剂包括福尔马林、硫柳汞、新霉素、多粘菌素B和两性霉素B。
术语“佐剂”表示接种后增强免疫应答和/或促进适当吸收速率的化合物或混合物,并且如此处所用,包括任何促进摄入的物质。可接受的佐剂包括但不限于完全弗氏佐剂、不完全弗氏佐剂、皂苷、矿物凝胶如氢氧化铝、表面活性物质如溶血卵磷脂、Pluronic多元醇、聚阴离子、肽、油或烃乳液、匙孔血蓝蛋白、二硝基苯酚和其它。优选佐剂是Fort Dodge Animal Health的METASTIM佐剂。
所述方法包括向动物给予有效免疫剂量的本发明疫苗。对于本发明目的,“有效免疫剂量”的本发明疫苗是至少0.001μg DNA/kg体重,优选范围在0.001μg DNA/kg体重到0.01μg DNA/g体重。在包囊于如上述的脂质体/佐剂中后,优选经鼻内给予疫苗,以诱发预期的粘膜免疫,但如果需要另外也可通过任何本领域公知的方法给药,例如,经肌内、皮下、腹膜内、静脉内、口腔、皮内或眼。
本发明进一步用以下实施例举例说明,这是为了帮助理解本发明,但不应该认为和不应该解释为是以任何方式限制随后权利要求书所陈述的本发明。
                        实施例
                      材料和方法
病毒和病毒扩增
马-2型流感病毒A/Eq/Kentucky/98是肯塔基大学的ThomasChambers博士的慷慨礼物。如前述方法进行病毒扩增和表征[2]。简单的说,在9到11日龄的具有胚的鸡卵中37℃下培养病毒72小时。如Mahr等人[16]所述收获尿囊液。1000g离心15min澄清后,用鸡红细胞通过凝血测试来测量病毒滴度。
DNA疫苗构建
为合成克隆用DNA模板,通过逆转录-聚合酶链式反应(RT-PCR)制备HA1开放读码框。提取病毒RNA,并用uni-12引物(5′AGCAAAAGCAGG3′)(SEQ.ID NO:2)和MMLV逆转录酶(Stratagene,La Jolla,Calif ornia)合成cDNA。使用引物EH3-29+(5′CATGAAGACAACCATTATTTT3′)(SEQ.ID NO:3)和EH3-1061-(5′TCTGATTTGCTTTTCTGGTA3′)(SEQ.ID NO:4)或EH3-29+和EH3-1061STOP(5′TCATCTGATTTGCTTTTCTGGTA3′)(SEQ.ID NO:5)经PCR合成模板。在95℃ 1min,45℃ 2min,和72℃ 3min,并使用TaqDNA聚合酶(Stratagene,La Jolla,California)进行25轮PCR。根据制造商说明,将PCR产物连接到pcDNA3.1/V5-His-TOPO真核载体中。鉴定两个克隆并用于随后的试验中:pTOPO/KY98-6和pTOPO/KY98-11(带有在反向引物中建立的终止密码子)。经PCR和使用来自感染马的恢复期血清的Western印迹杂交确认HA1表达。用限制性内切酶BamHI和XhoI消化pTOPO/KY98-11以切出HA1插入片段,随后连接该插入片段到pVAX1的BamHI和XhoI位点之间,创建pVAX/KY89-11,从而构建另一个克隆。
DNA免疫和病毒侵袭
在大肠杆菌中扩增质粒DNA并用MaxiProp试剂盒(Qiagen,Valencia,California)提取和纯化。用分光光度分析并用限制性内切酶消化随之琼脂糖凝胶电泳测定DNA制备物的浓度和纯度。对于DNA疫苗接种,将DNA制备物在Dulbecco′s改进的Eagle′s培养基(DMEM)(Roche Applied Science,Indiapolis,Indiana)中稀释到20μg/ml。接种前将悬液与等体积Lipofectamine(Roche)溶液(以20μg/ml DMEM)室温混合20分钟。
4到8周龄的雌性Balb/c小鼠(Jackson Laboratories,BarHarbor,Maine)分成四组。对于鼻内接种,用异氟烷(forane,1-氯-2,2,2-三氟乙基二氟甲醚)麻醉每只小鼠。用微量移液管,将25.0μl DNA悬液(剂量0.01μg/g体重)滴注进鼻腔。两组小鼠接受DNA疫苗,一组用pTOPO/KY98-6,另一组用pTOPO/KY98-11。包括两个阴性对照组,一组接种磷酸盐缓冲液(PBS)而另一组接种表达绿色荧光蛋白的不相关质粒DNA载体(pGFP/Green Lantern,Gibco,BRL)。还有一组接种8.0HA单位(等价于1.6×107卵感染剂量50%[EID50],或1×106噬斑形成单位[pfu])/小鼠的剂量的紫外线灭活的A/Eq/Kentucky/98作为阳性对照组。以相同剂量,在第21天和35天给予两次加强接种。在第50天给予病毒侵袭(第二次加强后15天)。每只小鼠鼻内接种16HA单位(等价于3.2×107卵感染剂量EID50,或2×106pfu)同源病毒(A/Eq/Kentucky/98),每10天测量每只小鼠体重。
另外,为调查DNA疫苗接种是否诱发特异性抗体,通过在第0、21、35、50和65天眶后取血(麻醉后)收集血清。这些时间点分别对应“取血前”、第一次和第二次加强免疫、病毒侵袭和侵袭后15天。
滴定病毒特异性IgG和IgA
使用蔗糖梯度纯化的同源马流感病毒A/Eq/Kentucky/98悬液制备ELISA板。病毒在50mM NaHCO3缓冲液中稀释到0.6HA单位/ml,ELISA板的每孔中加入100μl该病毒悬液。板子在室温放置24小时使抗原“包被”到板上。用PBS洗涤ELISA板三次然后加入封闭缓冲液[PBS中含2.0%牛血清白蛋白(BSA)和1.0%脱脂奶],并在室温温育1小时。再用PBS洗涤后加入100μl稀释小鼠血清(1∶10稀释于含2.0%BSA的PBS)并如上温育。室温温育1小时并用PBS洗涤后,加入100μl稀释(1∶2000稀释于含2.0%BSA的PBS)偶联碱性磷酸酶的兔抗鼠IgG或IgA抗血清(Sigma,St.Louis,Mo.)。室温温育1小时并用PBS再次洗涤板子后,加入100μl“底物”[1.0mg/ml4-硝基苯基磷酸酯溶液(pNPP),Sigma]。室温温育2.5小时后用微板阅读仪(Biotek Instruments,Winooski,Vermont)测量405nm吸光度。所有血清样品重复测量三次。从免疫血清的吸光度值中扣除“取血前”血清的平均吸光度,所得结果表达为405nm光密度的增量(ΔOD405)。
                        结果
验证DNA疫苗
构建并鉴定三种DNA疫苗载体。用PCR和限制性消化表征这些载体。PCR和限制性分析显示,如图1所示,正确大小的插入片段(约1.0kb)和正确定向到pcDNA3.1/V5-His-TOPO和pVAX1载体的CMV启动子。EH3-1061STOP引物中的终止密码子引起HA1基因插入片段在pTOPO/KY98-11载体中编码V5表位和His6标记的序列之前终止。pVAX/KY98-11使用HA1内“加入”的终止密码子。而对于载体pTOPO/KY98-6,插入片段终止依赖于载体中的终止密码子,因而产物羧基端连接到V5和His6标记上。使用恢复期马血清的Western印迹杂交证明转染入MDBK细胞中后,两种载体都产生约50kD的蛋白,这与HA1的正确表达一致(数据未给出)。
DNA免疫和病毒侵袭:
因为小鼠没发展出明显的流感病浓度感染特征性呼吸系统症状,使用体重丧失模型评价DNA疫苗的功效。病毒侵袭后体重丧失和随后的恢复被用作比较症状严重程度,以及DNA疫苗提供的保护水平的标准。病毒侵袭后每日称重每只小鼠,结果表示为与病毒侵袭前相比的体重变化百分率。每组的平均体重丧失加平均值标准误(SEM)对感染后天数做图并表示于图2。
值得注意的是,疫苗接种小鼠(用两种DNA疫苗载体或用紫外灭活的病毒)表现很少或没有临床症状如食欲减退、“茸毛状皮毛”外表(作为发热的指标)和病毒侵袭后不活跃。对于用PBS免疫的阴性对照组,它们显示严重感染的体征并在第1天开始体重丧失,病毒侵袭后8天最大失重7.9%。体重丧失持续10天以上。第2个阴性对照组(pGFP)也在前3天显示显著体重丧失(4.6%体重),然后开始恢复。比较而言,免疫组没有显示显著体重丧失。
对体重变化进行成对Student’s t检验以确定是否具有任何统计学显著性。pTOPO/KY98-6与pTOPO/KY98-11免疫组与PBS对照组相比的P值分别是0.001和0.006。这与阳性对照组(用紫外灭活的病毒免疫)和PBS组之间的P值0.0001可比。因此,对于两种DNA疫苗载体,都诱发与灭活病毒诱发的免疫相似的保护性免疫。
滴定病毒特异性IgG和IgA:
ELISA结果表示于图3A和3B。如上所述,推出对照血清的OD405nm,结果表示为OD405增加值加上三个重复孔的标准误。在第21和35天给予加强免疫,并在第50天用活病毒侵袭小鼠。在病毒侵袭15天后也测验血清。
对于用紫外灭活的病毒免疫的小鼠(阳性对照组),病毒特异性IgG早在第21天即检测到并伴随OD增加0.49(图3A)。然而IgA仅刚刚能检测到并伴随OD增加0.09(图3B)。在第35天,第一次加强后两周,IgG水平增加超过3倍。有趣的是,第二次加强接种后不是进一步增加,第50天IgG水平实际上低于第35天。然而,正如预期,活病毒侵袭后IgG水平从OD1.2增加到约OD1.7。对于IgA,观察到相似的模式。然而水平显著更低。
对于DNA疫苗免疫组,都可以检测到病毒特异性IgG和IgA应答且其模式与紫外灭活病毒诱发的相似。第一次加强接种后,IgG和IgA增加1.5到2倍(对于pTOPO/KY98-6接种组,分别从0.31增加到0.55和从0.17增加到0.36)。与之相似,第二次加强免疫不进一步增加IgG和IgA水平。然后在病毒侵袭后IgG增加超过3倍。IgA也有增加,尽管小于2倍。
有趣的是,对于用非特异性载体pGFP接种的阴性对照组,病毒侵袭前“检测”到病毒特异性IgG或IgA。然而增加小于0.20D可能是非特异性结果。病毒侵袭后,IgG和IgA都可检测到,这正如初次感染中预期(图3A和图3B)。相似的,对于PBS免疫组,病毒侵袭后15天IgG和IgA的OD分别是1.68±0.12和0.35±0.03(数据未示出)。
                    讨论
更少DNA的保护
流感病毒已经被用作研究DNA疫苗的模型生物。早在1993年,已经显示HA表达质粒能提供对流感的预防作用[17][18][19][13]。然而,这些调查使用由全长HA基因组成的DNA构建体。HA是受体结合和膜融合的病毒糖蛋白,而HA2分子的主体是整合膜蛋白。血凝素被合成作为HA0前体,随后蛋白酶切割成HA1和HA2。HA1包含主要保护性抗原性位点,同时它与HA2非共价连接,HA2则锚定入病毒包膜中[20]。我们在此报道,单独表达HA1足以诱发保护性免疫。省略HA2可避免酶促加工的需要,因为切割前体HA0成HA1和HA2需要组织特异性蛋白酶。进而,缺乏HA2时,合成HA1不结合到膜上,因而允许释放更多HA1分子并被抗原呈递细胞摄入以诱发更强的免疫应答。因此,该DNA疫苗的免疫原性显著增强。此外,免疫接种需要更少量的该DNA疫苗。低到0.01μg DNA/g体重即可诱发保护性免疫,这比Wong等人报道的结果少10倍[21],并比用基因枪接种少2倍[17]。应该注意,如果Fynan等人报道的相同剂量应用于平均大小400kg的马,所需DNA量将是4.0mg/接种。
另外,通过包囊DNA疫苗、用更少DNA免疫接种和通过在粘膜位点接种,DNA整合到体细胞或生殖细胞中的潜在风险显著降低。
IgA的作用
流感病毒在呼吸道启动感染。如许多以前的研究已经表明,粘膜免疫在预防流感病毒或其它呼吸道感染中很重要[22,23]。分泌型IgA在粘膜免疫中具有显著作用。已经表明IgA负责预防流感病毒感染[24]。另外,被动转移流感特异性IgA保护接受的小鼠免受流感病毒感染[7]。Lunn等人已经在小马中调查马流感病毒的DNA疫苗[15]。用基因枪将DNA疫苗递送到几个粘膜位点,包括舌、结膜、和第三眼睑。在每种情况下,都刺激产生强IgG应答。然而,诱发的IgA应答很差。
结果表明通过将DNA疫苗包囊在脂质体中并递送所述DNA疫苗入呼吸道,诱发更好的粘膜免疫。呼吸道(一种粘膜位点)中保护可能由IgA介导,因为血清病毒特异性IgA有相应增加。
加强和非特异性免疫
结果提示第二次加强可能不必要,因为这不导致病毒特异性IgG或IgA滴度的增加。可能第一次加强疫苗接种后滴度可保持几周,使得第二次加强不再必要。另外,病毒特异性抗体的存在进一步中和第二次加强疫苗接种导入的抗原。
有趣的是,对于两个DNA疫苗接种组在病毒侵袭后IgG水平增加超过3倍(图3A对于pTOPOKY98-6和pTOPOKY98-11)。比较而言,增加小于紫外灭活病毒的1倍。这种观察可比得上其他人以前的报道,其中DNA疫苗诱发良好的激发应答。所述DNA疫苗的这种“回忆”应答可能是由于灭活抗原诱发的动力学和抗原呈递途径差异。另外,对于DNA疫苗诱导的免疫应答,难以测定可用抗原的真实量,这种由DNA疫苗增强的“激发作用”的机制有待阐明。
有趣的是,对于用pGFP免疫的小鼠(用作阴性对照),重量丧失的峰值在第3天,并在第4天开始恢复,显著早于其它阴性对照组(PBS)。对PBS组的成对Student’s t检验得到0.033的P值。然而,这些小鼠与PBS对照组有相似的临床特征。另外,对于病毒侵袭后前3天,体重丧失与PBS组相似。如果真实保护的标准是完全没有临床症状,尽管P值显著,这些小鼠没有被“保护”。这种“更早恢复”不是由于特异性免疫,因为病毒侵袭前没有检测到病毒特异性抗体(吸光度值接近背景水平)。众所周知DNA疫苗载体中的某些基序诱发非特异性免疫。在粘膜位点导入脂质体也可能诱导非特异性免疫。
                    其它数据
为在马中建立粘膜免疫的操作程序,用本发明DNA疫苗鼻内接种几匹马,并在几周后收集的鼻冲洗物显示病毒特异性抗体的阳性信号。
                     ******
                    参考文献
以下出版物引入此处作为参考:
1.Aaly JM,Lai AC,Binns MM,Chambers TM,Barrandeguy M,Mumford JA:Antigenic and genetic evolution of equine H3N8 influenza A viruses.J GenVirol 1996,77(Pt 4):661-671.
2.Lai AC,Chambers TM,Holland RE,Jr.,Morley PS,Haines DM,Townsend HG,Barrandeguy M:Diverged evolution of recent equine-2 influenza(H3N8)viruses in the Western Hemisphere.Arch Virol 2001,146:1063-1074.
3.Lai AC,Rogers KM,Glaser A,Tudor L,Chambers T:Alternate circulation ofrecent equine-2 influenza viruses(H3N8)from two distinct lineages in theUnited States.Virus Res 2004,100:159-164.
4.Mumford J,Wood J:WHO/OIE meeting:consultation on newly emerging strainsof equine influenza.18-19 May 1992,Animal Health Trust,Newmarket,Suffolk,UK.Vaccine 1993,11:1172-1175.
5.Morley PS,Townsend HG,Bogdan JR,Haines DM:Efficacy of a commercialvaccine for preventing disease caused by influenza virus infection in horses[see comments].J Am Vet Med Assoc 1999,215:61-66.
6.Mumford JA:The equine influenza surveillance program.Adv Vet Med 1999,41:379-387.
7.Renegar KB,Small PA,Jr.:Passive transfer of local immunity to influenza virusinfection by IgA antibody.J Immunol 1991,146:1972-1978.
8.Mumford JA,Wood J:Establishing an acceptability threshold for equine influenzavaccines.Dev Biol Stand 1992,79:137-146.
9.Mumford JA,Jessett D,Dunleavy U,Wood J,Hannant D,Sundquist B,Cook RF:Antigenicity and immunogenicity of experimental equine influenza ISCOMvaccines.Vaccine 1994,12:857-863.
10.Kuno-Sakai H,Kimura M,Ohta k,Shimojima R,Oh Y,Fukumi H:Developments in mucosal influenza virus vaccines.Vaccine 1994,12:1303-1310.
11.Tang DC,DeVit M,Johnston SA:Genetic immunization is a simple method foreliciting an immune response.Nature 1992,356:152-154.
12.Donnelly JJ,Ulmer JB,Liu MA:Immunization with DNA.J Immunol Methods1994,176:145-152.
13.Robinson HL,Hunt LA,Webster RG:Protection against a lethal influenza viruschallenge by immunization with a haemagglutinin-expressing plasmid DNA.Vaccine 1993,11:957-960.
14.Webster RG,Fynan EF,Santoro JC,Robinson H:Protection of ferrets againstinfluenza challenge with a DNA vaccine to the haemagglutinin.Vaccine 1994,12:1495-1498.
15.Lunn DP,Soboll G,Schram BR,Quass J,McGregor MW,Drape RJ,MacklinMD,McCabe DE,Swain WF,Olsen CW:Antibody responses to DNAvaccination of horses using the influenza virus hemagglutinin gene.Vaccine1999,17:2245-2258.
16.Mahy B,Kangro,HO:Virological Methods Manual:Academy Press,HarcourtBrace & Company,Publishers;1996.
17.Fynan EF,Webster RG,Fuller DH,Haynes JR,Santoro JC,Robinson HL:DNAvaccines;protective immunizations by parenteral,mucosal,and gene-guninoculations.Proc Natl Acad Sci U S A 1993,90:11478-11482.
18.Fynan EF,Robinson HL,Webster RG:Use of DNA encoding influenzahemagglutinin as an avian influenza vaccine.DNA Cell Biol 1993,12:785-789.
19.Montgomery DL,Shiver JW,Leander KR,Perry HC,Friedman A,Martinez D,Ulmer JB,Donnelly JJ,Liu MA:Heterologous and homologous protectionagainst influenza A by DNA vaccination:optimization of DNA vectors.DNACell Biol 1993,12:777-783.
20.Skehel JJ,Wiley DC:Receptor binding and membrane fusion in virus entry:theinfluenza hemagglutinin.Annu Rev Biochem 2000,69:531-569.
21.Wong JP,Zabielski MA,Schmaltz FL,Brownlee GG,Bussey LA,Marshall K,Borralho T,Nagata LP:DNA vaccination against respiratory influenza virusinfection.Vaccine 2001,19:2461-2467.
22.Ada GL,Jones PD:The immune response to influenza infection.Curr TopMicrobiol Immunol 1986,128:1-54.
23.Freihorst J,Ogra PL:Mucosal immunity and viral infections.Ann Med 2001,33:172-177.
24.Liew FY,Russell SM,Appleyard G,Brand CM,Beale J:Cross-protection in miceinfected with influenza A virus by the respiratory route is correlated with localIgA antibody rather than serum antibody or cytotoxic T cell reactivity.Eur JImmunol 1984,14:350-356.
                        *****
根据以上所述,可以看到达到本发明的几个目标并获得其它有利结果。因为不偏离本发明的范围可以作多种变化,可以明白以上说明书中包含的或表示于附图中的所有材料将解释为举例说明而不是限制性的。尽管本发明已经某种具体程度的描述,可以明白本发明不限于此处所述的仅为举例说明的实施方案,而仅受限于附属权利要求的范围,其中包括与其中每个元件等价的全部范围。
序列表
<110>Lai,Alexander
<120>表达马-2型流感病毒HA1的DNA疫苗
<130>57657/04-265
<150>US 60/470,843
<151>2003-05-15
<160>1
<170>PatentIn version 3.2
<210>1
<211>1061
<212>DNA
<213>A/Eq/Kentucky/98
<400>1
agcaaaagca ggggatattt ctgtcaatca tgaagacaac cattattttg atactactga     60
cccattgggt ctacagtcaa aacccaacca gtggaaacaa cacagccaca ttatgtctgg    120
gacaccatgc agtagcaaat ggaacattgg taaaaacaat aactgatgac caaattgagg    180
tgacaaatgc tactgaatta gttcagagca tttcaatagg gaaaatatgc aacaactcat    240
ataaagttct agatggaaga aattgcacat taatagatgc aatgctagga gacccccact    300
gtgatgtctt ccagtatgag aattgggacc tcttcataga aagaagcagc gctttcagca    360
attgctaccc atatgacatc cctgactatg catcgctccg gtccattgta gcatcctcag    420
gaacattaga attcacagca gagggattca catggacagg tgtcactcaa aacggaagaa    480
gtggagcctg caaaagggga tcagccgata gtttctttag ccgactgaat tggctaacaa    540
aatctggaaa ctcttacccc acattgaatg tgacaatgcc taacaataaa aatttcgaca    600
aactatacat ctgggggatt catcacccga gctcaaacca acagcagaca gaattgtaca    660
tccaagaatc aggacgagta acagtctcaa caaaaagaag tcaacaaacg atagtcccta    720
atatcggatc tagaccgtgg gttaggggtc aatcaggcag gataagcata tactggacca    780
ttgtaaaacc tggagatatc ctaatgataa acagtaatgg caacttagtt gcaccgcggg    840
gatattttaa attgaaaaca gggaaaagct ctgtaatgag atcagatgca cccatagaca    900
tttgtgtgtc tgaatgtatt acaccaaatg gaagcatccc caacgacaaa ccatttcaaa    960
atgtgaacaa agttacatat ggaaaatgcc ccaagtatat caggcaaaac actttaaagc   1020
tggccactgg gatgaggaat ataccagaaa agcaaatcag a                       1061
<210>2
<211>12
<212>DNA
<213>人工的
<220>
<223>寡核苷酸引物
<400>2
agcaaaagca gg                                                     12
<210>3
<211>21
<212>DNA
<213>人工的
<220>
<223>寡核苷酸引物
<400>3
catgaagaca accattattt t                                           21
<210>4
<211>20
<212>DNA
<213>人工的
<220>
<223>寡核苷酸引物
<400>4
tctgatttgc ttttctggta                                             20
<210>5
<211>23
<212>DNA
<213>人工的
<220>
<223>寡核苷酸引物
<400>5
tcatctgatt tgcttttctg gta                                         23

Claims (19)

1.马流感病毒疫苗,其中含有有效免疫量的分离DNA和药理学可接受的载体或稀释剂,所述分离DNA含有马-2型流感病毒株的HA1编码序列。
2.根据权利要求1的疫苗,其中HA1编码序列选自以下毒株:A/Eq/Kentucky/98,A/Eq/Miami/63,A/Eq/Kentucky/81,A/Eq/Fontainebleau/79,A/Eq/Kentucky/94,A/Eq/Newmarket/2/93,A/Eq/New York/99,和A/Eq/Oklahoma/2000。
3.根据权利要求1的疫苗,其中HA1编码序列是用于A/Eq/Kentucky/98毒株的。
4.根据权利要求1的疫苗,其中HA1编码序列含有SEQ ID NO:1的核苷酸序列。
5.根据权利要求1的疫苗,其中还含有其它抗原性成分、其它抗原性成分的编码序列和其它疫苗中的一种或多种。
6.根据权利要求1的疫苗,其中还含有用于包含HA1编码序列的载体。
7.根据权利要求6的疫苗,其中所述载体是真核表达载体。
8.根据权利要求7的疫苗,其中所述载体选自pcDNA3.1/V5-His-TOPO和pVAX1。
9.根据权利要求1的疫苗,其中还含有佐剂。
10.根据权利要求9的疫苗,其中佐剂选自完全弗氏佐剂、不完全弗氏佐剂、皂苷、矿物凝胶、表面活性物质、Pluronic多元醇、聚阴离子、肽、油或烃乳液、匙孔血蓝蛋白和二硝基苯酚。
11.根据权利要求9的疫苗,其中佐剂是METASTIM。
12.根据权利要求1的疫苗,其中还含有包囊有HA1编码序列的脂质体。
13.诱导抗马流感病毒免疫应答的方法,包括向马给予有效免疫量的权利要求1的疫苗。
14.根据权利要求13的方法,还包括将HA1编码序列插入载体中并经鼻递送疫苗到呼吸道的步骤。
15.根据权利要求14的方法,其中载体是真核载体。
16.根据权利要求15的方法,其中载体选自pcDNA3.1/V5-His-TOPO和pVAX1。
17.根据权利要求15的方法,其中载体是脂质体。
18.根据权利要求13的方法,其中给予疫苗的剂量为至少0.01μgDNA/g体重。
19.根据权利要求13的方法,其中给予疫苗的剂量范围为0.001μg DNA/kg体重至0.01μg DNA/g体重。
CNA2004800133169A 2003-05-15 2004-04-16 表达马-2型流感病毒ha1的dna疫苗 Pending CN1925870A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47084303P 2003-05-15 2003-05-15
US60/470,843 2003-05-15

Publications (1)

Publication Number Publication Date
CN1925870A true CN1925870A (zh) 2007-03-07

Family

ID=34135039

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800133169A Pending CN1925870A (zh) 2003-05-15 2004-04-16 表达马-2型流感病毒ha1的dna疫苗

Country Status (12)

Country Link
US (1) US7244435B2 (zh)
EP (1) EP1623015A4 (zh)
JP (1) JP2007525456A (zh)
KR (1) KR20060035602A (zh)
CN (1) CN1925870A (zh)
AU (1) AU2004263816A1 (zh)
BR (1) BRPI0410091A (zh)
CA (1) CA2523676A1 (zh)
MX (1) MXPA05012199A (zh)
NZ (1) NZ543196A (zh)
WO (1) WO2005014778A2 (zh)
ZA (1) ZA200509187B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886084A (zh) * 2010-03-17 2010-11-17 王世霞 一种密码子优化的h3ha/xj3-07基因及其核酸疫苗
CN101502649B (zh) * 2008-06-23 2011-11-30 深圳职业技术学院 一种脂质体流感疫苗

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133733B2 (en) 2003-10-24 2012-03-13 Gencia Corporation Nonviral vectors for delivering polynucleotides to target tissues
US8062891B2 (en) 2003-10-24 2011-11-22 Gencia Corporation Nonviral vectors for delivering polynucleotides to plants
US20090123468A1 (en) 2003-10-24 2009-05-14 Gencia Corporation Transducible polypeptides for modifying metabolism
EP1687017B1 (en) 2003-10-24 2013-03-06 Gencia Corporation Methods and compositions for delivering polynucleotides
US8507277B2 (en) 2003-10-24 2013-08-13 Gencia Corporation Nonviral vectors for delivering polynucleotides
CN107099512A (zh) * 2005-04-21 2017-08-29 佛罗里达大学研究基金公司 用于犬科动物中呼吸系统疾病控制的物质和方法
US7959929B2 (en) 2005-04-21 2011-06-14 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
US11865172B2 (en) 2005-04-21 2024-01-09 University Of Florida Research Foundation, Inc. Materials and methods for respiratory disease control in canines
KR101484305B1 (ko) * 2006-03-10 2015-01-19 위스콘신 얼럼나이 리서어치 화운데이션 H3 말 인플루엔자 a 바이러스
US7682619B2 (en) * 2006-04-06 2010-03-23 Cornell Research Foundation, Inc. Canine influenza virus
CA2803282C (en) 2009-07-06 2018-05-01 David E. Anderson Methods for preparing vesicles and formulations produced therefrom
WO2011005769A1 (en) 2009-07-06 2011-01-13 Variation Biotechnologies, Inc. Methods for preparing vesicles and formulations produced therefrom
US9610248B2 (en) 2010-07-06 2017-04-04 Variation Biotechnologies, Inc. Compositions and methods for treating influenza
CA2862864C (en) 2011-01-13 2018-12-11 Variation Biotechnologies Inc. Compositions and methods for treating viral infections
AU2012205315B2 (en) 2011-01-13 2017-05-04 Variation Biotechnologies, Inc. Methods for preparing vesicles and formulations produced therefrom
US20140328876A1 (en) 2011-11-18 2014-11-06 Variation Biotechnologies Inc. Synthetic derivatives of mpl and uses thereof
AU2013208693B2 (en) 2012-01-12 2017-12-07 Variation Biotechnologies Inc. Compositions and methods for treating viral infections
US20150079077A1 (en) 2012-01-27 2015-03-19 Variation Biotechnologies, Inc. Methods and compositions for therapeutic agents
KR101588334B1 (ko) * 2013-07-02 2016-01-27 대한민국 강독화된 인플루엔자 바이러스 변이주
KR101493613B1 (ko) * 2013-10-25 2015-02-13 위스콘신 얼럼나이 리서어치 화운데이션 H3 말 인플루엔자 a 바이러스

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683137A (en) * 1982-04-16 1987-07-28 Cornell Research Foundation, Inc. Temperature sensitive reassortant viruses and a vaccine against equine influenza
GB8300467D0 (en) * 1983-01-08 1983-02-09 Wellcome Found Equine influenza
US4631191A (en) * 1985-06-20 1986-12-23 Biotechnology Research Partners, Ltd. Methods and compositions useful in preventing equine influenza
US4920213A (en) * 1985-06-20 1990-04-24 Biotechnology Research Partners, Ltd. Method and compositions useful in preventing equine influenza
US4619827A (en) * 1985-10-07 1986-10-28 Neogen Corporation Method for administering equine vaccines and compositions therefor
US4689224A (en) * 1985-10-07 1987-08-25 Neogen Corporation Method for administering vaccines containing equine leukokines and compositions therefor
ZA973642B (en) * 1996-04-26 1997-11-25 Merck & Co Inc DNA vaccine formulations.
US20010007860A1 (en) * 1997-07-14 2001-07-12 Christopher W. Olsen Method of dna vaccination
US6177082B1 (en) * 1998-08-13 2001-01-23 The University Of Pittsburgh-Of The Commonwealth System Of Higher Education Cold-adapted equine influenza viruses
US6482414B1 (en) * 1998-08-13 2002-11-19 The University Of Pittsburgh-Of The Commonwealth System Of Higher Education Cold-adapted equine influenza viruses
US6398774B1 (en) * 1999-09-29 2002-06-04 Heska Corporation Intranasal delivery system
US20030008000A1 (en) * 2001-03-08 2003-01-09 Wong Jonathan P. DNA vaccine using liposome-encapsulated plasmid DNA encoding for hemagglutinin protein of influenza virus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101502649B (zh) * 2008-06-23 2011-11-30 深圳职业技术学院 一种脂质体流感疫苗
CN101886084A (zh) * 2010-03-17 2010-11-17 王世霞 一种密码子优化的h3ha/xj3-07基因及其核酸疫苗

Also Published As

Publication number Publication date
WO2005014778A3 (en) 2006-10-05
US20050032732A1 (en) 2005-02-10
ZA200509187B (en) 2007-12-27
KR20060035602A (ko) 2006-04-26
WO2005014778A2 (en) 2005-02-17
NZ543196A (en) 2008-04-30
BRPI0410091A (pt) 2006-06-06
MXPA05012199A (es) 2006-02-10
CA2523676A1 (en) 2005-02-17
AU2004263816A1 (en) 2005-02-17
JP2007525456A (ja) 2007-09-06
EP1623015A2 (en) 2006-02-08
US7244435B2 (en) 2007-07-17
EP1623015A4 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
CN1925870A (zh) 表达马-2型流感病毒ha1的dna疫苗
JP3545418B2 (ja) インフルエンザの新規組換え温度感受性変異体
CN1298845C (zh) 表达禽流感病毒H5亚型HA蛋白的重组新城疫LaSota弱毒疫苗株
US6287570B1 (en) Vaccine against swine influenza virus
US20230192775A1 (en) Influenza virus replication for vaccine development
CN1276777C (zh) 腺病毒载体sars疫苗及其制备方法,冠状病毒s基因的应用
JP2023511444A (ja) 安定化されたnaを有する組換えインフルエンザウイルス
JP2022172369A (ja) 卵における複製のための安定化されたhaを有する組換えインフルエンザウイルス
AU2016202693B2 (en) Attenuated swine influenza vaccines and methods of making the use thereof
CN1869234A (zh) 表达禽流感病毒H5亚型HA蛋白的重组新城疫LaSota弱毒疫苗株
JP2022551805A (ja) 卵内複製のための安定化されたhaを持つ組換えインフルエンザウイルス
CN1313605C (zh) 一种禽流感病毒基因重配株d3/f-r2/6及其构建方法
CN1861793A (zh) 编码禽流感血凝素的基因及其植物表达载体和应用
CN1239512A (zh) 脊髓灰质炎病毒具有复制能力的重组体萨宾i型株系
US20200129613A1 (en) 4/91 ibv vaccine with heterologous spike protein
US6723559B2 (en) Recombinant segmented negative strand virus containing bicistronic vrna segment with a duplication of its 3′ noncoding flanking sequence, and vaccines and therapeutic compositions containing the same
WO2013011942A1 (ja) 変異狂犬病ウイルス及びワクチン
CN1451038A (zh) 可用作疫苗的减毒流感病毒
CN1644686A (zh) 流感病毒哺乳动物细胞高产毒株、其重组毒株及其制备方法和应用
US20230321215A1 (en) Avian influenza vaccines and methods of making same
CN1631439A (zh) 预防流感病毒的截短的血凝素疫苗及其制备方法
CN1778926A (zh) 一种修饰的猪繁殖与呼吸综合征病毒orf5基因及应用
LAI Patent 2523676 Summary

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication