CN1918378A - 用于内燃机的估算气体混合物温度的方法 - Google Patents

用于内燃机的估算气体混合物温度的方法 Download PDF

Info

Publication number
CN1918378A
CN1918378A CN200580004388.1A CN200580004388A CN1918378A CN 1918378 A CN1918378 A CN 1918378A CN 200580004388 A CN200580004388 A CN 200580004388A CN 1918378 A CN1918378 A CN 1918378A
Authority
CN
China
Prior art keywords
gas
gaseous mixture
temperature
mixture
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200580004388.1A
Other languages
English (en)
Other versions
CN1918378B (zh
Inventor
伊吹卓
中山茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1918378A publication Critical patent/CN1918378A/zh
Application granted granted Critical
Publication of CN1918378B publication Critical patent/CN1918378B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures

Abstract

在用于内燃机的气体混合物温度的估算方法中,在气体混合物的最前部分到达燃烧室的内壁表面之前,根据预定方程式计算出气体混合物的温度,该方程式基于以下假定条件:在气体混合物和存在于气体混合物周围的汽缸内气体之间没有发生热交换,且没有与燃料混合起来。在气体混合物最前部分到达燃烧室的内壁表面之后,考虑到气体混合物与气缸内气体之间传递的热量以及气体混合物与内壁之间传递的热量,对根据方程式所计算得到的气体混合物的温度进行修正。

Description

用于内燃机的估算气体混合物温度的方法
技术领域
本发明涉及一种用于内燃机的气体混合物温度的估算方法,该方法估算气体混合物的温度,该气体混合物通过混合被喷射到内燃机的燃烧室中的燃料和进入燃烧室的气体(以下称作“气缸内气体”)而产生。
背景技术
从诸如火花点火的内燃机或者柴油发动机排出的、诸如NOx的排放物的量与点火后的火焰温度(燃烧温度)非常相关。所以,将火焰温度控制到预定温度可有效地减小诸如NOx的排放量。通常,因为不能直接检测火焰温度,所以必须估算出火焰温度,以便于能将火焰温度控制到预定温度。同时,火焰温度随着在点火之前的气体混合物的温度(以下简称为″气体混合物温度″)变化而变化。因此,估算气体混合物的温度可有效地用于估算火焰温度。
具体地,在柴油发动机的情况下,空气-燃料混合物通过压缩引起的自点火而开始燃烧,根据发动机的工作状态恰当地控制点火正时。点火正时极大地依赖于点火之前的气体混合物温度。因此,估算气体混合物温度也是恰当控制点火正所必需的。
考虑到上述内容,在日本专利申请公开号(kokai)2001-254645中公开的用于柴油发动机的燃料喷射装置根据发动机的工作状态来设置目标点火正时,并在测量时基于影响气体混合物温度的各种操作状态量,例如发动机冷却剂温度、进气温度、和进气压力,估算气体混合物温度,将其作为在目标点火正时时测量得到的气体混合物温度。随后,该装置以如下方式控制燃料喷射(例如,喷射正时和/或喷射压力)的方式,以致估算的气体混合物温度达到预定温度,从而控制点火正时与目标点火正时一致。
附带地,依赖于发动机的工作状态,气体混合物经常在它到达燃烧室的内壁表面之后点火,该气体混合物通过混合喷射到燃烧室中的燃料和缸内气体而产生。在此情况下,在气体混合物到达燃烧室的内壁表面之后,并且至少直至气体混合物点火,可认为(假定)气体混合物停滞在燃烧室的侧壁(具有大致圆筒形的内壁表面)附近的大致环形结构中。在气体混合物停滞期间,气体混合物温度受到气体混合物、燃烧室壁等存在于气体混合物周围的之间热传递的影响。
然而,上述传统装置在不考虑上述热传递影响的情况下估算该气体混合物的温度。所以,所估算出的气体混合物的温度引入了误差,因此传统装置不能使点火正时与目标点火正时一致。
发明内容
考虑到上述内容,本发明的目的是提供一种用于内燃机的气体混合物温度的估算方法,即使当认为气体混合物停滞在燃烧室的侧壁附近时,该方法也能精确估算出气体混合物的温度。
在气体混合物停滞在燃烧室的侧壁(通常具有大致圆筒形内壁表面)附近的大致环形结构中,并且在气体混合物停滞期间,在气体混合物和存在于气体混合物周围的物体或者物质之间发生热传递的假定前提下,根据本发明的用于内燃机的气体混合物温度的估算方法估算气体混合物的温度,该气体混合物通过混合(直接)喷射到内燃机燃烧室中的燃料和已经进入燃烧室的气体(缸内气体)而产生。
此处使用的术语″气体混合物″不仅包括点火之前的气体混合物,而且包括通过气体混合物的燃烧而产生的气体(以下称作″点火后气体混合物″)。换句话说,术语″气体混合物″包括与燃烧有关的气体,不论该气体是点火前的气体混合物,还是点火后的气体混合物。术语″燃烧室的侧壁″表示、但不限于汽缸的侧壁,或者圆筒形凹口(以下称作″腔″)的侧壁,该凹口形成在活塞的上表面,与活塞的中心轴线同心。
根据本发明的方法,在认为气体混合物停滞在燃烧室侧壁附近的大致环形结构中的情况下,考虑在气体混合物停滞期间、气体混合物和存在于气体混合物周围的物体或者物质之间发生的热传递的影响,可精确地估算出气体混合物的温度。″气体混合物停滞在燃烧室侧壁附近的大致环形结构中的情况(时间段)″的示例包括:气体混合物到达燃烧室内壁表面的时间点与气体混合物点火的时间点之间的时间段;和点火时刻与点火后气体混合物被排放到燃烧室外部的时间点之间的时间段。
在这种情况下,优选地,在气体混合物(具体地是气体混合物的最前部分)到达燃烧室内壁表面之后、发生气体混合物的停滞的假定前提下,估算气体混合物温度。该假定能够根据预定经验公式,执行确定气体混合物的最前部分在燃烧室中位置的估算操作,该位置作为燃料喷射开始后流逝的时间的函数,在确定气体混合物的最前部分已经到达燃烧室内壁表面之前,在不考虑上述热传递的影响情况下,估算气体混合物温度,并在确定气体混合物最前部分已经到达燃烧室内壁表面之后,考虑因气体混合物停滞而发生的热传递的影响,估算气体混合物温度。因此,在气体混合物的最前部分到达燃烧室内壁表面之前和之后,可精确地估算出气体混合物温度。
优选地,认为与气体混合物接触的燃烧室壁和与气体混合物接触的缸内气体是在气体混合物停滞在燃烧室侧壁附近的大致环形结构中期间存在于气体混合物周围的物体或者物质(即与气体混合物交换热量的物体)。当气体混合物停滞在燃烧室侧壁附近的大致环形结构中时,气体混合物被燃烧室壁(侧壁、底壁等)以及缸内气体所包围。换句话说,气体混合物与燃烧室壁和缸内气体发生接触,从而在气体混合物和燃烧室壁之间、以及气体混合物和缸内气体之间发生热传递。
因此,当在如上所述的″热传递发生在气体混合物和与气体混合物接触的燃烧室壁之间,以及气体混合物和与气体混合物接触的缸内气体之间″的假定前提下估算气体混合物温度时,可考虑在气体混合物停滞在燃烧室侧壁附近的大致环形结构中期间、影响气体混合物温度的所有热传递来估算气体混合物温度。因而,可更精确地估算出气体混合物温度。
在这种情况下,优选地,基于气体混合物和燃烧室壁之间的接触面积和热传导率计算气体混合物和燃烧室壁之间所传递的热量。基于气体混合物和缸内气体之间的接触面积和热传导率计算气体混合物和缸内气体之间所传递的热量。
通常,基于互相接触的两个物体之间的接触面积和热传导率、以及它们之间的温度差计算这两个物体之间所传递的热量。因此,上述计算能够很容易且精确地计算出在气体混合物停滞在燃烧室侧壁附近的大致环形结构中时期、影响气体混合物温度的热传递量。
在气体混合物和燃烧室壁的之间的热传导率以及气体混合物和缸内气体之间的热传导率被分别用于计算气体混合物和燃烧室壁之间所传递的热量以及气体混合物和缸内气体之间所传递的热量的情况下,优选地,气体混合物和燃烧室壁的之间的热传导率以及气体混合物和缸内气体之间的热传导率各自随着缸内气体的压力变化而变化。
通常,因为气体分子的运动变得活跃,所以气体和与气体接触的物体之间的热传导率趋向于随气体压力的增加而增加。因此,停滞在燃烧室侧壁附近的大致环形结构中的气体混合物和与气体混合物接触的物体之间的热传导率趋向于随气体混合物的压力(相应地,缸内气体的压力)的增加而增加。
因而,在气体混合物和燃烧室壁之间的热传导率以及气体混合物和缸内气体之间的热传导率各自随着缸内气体压力变化而变化的情况下,两个热传导率可随着例如缸内气体压力的增加而增加。因此,可以更精确地计算出在气体混合物停滞在燃烧室侧壁附近的大致环形结构中的期间、影响气体混合物温度的热传递量。
而且,优选地,气体混合物和燃烧室壁之间的热传导率随着表示由涡流产生的气体混合物的流速的数值(例如,发动机速度)变化而变化。通常,气体和与气体接触的物体之间的热传导率趋向于随着在气体和物体之间的接触表面处的相对速度的增加而增加。因此,停滞在燃烧室侧壁附近的大致环形结构中的气体混合物和与气体混合物接触的燃烧室壁之间的热传导率趋向于随由涡流产生的缸内气体的环流(即气体混合物的环流)的速度的增加而增加。
因而,在气体混合物和燃烧室壁之间的热传导率随着表示由涡流产生的气体混合物环流速度(以下称作″涡流速度″)的数值(例如,发动机速度)变化而变化的情况下,如上所述,气体混合物和燃烧室壁之间的热传导率可随着表示流速的数值变化而增加,以指示增加的涡流速度。因此,可以更精确地计算出在气体混合物停滞在燃烧室侧壁附近的大致环形结构中时期、影响气体混合物温度的热传递量。
由于认为停滞在燃烧室侧壁附近的大致环形结构中的气体混合物以等于由涡流引起的缸内气体沿圆周方向旋转的角速度的角速度沿圆周方向旋转,所以在彼此接触表面处测量得到的气体混合物和缸内气体之间的相对速度大致变为零。因此,停滞在燃烧室侧壁附近的大致环形结构中的气体混合物和缸内气体之间的热传导率不受涡流速度的影响。
附图说明
图1是显示系统总体结构的示意图,其中根据本发明实施例的控制装置应用于四缸内燃机(柴油发动机),该控制装置执行本发明的气体混合物温度估算方法;
图2示意性地显示了气体从进气歧管进入某一汽缸,并接着被排出到排气歧管的状态;
图3示意性地显示了燃料蒸汽分散成圆锥形、同时与缸内气体混合从而产生气体混合物的状态;
图4A示意性地显示了气体混合物在喷射的燃料(即气体混合物的最前部分)到达燃烧室的内壁表面之前分散的状态,图4B示意性地显示了在气体混合物的最前部分已到达燃烧室的内壁表面之后气体混合物在燃烧室侧壁附近的环形结构中停滞的状态;
图5显示有关气体混合物在燃烧室侧壁附近的环形结构中停滞的模型,该模型被用于获得气体混合物和缸内气体之间、以及气体混合物和燃烧室壁之间热传递的数量;
图6是显示根据图5所示模型的停滞在环形结构中的气体混合物形状的透视图;
图7A和7B是显示缸内气体压力、停滞在环形结构中的气体混合物和缸内气体之间热传导率和气体混合物和燃烧室壁之间热传导率之间的关系的图表;
图8A和8B是显示旋转速度、停滞在环形结构中的气体混合物和缸内气体之间热传导率和气体混合物和燃烧室壁之间热传导率之间的关系的图表;
图9是显示图1所示的CPU所执行的程序的流程图,以便于控制燃料喷射量等;
图10是用于确定指示燃料喷射量的表,在执行图9所示的程序期间,图1所示CPU参照该表;
图11是用于确定基础燃料喷射正时的表,在执行图9所示的程序期间,图1所示CPU参照该表;
图12是用于确定基础燃料喷射压力的表,在执行图9所示的程序期间,图1所示CPU参照该表;
图13是用于确定喷射正时校正值的表,在执行图9所示的程序期间,图1所示CPU参照该表;
图14是用于确定喷射压力校正值的表,在执行图9所示的程序期间,图1所示CPU参照该表;
图15是显示图1所示CPU执行的程序的流程图,以便于计算喷射开始时刻的各种物理量;
图16是显示图1所示CPU执行的程序的第一半的流程图,以便于计算气体混合物温度;
图17是显示图1所示CPU执行的程序的第二半的流程图,以便于计算气体混合物温度;
图18是显示图1所示CPU执行的程序的流程图,以便于计算温降;
图19是显示图1所示CPU执行的程序的流程图,以便于计算对应面积的Nox的量。
具体实施方式
参考附图,现在描述内燃机(柴油发动机)控制装置的实施例,该控制装置执行根据本发明的内燃机气体混合物温度估算方法。
图1示意性显示系统的整体结构,其中根据本发明的发动机控制装置应用于四缸内燃机(柴油发动机)10。该系统包括发动机主体20,该发动机主体20包括燃料供给系统;用于将气体引入发动机主体20的各个气缸的燃烧室(汽缸内部)中的进气系统30;用于将废气从发动机主体20排出的排气系统40;用于执行废气循环的EGR装置50;和电子控制装置60。
有若干燃料喷射阀(喷射阀、喷射器)21配置在发动机主体20的各个气缸上方。燃料喷射阀21通过燃料管23连接于燃料喷射泵22,该燃料喷射泵22连接于未示出的燃料箱。燃料喷射泵22被电连接到电子控制装置60。根据来自电子控制装置60的驱动信号(对应于下述指示最终燃料喷射压力Pcrfin的指示信号),燃料喷射泵22以如下方式加压燃料,使得燃料的实际喷射压力(排出压力)变得等于指示最终燃料喷射压力Pcrfin。
因而,将加压到指示最终燃料喷射压力Pcrfin的燃料从燃料喷射泵22供给到了燃料喷射阀21。而且,燃料喷射阀被电连接到电子控制装置60。根据来自电子控制装置60的驱动信号(对应于指示燃料喷射量qfin的指示信号),各燃料喷射阀21开启预定时间段,以便于将加压到指示最终燃料喷射压力Pcrfin的燃料以指示燃料喷射量qfin直接地喷射到对应汽缸的燃烧室中。
进气系统30包括进气歧管31,该进气歧管31连接于发动机主体20的各个气缸的相应燃烧室;进气管32,其连接于进气歧管31的上游侧的支路部分,并构成了与进气歧管31协作的进气通道;节流阀33,其被可旋转地保持在进气管32内部;用于根据来自电子控制装置60的驱动信号而使节流阀33转动的节流阀致动器33a;中间冷却器34,其被置于进气管32中,以便位于节流阀33的上游侧;涡轮增压器35的压缩机35a,其被置于进气管32中,以便位于中间冷却器34的上游侧;和空气滤清器36,其设置在进气管32的远端部分。
排气系统40包括排气歧管41,其连接于发动机主体20的各个气缸;排气管42,其连接于排气歧管41的下游侧汇合部分;涡轮增压器35的涡轮35b,置于排气管42中;和柴油机微粒过滤器(以下简称″DPNR″)43,其被置于在排气管42中。排气歧管41和排气管42组成排气通道。
DPNR 43是过滤器单元,其容纳有由多孔材料、例如堇青石(cordierite)形成的过滤器43a,并借助多孔表面收集包含在经过过滤器的废气中的颗粒物。在DPNR 43中,在用作载体的矾土上载有至少一种金属元素和铂,该至少一种金属元素从例如钾K、钠Na、锂Li和铯Cs的碱金属;例如钡Ba和钙Ca的碱土金属;和例如镧La和钇Y的稀土金属中选择。因而,DPNR 43还用作存储-还原型的NOx催化剂单元,其在吸收NOx后释放出所吸收的NOx并还原它。
EGR装置50包括废气循环管51,其形成了用于废气循环的通道(EGR通道);EGR控制阀52,其被置于在废气循环管51中;和EGR冷却器53。废气循环管51建立位于涡轮35b上游侧的排气通道(排气歧管41)和位于节流阀33下游侧的进气通道(进气歧管31)之间的连通。EGR控制阀52响应来自电子控制装置60的驱动信号,以改变所要循环的废气量(废气循环量,EGR-气体流速)。
电子控制装置60是一种微型计算机,其包括CPU 61、ROM 62、RAM 63、备用RAM 64、接口65等,它们通过总线彼此连接。ROM 62存储CPU 61执行的程序、表(查找表、图谱)、常数等。RAM 63允许CPU 61临时储存数据。备用RAM 64在电源接通的状态下存储数据,并在电源切断之后也能保持存储数据。接口65包括A/D转换器。
接口65连接于热线型气流计71,该热线型气流计71用作空气流速(新鲜空气流速)的测量装置,并被布置在进气管32中;进气温度传感器72,其设置在位于节流阀33下游的进气通道中,并被设置在排气循环管51和进气通道的连接点的下游;进气管压力传感器73,其设置在位于节流阀33下游的进气通道中,并被设置在排气循环管51和进气通道的连接点的下游;曲轴位置传感器74;加速踏板开度传感器75;燃料温度传感器76,其设置在燃料喷射泵22的排出口附近的燃料管23中;和为每个汽缸设置的缸内压力传感器77。接口65接收来自这些传感器的各个信号,并向CPU 61提供这些接收的信号。此外,接口65连接于燃料喷射阀21、燃料喷射泵22、节流阀致动器33a、和EGR控制阀52;并且根据来自CPU 61的指令向这些组件输出相应的驱动信号。
热线型气流计71测量通过进气通道的进气的质量流速(每单位时间的进气量,每单位时间的新鲜空气量),并产生指示质量流速Ga(空气流速Ga)的信号。进气温度传感器72测量被吸入发动机10的各个汽缸(即各个燃烧室或汽缸内部)的气体温度(即进气温度),并产生表示进气温度Tb的信号。进气管压力传感器73测量被吸入发动机10的各个汽缸的气体压力(即进气管压力),并产生表示进气管压力Pb的信号。
曲轴位置传感器74检测各汽缸的绝对曲轴转角,并产生表示曲轴转角CA和发动机速度NE的信号;即发动机10的转速。加速踏板开度传感器75检测加速踏板AP的操作量,并产生表示加速踏板操作量Acc的信号。燃料温度传感器76检测流过燃料管23的燃料温度,并产生表示燃料温度Tcr的信号。缸内压力传感器77检测燃烧室内部的气体压力(即汽缸内部气体的压力),并产生表示汽缸内部气体压力Pa的信号。如后所述,缸内压力传感器77仅用于检测点火正时。
用于估算气体混合物温度的方法概要
接着将描述由内燃机的控制装置执行的、用于估算气体混合物温度的方法,该控制装置具有上述结构(以下称为″本发明装置″)。图2示意性显示气体从进气歧管31进入某一汽缸(燃烧室),并接着被排出到排汽歧管41的状态。
如图2所示,燃烧室由汽缸的缸盖、圆柱形内壁表面和活塞24限定。圆柱形凹口(以下称作“空腔24d”)与活塞24的中心轴线同心地形成在活塞24的上表面24a。燃料喷射阀21被以如下方式固定地布置在缸盖上:使得燃料喷射阀21的中心轴线与汽缸的中心轴线重合,且在燃料喷射阀21的末端设有10个喷射孔,以便于导致所喷射的燃料(即气体混合物)沿着十个方向朝着空腔24d的侧壁24b分散,该十个方向以均匀的角度间隔布置,并且沿着中心在汽缸中心轴线上的假想圆锥体延伸,如后述的图4A所示。
如图2所示,进入燃烧室的气体(相应地,缸内气体)包括通过节流阀33从进气管32末端进入的新鲜空气,和通过EGR控制阀52进入的、来自排气循环管51的EGR气体。已进入的EGR气体的量(质量)与已进入的新鲜空气和已进入的EGR气体的量(质量)之和的比值(即EGR比值)依赖于节流阀33的开度和EGR控制阀52的开度而变化,两个阀由电子控制装置60(CPU 61)根据操作条件而适当地控制。
在进气行程期间,随着活塞向下移动,这些新鲜空气和EGR气体通过开启的进气阀Vin而进入汽缸,因而产生的气体混合物用作缸内气体。当活塞到达下止点、进气阀Vin关闭时,缸内气体被限制在汽缸内,然后在随后的压缩行程中,缸内气体随着活塞向上移动而被压缩。当活塞到达上止点(具体的是当后述的最终燃料喷射正时finjfin到了时),本发明装置将相应的燃料喷射阀21开启预定的一段时间,从而直接地将燃料喷射到汽缸中,预定时间对应于指示燃料喷射量qfin。因此,从各喷射开口喷射的(液态)燃料由于接收到来自缸内气体在压缩作用下变热的热量而立即变成了燃料蒸汽。随着时间的流逝,燃料蒸汽分散成圆锥形,同时与缸内气体混合,从而产生气体混合物。
图3示意性显示燃料蒸汽分散成圆锥形、同时与缸内气体混合,从而产生气体混合物的状态,该燃料蒸汽在燃料从某一喷射开口喷出时产生。现在,将考虑燃料持续喷射预定一段时间后,出现于最前部分且具有质量mf的燃料(燃料蒸汽)。在燃料喷射开始时刻喷射之后(即喷射后时间t=0),质量为mf的燃料蒸汽以射束角θ成圆锥形分散(参见图3)。假定燃料蒸汽在任意的喷射后时刻t与缸内气体混合(以下称为“气体混合物形成缸内气体”),从而产生质量为(mf+ma)的气体混合物最前部分(具有圆周表面A的圆柱部分),该气体混合物形成缸内气体的质量为ma,并且是缸内气体的一部分。本发明装置估算在任意的喷射后时刻t测量的气体混合物最前部分的温度(气体混合物温度Tmix,将在下文描述)。首先,将描述获得气体混合物形成缸内气体的质量ma的方法,其在任意的喷射后时刻t与质量为mf的燃料蒸汽混合(气体混合物形成缸内气体的质量ma与燃料蒸汽的质量mf的比率(质量比))。
<获得气体混合物形成缸内气体的质量ma>
为了获得在后喷射时刻t测量的气体混合物形成缸内气体的质量ma,要获得在后喷射时刻t气体混合物形成缸内气体的质量ma与燃料蒸汽的质量mf的比值(即ma/mf)。现在,由下列公式(1)定义在后喷射时刻t气体混合物最前部分的过量空气系数λ。在公式(1)中,stoich表示化学计量的空气-燃料比(例如,14.6)。
λ=(ma/mf)/stoich            (1)
上述定义的过量空气系数可根据例如下列公式(2)和公式(3)作为喷射后时刻t的函数而获得,这两个公式是经验公式,由日本机械工程师协会学报(the Transactions of the Japanese Society of MechanicalEngineers)在1959年25-156的第820页、作者为Yutaro WAGURI、Masaru FUJII、Tatsuo和Reijiro TSUNEYA的“对柴油发动机中喷射燃料移动距离的研究(Study on Injected Fuel Travel Distance in DieselEngine)”中引入(以下称为非专利文献1)。
&lambda; = &Integral; d&lambda; dt dt - - - ( 2 )
d&lambda; dt = 2 0.25 c 0.25 &CenterDot; d 0.5 &CenterDot; &rho; t &CenterDot; 1 L &CenterDot; tan 0.5 &theta; &CenterDot; &rho; a 0.25 &CenterDot; &Delta; P 0.25 &CenterDot; 1 t 0.5 - - - ( 3 )
在公式(3)中,t表示上述喷射后时刻,dλ/dt表示燃料稀释比,它是喷射后时刻t的函数。此外,c表示收缩系数,d表示燃料喷射阀21的喷射开口的直径,ρf表示(液态)燃料的密度,L表示理论稀释气体量,所有这些参数都是常数。
在公式(3)中,ΔP表示有效喷射压力,它是通过从上述最终燃料喷射压力Pcrfin中减去在喷射开始时刻(即喷射后时刻t=0)缸内气体压力Pa0而获得的数值。缸内气体压力可根据下列公式(4)获得,假定在活塞到达下止点(以下称作“ATDC-180°”,缸内气体被约束时所在的点)后,缸内气体的状态在压缩行程(和膨胀行程)中发生绝热变化。
Pa0=Pbottom·(Vbottom/Va0)K              (4)
在公式(4)中,Pbottom表示ATDC-180°处的缸内气体压力。因为认为在ATDC-180°处缸内气体压力大致等于进气管压力Pb,所以Pbottom的数值可从由进气管压力传感器73检测ATDC-180°处的进气管压力Pb获得。Vbottom表示ATDC-180°处的缸内体积。Va0表示在喷射后时刻t=0时相应于曲轴转角CA的缸内体积。因为缸内体积Va可根据发动机10的设计参数而作为曲轴转角CA的函数Va(CA)而获得,所以也可获得Vbottom和Va0的数值。κ表示缸内气体的比热比。
在公式(3)中,θ表示图3所示的射束角。因为认为射束角θ根据上述有效喷射压力ΔP和喷射开始时刻(即喷射后时刻t=0)的缸内气体的密度ρa0而变化,所以射束角θ可根据表Mapθ获得,该表Mapθ定义了缸内气体密度ρa0、有效喷射压力ΔP和射束角θ之间的关系。缸内气体密度ρa0可通过缸内气体的总质量Ma除以上述喷射后时刻t=0时的缸内体积Va0而获得。缸内气体的总质量Ma可根据下面的公式(5)获得,该公式基于ATDC-180°处的气体状态方程。在公式(5)中,Tbottom表示ATDC-180°处的缸内气体温度。因为认为在ATDC-180°处的缸内气体温度大致等于进气温度,所以Tbottom的数值可从由进气温度传感器72检测ATDC-180°处的进气温度Tb获得。Ra表示缸内气体的气体常数。
Ma=Pbottom·Vbottom/(Ra·Tbottom)           (5)
在公式(3)中,ρa表示喷射后时刻t的缸内气体密度,并且其可作为喷射后时刻t的函数获得,该函数为缸内气体的总质量Ma除以上述喷射后时刻t的缸内体积Va(CA)。
如上所述,首先在喷射后时刻t=0时获得有效喷射压力ΔP和射束角θ;随后,在喷射后时刻t和缸内气体密度ρa的基础上,根据公式(3)连续获得燃料稀释比dλ/dt的数值,缸内气体密度是喷射后时刻t的函数。根据公式(2)对连续获得的燃料稀释比dλ/dt的数值相对于时间求积分,从而获得喷射后时刻t的过量空气系数λ。当获得喷射后时刻t的过量空气系数λ后,可根据公式(1)获得喷射后时刻t的质量比ma/mf。
因为从公式(3)获得的燃料稀释比dλ/dt总是呈现为正值,所以从公式(2)获得的过量空气系数λ随着喷射后时刻t的增加而增加。因而,正如对公式(1)的理解,质量比(ma/mf)随着喷射后时刻t的增加而增加。这与以下事实相符:随着喷射燃料的蒸汽(它的最前部分)分散成圆锥形,缸内气体增加的量(即气体混合物形成缸内气体)与燃料蒸汽在气体混合物最前部分混合。
<获得绝热气体混合物温度Tmix>
在获得喷射后时刻t的质量比ma/mf后,如下所述,气体混合物最前部分的气体混合物温度Tmix可相应于CPU 61的计算循环间隔地获得。该气体混合物温度Tmix(k)表示在质量为mf且构成气体混合物最前部分的燃料蒸汽和质量为ma的混合气体形成缸内气体的混合过程中没有发生与外部(即存在于未与燃料混合的气体混合物周围的缸内气体(以下称为″外围缸内气体″))的热交换的假定前提下计算的气体混合物最前部分的温度(气体混合物温度)。显然,附加在Tmix的后缀(k)表示Tmix的值是在当前计算循环中计算得到的值(当前值)。在下面的描述中,相同规则适用于除Tmix之外的变量;即,后缀(k)表示后缀(k)附加其后的变量的数值是当前值,而后缀(k-1)表示后缀(k-1)附加其后的变量的数值是在前一次计算循环中计算得到的数值(前次值)。
现在,考虑前次计算循环中的气体混合物,其具有质量比(前次值)(ma/mf)(k-1)、质量(mf+ma)和气体混合物温度(前次值)Tmix(k-1)。气体混合物所携带的热量可使用气体混合物的比热Cmix(k-1)和气体混合物温度Tmix(k-1)、借助“(mf+ma)Cmix(k-1)Tmix(k-1)”表示。气体混合物的比热Cmix(k-1)可用如下显示的公式(6)表示。在公式(6)中,Cf表示燃料蒸汽的比热,Ca表示缸内气体的比热。
Cmix(k-1)=(Cf+(ma/mf)(k-1)·Ca)/(1+(ma/mf)(k-1))    (6)
同时,在前次计算时刻和当前计算时刻之间的时间段内新近作为气体混合物增加的气体混合物形成缸内气体的质量表示为Δma,质量为Δma的气体混合物形成缸内气体所携带的热量用“Δma Ca Ta”表示,此处Ca表示缸内气体的比热,Ta表示缸内气体的温度(在当前计算时刻)。缸内气体的温度Ta(即混合气体形成缸内气体和外围缸内气体的温度)可根据下列公式(7)获得,假定缸内气体的状态在压缩行程(和膨胀行程)中发生绝热变化。
Ta=Tbottom·(Vbottom/Va(CA))k-1           (7)
在假定当混合气体形成缸内气体的温度Ta下降到气体混合物温度(当前值)Tmix(k)时、混合气体形成缸内气体(质量:Δma)放出的总热量被气体混合物(质量:mf+ma)吸收,以便将气体混合物温度(前次值)Tmix(k-1)提高到气体混合物温度(当前值)Tmix(k)的前提下,下面的公式(8)成立。当公式(8)用于求解气体混合物温度(当前值)Tmix(k)时,经过重新整理,可得到下面的公式(9)。
Δma·Ca·(Ta-Tmix(k))=(mf+ma)·Cmix(k-1)·(Tmix(k)-Tmix(k-1))(8)
Tmix(k)=(Cmix(k-1)·Tmix(k-1)+A·Ca·Ta)/(Cmix(k-1)+A·Ca)    (9)
在公式(9)中,A表示Δma/(mf+ma)的数值。此处,因为Δma/mf=(ma/mf)(k)-(ma/mf)(k-1),所以下面的公式(10)可用于获得数值A。因此,数值A可通过利用质量比前次值(ma/mf)(k-1)和质量比当前值(ma/mf)(k)、根据公式(10)获得。
A=((ma/mf)(k)-(ma/mf)(k-1))/(1+(ma/mf)(k-1))       (10)
因此,当给出气体混合物温度Tmix、气体混合物比热Cmix、和质量比ma/mf的初始值(即在喷射后时刻t=0的时间点处的数值)时,在喷射后时刻t=0的时间点之后的气体混合物温度Tmix(k)可根据上述公式(9)以计算间隔连续地获得。显然,气体混合物温度Tmix、气体混合物比热Cmix和质量比ma/mf的初始值分别是燃料蒸汽的温度Tf、燃料蒸汽的比热Cf和零。
燃料蒸汽的温度Tf可用下列公式(11)表示,该公式考虑到当喷射后液态燃料立刻转变为燃料蒸汽时所产生的、每单位质量的潜热Qvapor。在公式(11)中,Tcr表示液态燃料温度,由燃料温度传感器76在喷射后时刻t=0时检测该温度。αcr是修正系数,用来考虑当燃料从燃料喷射泵22的排出口附近通过燃料管23到达燃料喷射阀21时所产生的热损失。
Tf=αcr·Tcr-Qvapor/cf                      (11)
<气体混合物最前部分与燃烧室内壁表面碰撞后的处理>
如前所述,从燃料喷射阀21喷射的燃料(相应地,气体混合物最前部分)朝着空腔24d的侧表面24b移动,如图4A所示。当喷射开始后流逝预定时间时,气体混合物最前部分到达侧表面24b(燃烧室的内壁表面)。
在气体混合物最前部分到达侧表面24b之后,气体混合物(其整体)被认为停滞在侧表面24b(燃烧室的侧壁)附近的大致环形结构中,如图4B所示,这是因为气体混合物通过与侧表面24b的碰撞而损失动量。在气体混合物(其整体)停滞期间,气体混合物可与缸内气体和空腔24d的壁(构成侧表面24b的侧壁,构成底表面24c的底壁和燃烧室的壁)传递(交换)热,它们位于气体混合物周围,并与气体混合物接触。
同时,根据公式(9)计算的气体混合物温度Tmix(k)是在气体混合物和外部之间没有热交换的假定条件下计算得到的气体混合物温度。因此,在气体混合物最前部分到达侧表面24b之后,气体混合物温度呈现出一个偏离根据公式(9)计算的气体混合物温度Tmix(k)的数值,偏离值为相应于气体混合物和缸内气体和空腔24d的壁之间进行的热传递的温度(以下称作“温降ΔT”)。
从上显然可知,为了即使在气体混合物最前部分到达侧表面24b之后(即在整个气体混合物停滞在侧表面24b附近的大致环形结构期间)也能精确地获得气体混合物的温度,必须获得喷射开始后测得的、从燃料喷射阀21的喷射开口起的混合物最前部分的移动距离,喷射开口与空腔24d的侧表面24b之间的距离,以及气体混合物和缸内气体和空腔24d的壁之间传递的热量。现在将接着描述用于获得这些数值的方法。
在喷射开始时刻之后气体混合物最前部分从燃料喷射阀21的喷射开口起移动经过的移动距离(以下称作″气体混合物移动距离X″)可基于例如下列的公式(12)和公式(13)、作为喷射后时刻t的函数获得,这些公式是经验公式,其在上述非专利文献1中引入。在公式(13)中,dX/dt表示气体混合物移动速度,它是喷射后时刻t的函数。显然,公式(13)右侧所示的各种数值与公式(3)右侧所示的各种数值一样。
X = &Integral; dX dt dt - - - ( 12 )
dX dt = 1 2 &CenterDot; ( 2 c &CenterDot; &Delta;P &rho; a ) 0.25 &CenterDot; ( d tan &theta; ) 0.5 &CenterDot; 1 t 0.5 - - - ( 13 )
也就是说,气体混合物移动速度dX/dt的数值基于喷射后时刻t和缸内气体密度ρa并根据公式(13)连续地获得,缸内气体密度ρa是喷射后时刻t的函数。根据公式(12)相对于时间对连续获得的气体混合物移动速度dX/dt的数值求积分,从而可获得喷射后时刻t的气体混合物移动距离X。
从燃料喷射阀21的喷射开口到空腔24d的侧表面24b的距离(以下称作″燃烧室内壁表面距离Xwall″)可利用空腔24d的半径和射束角θf(参见图4A)而由下列公式(14)表示。
Xwall=a/cos(θf)                  (14)
接着将描述用于获得停滞在环形结构中的气体混合物与缸内气体之间传递的热量以及气体混合物与空腔24d的壁之间传递的热量的方法。在本示例中,图5所示模型将被考虑用于停滞在环形结构中的气体混合物。在该模型中,假定停滞的气体混合物形成环状,其具有矩形截面,厚度(气体混合物的厚度)为rc,高度等于空腔深度b,如图6所示,并且假定停滞的气体混合物被空腔24d的侧表面24b和底表面24c以及缸内气体包围。
在这种情况下,从气体混合物的上表面传递到缸内气体的热量Qgas1、从气体混合物的内侧表面传递到缸内气体的热量Qgas2、从气体混合物的底表面传递到空腔的底表面24c的热量Qwall1和从气体混合物的外侧表面传递到空腔的侧表面24b的热量Qwall2可分别用下列公式(15)到(18)表示,热量Qgas1、Qgas2、Qwall1和Qwall2各自表示单个计算循环内所传递的热量。
Qgas1=Sgas1·αgas·(Tmix(k)-Ta)      (15)
Qgas2=Sgas2·αgas·(Tmix(k)-Ta)      (16)
Qwall1=Swall1·αwall·(Tmix(k)-Tw)   (17)
Qwall2=Swall2·αwall·(Tmix(k)-Tw)   (18)
在公式(15)和(16)中,αgas表示气体混合物和缸内气体之间的热传导率,Ta表示由上述公式(7)计算得到的缸内气体温度。在公式(17)和(18)中,αwall表示气体混合物和空腔24d的壁之间的热传导率,Tw表示空腔24d壁的温度(空腔壁的表面温度)。考虑到空腔壁的表面温度Tw随着指示燃料喷射量qfin和发动机速度NE变化而变化,所以空腔壁的表面温度Tw可由函数funcTw(qfin,NE)表示,该函数的自变量是指示燃料喷射量qfin和发动机速度NE。此外,在公式(15)到(18)中,Tmix(k)表示由上述公式(9)计算的气体混合物温度。
在公式(15)到(18)中,Sgas1、Sgas2、Swall1和Swall2分别表示气体混合物和缸内气体之间的上表面接触面积、气体混合物和缸内气体之间的侧表面接触面积、气体混合物和空腔底表面24c之间的底表面接触面积和气体混合物和空腔侧表面24b之间的侧表面接触面积。从图6中很容易理解,这些面积可由下列公式(19)到(22)表示。
sgas1=π·(a2-(a-rc)2)=π·rc·(2a-rc)        (19)
Sgas2=2π·(a-rc)·b                              (20)
Swall1=π·(a2-(a-rc)2)=π·rc·(2a-rc)       (21)
Swall2=2π·a·b                                  (22)
在公式(19)到(21)中,认为气体混合物厚度随指示燃料喷射量qfin的增加而增加;气体混合物厚度可根据下列公式(23)获得。在公式(23)中,C2表示比例常数。
rc=C2·qfin                          (23)
如图7所示,因为气体分子活动的活跃程度增大,所以热传导率αgas和αwall随着气体混合物的压力(即缸内气体压力Pa)的增加而增加。也就是说,热传导率αgas和αwall呈现出相应于缸内气体压力Pa的数值。此外,如图8A和8B所示,热传导率αwall随着气体混合物和空腔24d的壁之间的相对速度(即涡流速度)的增加而增加。在涡流比值被假定为常数时,涡流速度呈现出相应于发动机速度NE的数值,且热传导率呈现出相应于发动机速度NE的数值。因此,热传导率αgas可由函数funcαgas(Pa)表示,该函数的自变量是缸内气体压力Pa,而热传导率αwall可由函数funcαwall(Pa,NE)表示,该函数的自变量是缸内气体压力Pa和发动机速度NE。缸内气体压力Pa可由下列公式(24)获得,该公式类似于上述公式(4)。
Pa=Pbottom·(Vbottom/VA(CA))κ         (24)
既然上述公式(15)到(18)中使用的所有变量可通过上述计算获得,所以热量Qgas1、Qgas2、Qwall1和Qwall2可依照公式(15)到(18)获得。因此,可依照下列公式(25)和(26)获得热传递量Qgas和热传递量Qwall,Qgas是在每个计算循环中得到的、停滞在环形结构中的气体混合物和缸内气体之间传递的(总)热量,Qwall是在每个计算循环中得到的气体混合物和空腔24d的壁之间传递的(总)热量。在公式(25)中,Sgas表示气体混合物和缸内气体之间的总接触面积,它是Sgas1和Sgas2之和。在公式(26)中,Swall表示气体混合物和空腔24d的壁之间的总接触面积,它是Swall1和Swall2之和。
Qgas=Qgas1+Qgas2=Sgas·αgas·(Tmix(k)-Ta)        (25)
Qwall=Qwall1+Qwall2=Swall·αwall·(Tmix(k)-Tw)   (26)
同时,考虑到停滞在环形结构中的气体混合物(整体)的热容Ch随着指示燃料喷射量qfin的增加而增加,所以可依照下列公式(27)获得热容Ch。在公式(27)中,C1是比例常数。因此,每个计算循环中的气体混合物(整体)的温降ΔT可由下列公式(28)表示,其中该温降源自气体混合物与缸内气体之间的热传递和气体混合物与空腔24d的壁之间的热传递。当各个热传递量为恒量时,随着热容Ch(相应地,燃料喷射量qfin)的增加,以这种方式计算的温降ΔT呈现更小的值。
Ch=C1·qfin                        (27)
ΔT=(Qgas+Qwall)/Ch                (28)
在喷射开始之后,本发明装置以上述方式重复地计算气体混合物的移动距离X,并当满足条件″混合物移动距离X燃烧室内壁表面距离Xwall″时,本发明装置确定气体混合物最前部分已经与燃烧室的内壁表面发生碰撞。在该时间点之后,本发明装置重复获得温降ΔT,并且本发明装置依照下列公式(29)修正气体混合物温度Tmix(k),该温度Tmix(k)依照上述公式(9)获得。
Tmix(k)=Tmix(k)-ΔT                (29)
换句话说,直至气体混合物最前部分到达燃烧室的内壁表面(空腔24d的侧表面24b),根据上述公式(9)重复计算气体混合物温度Tmix(k);并且在气体混合物最前部分已经到达燃烧室的内壁表面之后,根据公式(29)重复修正根据上述公式(9)获得的气体混合物温度Tmix(k)。
顺便说一下,甚至在燃烧之后,也认为停滞在环形结构中的气体混合物继续停滞在环形结构中,直至气体混合物被排出到燃烧室外部。因而,上述″点火后的气体混合物″的温度(即火焰温度)还受到缸内气体热传递量Qgas和壁表面热传递量Qwall的影响。因此,本发明装置通过根据公式(29)修正根据上述公式(9)获得的气体混合物的温度Tmix(k),从而获得上述″点火后的气体混合物″的温度。
值得注意的是,在点火的时候,气体混合物温度因燃烧而瞬时增加。既然该温升依赖于过量空气系数λ而变化,其中该过量空气系数λ根据上述公式(2)重复计算,所以温升可由函数Tburn(λ)表示,其自变量是过量空气系数λ。因此,本发明装置基于缸内气体压力Pa的变化(急剧增加)来检测点火时刻,由缸内压力传感器77检测缸内气体压力。当检测到点火时刻时,本发明装置通过增加数值Tburn(λ)到气体混合物温度Tmix(k)中而仅一次修正气体混合物温度Tmix(k),其中数值Tburn(λ)基于点火时刻的过量空气系数λ确定,气体混合物温度Tmix(k)在点火时刻(或点火时刻后瞬间)计算出。上述是估算气体混合物温度(气体混合物温度Tmix(k))的方法概要。
燃料喷射控制概要
通常,从内燃机中排放的NOx量可基于点火时刻后的火焰温度(点火后气体混合物温度Tmix(k))的变化而确定。更具体地说,已知可通过对点火后气体混合物温度Tmix(k)与在点火后气体混合物温度Tmix(k)高于参考温度Tref的期间内的参考温度Tref之间的差值在时间上求积分而确定NOx的量(以下称作NOx量对应面积Snox)。
因而,本发明装置获得目标NOx量对应面积Snoxt,该面积Snoxt基于发动机的操作条件(燃料喷射量qfin,发动机速度NE)而相应于目标NOx量;并获得基于点火后气体混合物温度Tmix(k)的变化而获得NOx量对应面积Snox。然后,本发明装置以这样的方式反馈控制燃料喷射开始正时和燃料喷射压力:使所获得的NOx量对应面积Snox与目标NOx量对应面积Snoxt一致。
具体地,当前次计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox的数值大于目标NOx量对应面积Snoxt时,本发明装置基于基础燃料喷射正时,在当前计算循环中将用于燃料喷射汽缸的燃料喷射开始正时延迟一个预定量,基于基础燃料喷射压力将燃料喷射压力减少一个预定量。因而,在当前计算循环中,执行控制,以便减小在当前计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox。因此,在当前计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox(从而,排放的NOx量)与目标NOx量对应面积Snoxt(从而,目标NOx量)形成一致。
相反,当前次计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox的数值小于目标NOx量对应面积Snoxt时,本发明装置基于基础燃料喷射正时,在当前计算循环中将用于燃料喷射汽缸的燃料喷射开始正时提前一个预定量,基于基础燃料喷射压力将燃料喷射压力增加一个预定量。因而,在当前计算循环中,执行控制,以便增加在当前计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox。因此,在当前计算循环中确定的、用于燃料喷射汽缸的、NOx量对应面积Snox(从而,排放的NOx量)与目标NOx量对应面积Snoxt(从而,目标NOx量)形成一致。上述内容是燃料喷射控制概要。
实际操作
接下来,将描述具有上述结构的发动机控制装置的实际操作。
<控制燃料喷射量等>
CPU 61以预定间隔重复地执行图9的流程图显示的程序,该程序适合于控制燃料喷射量、燃料喷射正时和燃料喷射压力。因而,当预定时间已经到达时,CPU 61从步骤900开始处理,并接着前进到步骤905,以便于从图10所示的表(图谱)Mapqfin中获得加速踏板的开度Accp、发动机速度NE以及指示燃料喷射量qfin。表Mapqfin定义了加速踏板开度Accp和发动机速度NE与指示燃料喷射量qfin之间的关系;该表被存储在ROM 62中。
随后,CPU 61前进到步骤910,以便于从指示燃料喷射量qfin、发动机速度NE和图11所示的表Mapfinjbase确定基础燃料喷射正时finjbase。表Mapfinjbase定义了指示燃料喷射量qfin和发动机速度NE与基础燃料喷射正时finjbase之间的关系;该表被存储在ROM 62中。
随后,CPU 61前进到步骤915,以便于从指示燃料喷射量qfin、发动机速度NE和图12所示的表MapPcrbase确定基础燃料喷射压力Pcrbase。表MapPcrbase定义了指示燃料喷射量qfin和发动机速度NE与基础燃料喷射压力Pcrbase之间的关系;该表被存储在ROM 62中。
接下来,CPU 61前进到步骤920,并从指示燃料喷射量qfin、发动机速度NE和预定的表MapSnoxt确定目标NOx量对应面积Snoxt。表MapSnoxt定义了指示燃料喷射量qfin和发动机速度NE与目标NOx量对应面积Snoxt之间的关系;该表被存储在ROM 62中。
随后,CPU 61前进到步骤925,以便于将通过从目标NOx量对应面积Snoxt中减去最新的NOx量对应面积Snox(即在前次计算循环中确定的、用于燃料喷射汽缸的数值)而获得的数值作为NOx量对应面积偏差ΔSnox的存储起来,它通过后述程序获得。
随后,CPU 61前进到步骤930,以便参考图13所示的表MapΔθ、基于NOx量对应面积偏差ΔSnox确定喷射正时修正值Δθ。表MapΔθ定义了NOx量对应面积偏差ΔSnox和喷射正时修正值Δθ之间的关系,且该表被存储在ROM 62中。
然后,CPU 61前进到步骤935,以便参考图14所示的表MapΔPcr、基于NOx量对应面积偏差ΔSnox确定喷射压力修正值ΔPcr。表MapΔPcr定义了NOx量对应面积偏差ΔSnox和喷射压力修正值ΔPcr之间的关系,且该表被存储在ROM 62中。
接下来,CPU 61前进到步骤940,以便通过喷射正时修正值Δθ修正基础燃料喷射正时finjbase,从而获得最终燃料喷射正时finjfin。因而,根据NOx量对应面积偏差ΔSnox修正燃料喷射正时。正如从图13中显而易见的,当NOx量对应面积偏差ΔSnox为正值时,喷射正时修正值Δθ也为正值,且它的绝对值随着NOx量对应面积偏差ΔSnox的绝对值的增加而增加,从而最终燃料喷射正时finjfin向提前侧变化。当NOx量对应面积偏差ΔSnox为负值时,喷射正时修正值Δθ也为负值,且它的绝对值随着NOx量对应面积偏差ΔSnox的绝对值的增加而增加,因而最终燃料喷射正时finjfin向延迟侧变化。
随后,CPU 61前进到步骤945,以便通过喷射压力修正值来修正基础燃料喷射压力Pcrbase,从而获得指示最终燃料喷射压力Pcrfin。因而,根据NOx量对应面积偏差ΔSnox修正燃料喷射压力。正如从图14中显而易见的,当NOx量对应面积偏差ΔSnox为正值时,喷射压力修正值ΔPcr也为正值,且它的绝对值随着NOx量对应面积偏差ΔSnox的绝对值的增加而增加,从而指示最终燃料喷射压力Pcrfin向高压侧变化。当NOx量对应面积偏差ΔSnox为负值时,喷射压力修正值ΔPcr也为负值,且它的绝对值随着NOx量对应面积偏差ΔSnox的绝对值的增加而增加,因而指示最终燃料喷射压力Pcrfin向低压侧变化。因此,燃料喷射泵22的排出压力受到控制,从而把加压到确定的指示最终燃料喷射压力Pcrfin的燃料供给到燃料喷射阀21。
在步骤950中,CPU 61确定当前时间点的曲轴转角CA是否与相应于确定的最终燃料喷射正时finjfin的角度一致。当CPU 61在步骤950中做出″是″的判断时,CPU 61前进到步骤955,以使用于相关燃料喷射汽缸的燃料喷射阀21以确定的指示燃料喷射量qfin喷射加压到确定的指示最终燃料喷射压力Pcrfin的燃料。
随后,CPU 61前进到步骤960,并将指示燃料喷射量qfin存储为控制使用燃料喷射量qfinc,将最终燃料喷射正时finjfin存储为控制使用燃料喷射正时finjc,将指示最终燃料喷射压力Pcrfin存储为控制使用燃料喷射压力Pcrc。在随后的步骤965中,CPU 61根据上述公式(27)获得气体混合物的热容Ch,并根据上述公式(23)获得气体混合物的厚度。
随后,CPU 61前进到步骤970,以便根据步骤970的方框中所示的、相应于上述公式(19)和(20)的公式获得总接触面积Sgas,根据步骤970的方框中所示的、相应于上述公式(21)和(22)的公式获得总接触面积Swall。然后,CPU 61前进到步骤975,以便将燃料喷射执行标志EXE的值从″0″变为″1″,并接着前进到步骤995,以便结束本程序的当前执行。
当燃料喷射执行标志EXE的值为″1″时,它表示喷射燃料,且当它的值为″0″时,不喷射燃料。当CPU 61在步骤950中作出″否″的判断时,CPU 61直接前进到步骤995,以便结束本程序的当前执行。通过上述处理,实现燃料喷射量、燃料喷射正时和燃料喷射压力的控制。
<计算喷射开始时刻的各种物理量>
接下来,将描述用于计算燃料喷射开始时刻的各种物理量的操作。CPU 61以预定间隔重复地执行图15的流程图所显示的程序。因而,当预定时间已经到达时,CPU 61从步骤1500开始处理,并接着前进到步骤1505,以便确定当前时间点的曲轴转角CA是否与ATDC-180°一致
(即燃料喷射汽缸的活塞是否位于压缩行程的下止点)。
在假定燃料喷射汽缸的活塞没有到达压缩行程下止点的前提下继续描述。在这种情况下,CPU 61在步骤1505中作出″否″的判断,并接着前进到步骤1515,以便确定燃料喷射执行标志EXE的值已经从″0″变为″1″(即当前时间点是否是燃料喷射汽缸的燃料喷射开始时刻)。
在当前时间点,活塞没有到达压缩行程的下止点,且燃料喷射开始时刻还没有到来。因而,CPU 61在步骤1515中作出″否″的判断,并接着直接前进到步骤1595,以便结束本程序的当前执行。然后,CPU 61重复执行步骤1500、1505、1515和1595的处理,直至燃料喷射汽缸的活塞到达压缩行程的下止点。
接下来,假定燃料喷射汽缸的活塞处于已经到达压缩行程的下止点的情形。在这种情况下,CPU 61在它前进到步骤1505时作出″是″的判断,并接着前进到步骤1510。在步骤1510中,CPU 61将由进气温度传感器72在当前时间点检测到的进气温度Tb存储为下止点缸内气体温度Tbottom,并将由进气管压力传感器73在当前时间点检测到的进气管压力Pb存储为下止点缸内气体压力Pbottom。在步骤1515中作出″否″的判断之后,CPU 61直接前进到步骤1595,以便结束本程序的当前执行。然后,CPU 61重复执行步骤1500、1505、1515、和1595的处理,直至燃料喷射开始时刻到来。
接下来,假定在流逝预定时间之后燃料喷射开始时刻已经到来(即燃料喷射执行标志EXE已经从″0″变为″1″)。在这种情况下,CPU 61在它前进到步骤1515时作出″是″的判断,并直接前进到步骤1520,以便开始用于计算燃料喷射开始时刻的各种物理量的处理。在步骤1520中,CPU 61根据上述公式(5)获得缸内气体的总质量Ma。在这时候,在步骤1510中设置的值被用作Tbottom和Pbottom的值。
随后,CPU 61前进到步骤1525,以便基于缸内气体总质量Ma、当前时间点的缸内体积Va(CA)和步骤1525的方框中描述的公式获得缸内气体密度ρa0,将其作为燃料喷射开始时刻测量到的缸内气体密度。值得注意地,因为当前时间点的曲轴转角CA与相应于控制使用燃料喷射正时finjc的角度一致,所以当前时间点的缸内体积Va(CA)是上述燃料喷射开始时刻的缸内体积Va0。
随后,CPU 61前进到步骤1530,以便根据步骤1530的方框中描述的相应于上述公式(4)的公式获得缸内气体压力Pa0,将其作为燃料喷射开始时刻测量到的缸内气体压力,并接着前进到1535步骤,以便将通过从在上述步骤960中设置的、控制使用燃料喷射压力Pcrc中减去缸内气体压力Pa0而获得的数值设定为有效喷射压力ΔP。
接下来,CPU 61前进到步骤1540,以便根据上述公式(11)获得燃料蒸汽温度Tf。由燃料温度传感器76在当前时间点检测到的燃料温度被用作燃料温度Tcr。随后,CPU 61前进到步骤1545,以便在参考上述表Mapθ的同时、基于缸内气体密度ρa0和有效喷射压力ΔP确定射束角θ。
然后,CPU 61前进到步骤1550,以便将上述喷射后时刻t初始化为″0″,接着前进到步骤1555,以便将空腔壁表面到达标志WALL设置为″0″,并接着前进到步骤1595,以便结束本程序的当前执行。空腔壁表面到达标志WALL的值为″1″时,指示上述气体混合物最前部分已经到达空腔内壁表面,当它的值为″0″时,指示气体混合物最前部分没有到达空腔内壁表面。
然后,CPU 61重复执行步骤1500、1505、1515和1595的处理,直至相关燃料喷射汽缸的曲轴转角CA再次与ATDC-180°一致(即直至燃料喷射汽缸的活塞再次到达压缩行程的下止点)。通过上述处理,计算燃料喷射开始时刻的各种物理量。
<计算气体混合物温度>
同时,CPU 61以预定间隔重复地执行图16和17的流程图显示的程序,这些程序适合于计算气体混合物温度。因而,当预定时间已经到达时,CPU 61从步骤1600开始处理,并接着前进到步骤1602,以便确定燃料喷射执行标志EXE的值是否变为″0″。当CPU 61在步骤1602中作出″否″的判断时,CPU 61直接前进到步骤1695,以便结束本程序的当前执行。
现在,假定当前时间点是燃料喷射开始时刻(EXE的值从″0″变为″1″之后的瞬间);即现在的曲轴转角CA与相应于上述控制使用燃料喷射正时finjc的角度一致(相应地,当前时间点是在前述图15的步骤1520到1555的处理执行之后瞬间)。在这种情况下,CPU 61在步骤1602中作出″是″的判断,并直接前进到步骤1604,以便确定喷射后时刻t是否为非零。
当前时间点是在前述步骤1550的处理执行之后的瞬间,且喷射后时刻t是″0″。因而,CPU 61在步骤1604中作出″否″的判断,并接着前进到步骤1606,以便将气体混合物移动距离X和过量空气系数λ的值初始化为″0″。在随后的步骤1608中,CPU 61将在前述图15的步骤1540中计算出的燃料蒸汽温度Tf存储为气体混合物温度前次值Tmix(k-1),将燃料蒸汽的比热Cf的值存储为气体混合物比热Cmix(k-1),并将″0″存储为质量比前次值(ma/mf)(k-1)。
然后,CPU 61前进到图17的步骤1640,以便将通过增加Δt到喷射后时刻t的当前值(在当前时间点为″0″)中而获得的时刻存储为新的喷射后时刻t。随后,CPU 61前进到步骤1695,以便结束本程序的当前执行。Δt表示本程序执行的间隔。
由于步骤1640中的处理,当前喷射后时刻t变为非零。因而,在该时间点之后,当CPU 61在重复执行本程序的过程中前进到步骤1604时,CPU 61作出″是″的判断,并接着前进到步骤1610。在步骤1610中,CPU 61基于在前述图15的步骤1520中获得的缸内气体总质量Ma、缸内体积Va(CA)的当前值和在步骤1610的方框中描述的公式获得缸内气体密度ρa的当前值。
随后,CPU 61前进到步骤1612,以便基于上述缸内气体密度ρa、当前喷射后时刻t和上述公式(3)获得燃料稀释比dλ/dt,并接着前进到步骤1614,以便通过根据上述公式(2)对燃料稀释比dλ/dt在时间上求积分而获得过量空气系数λ的当前值。分别在图15的步骤1535和1545中计算出的值被用作上述公式(3)中的有效喷射压力ΔP和射束角θ的值。
接下来,CPU 61前进到步骤1616,以便根据基于上述公式(1)且在步骤1616的方框中描述的公式、基于过量空气系数λ的值获得质量比当前值(ma/mf)(k)。在随后的步骤1618中,CPU 61基于缸内体积Va(CA)的当前值和上述公式(7)获得缸内气体温度的当前值Ta。
随后,在步骤1620中,根据上述公式(10),CPU 61基于在步骤1616中获得的质量比当前值(ma/mf)(k)和质量比前次值(ma/mf)(k-1)而获得数值A,该质量比前次值(ma/mf)(k-1)在本程序的前次执行过程中被存储在后述步骤1638中(在本程序的当前执行过程中仅被存储在前述步骤1608中)。
接下来,在步骤1622中,根据上述公式(9),CPU 61基于气体混合物比热Cmix(k-1)和气体混合物温度前次值Tmix(k-1)、数值A和缸内气体温度Ta而获得气体混合物温度当前值Tmix(k),气体混合物比热Cmix(k-1)在本程序的前次执行过程中被存储在后述步骤1634中(在本程序的当前执行过程中仅被存储在前述步骤1608中),气体混合物温度前次值Tmix(k-1)在本程序的前次执行过程中被存储在后述步骤1636中(在本程序的当前执行过程中仅被存储在前述步骤1608中)。
接下来,CPU 61前进到步骤1624,并确定空腔壁表面到达标志WALL的值是否为″0″。在本时间点,因为前述步骤1555的处理,所以空腔壁表面到达标志WALL的值为″0″。因而,CPU 61在步骤1624作出″是″的判断,并接着前进到步骤1626,以便基于在步骤1610获得的缸内气体密度ρa的值和喷射后时刻t的当前值、并根据上述公式(13)计算出气体混合物移动速度dX/dt。在随后的步骤1628中,CPU 61根据上述公式(12)对气体混合物移动速度dX/dt在时间上求积分,从而获得当前时间点的气体混合物移动距离X。将分别在图15的步骤1535和1545中计算出的值用于上述公式(13)中的有效喷射压力ΔP和射束角θ的值。
接下来,CPU 61前进到步骤1630,并确定气体混合物移动距离X是否不小于燃烧室内壁表面距离Xwall(即气体混合物最前部分是否已经到达燃烧室的内壁表面)。此处,在假定气体混合物最前部分还没有到达燃烧室的内壁表面且点火还没有发生的条件下继续描述。在这种情况下,CPU 61在步骤1630作出″否″的判断,并接着直接前进到步骤1632。在步骤1632中,CPU 61基于缸内压力传感器77检测到的燃料喷射汽缸的缸内气体压力Pa的变化来监视和确定是否检测到点火。
因为在当前时间点还没有发生点火,所以CPU 61在步骤1632作出″否″的判断,并接着直接前进到步骤1634。在步骤1634中,CPU 61基于前述步骤1616中计算的质量比当前值(ma/mf)(k)、根据相应于上述公式(6)的公式计算气体混合物比热Cmix(k-1)。
随后,CPU 61前进到步骤1636,将在前述步骤1622获得的气体混合物温度当前值Tmix(k)的值存储为气体混合物温度前次值Tmix(k-1)。在步骤1638中,CPU 61将在前述步骤1616获得的质量比当前值(ma/mf)(k)的值存储为质量比前次值(ma/mf)(k-1)。然后,CPU 61在步骤1640中将喷射后时刻t的值增加Δt,并接着前进到步骤1695,以便完成本程序的当前执行。
在气体混合物最前部分到达燃烧室的内壁表面和点火发生之前,CPU 61重复执行步骤1600到1604、1610到1630、1632和1634到1640的处理,从而用作绝热气体混合物温度的气体混合物温度当前值Tmix(k)在步骤1622中被反复地更新。
接下来,将描述气体混合物最前部分已经到达燃烧室的内壁表面的情况(即气体混合物已开始停滞在环形结构中)。在这种情况下,CPU 61在它前进到步骤1630时作出″是″的判断,并接着前进到步骤1642,以便将空腔壁表面到达标志WALL的值从″0″变为″1″。因此,在该时间点之后,CPU 61在它前进到步骤1624时作出″否″的判断,并接着前进到步骤1644,以便计算温降ΔT。
<计算温降>
为了计算温降ΔT,CPU 61从步骤1800起开始图18的流程图显示的程序,并接着前进到步骤1805,以便根据上述公式(24)获得当前时间点的缸内气体压力Pa。在步骤1510中设置的数值被用作Pbottom,并使用在当前时间点的曲轴转角CA的值。
接下来,CPU 61前进到步骤1810,以便基于缸内气体压力Pa并通过利用函数funcαgas计算热传导率αgas,并接着前进到步骤1815,以便基于当前时间点的缸内气体压力Pa和发动机速度NE并通过利用函数funcαwall计算热传导率αwall。
随后,CPU 61前进到步骤1820,以便根据上述公式(25)并基于在前述步骤970中获得的总接触面积Sgas、热传导率αgas、通过图16和17的程序所获得的最新的气体混合物温度当前值Tmix(k)以及在前述步骤1618中获得的缸内气体温度Ta来计算缸内气体热传递量Qgas。
接下来,CPU 61前进到步骤1825,以便基于在前述步骤960存储的控制使用燃料喷射量qfinc和当前时间点的发动机速度NE并通过利用函数funcTw来计算空腔壁表面温度Tw。在步骤1830中,CPU 61根据上述公式(26)并基于在前述步骤970中获得的总接触面积Swall、热传导率αwall、由图16和17获得的最新的气体混合物温度当前值Tmix(k)以及空腔壁表面温度Tw来计算壁表面热传递量Qwall。
CPU 61接着前进到步骤1835,以便根据上述公式(28)并基于缸内气体热传递量Qgas、壁表面热传递量Qwall以及在前述步骤965中存储的气体混合物热容Ch来计算温降ΔT。随后,通过步骤1895,CPU 61前进到图17的步骤1646。
在步骤1646中,CPU 61将通过从在前述步骤1622中更新的最新的气体混合物温度当前值Tmix(k)中减去所获得的温降ΔT而获得的数值存储为新的气体混合物温度当前值Tmix(k),从而修正了气体混合物温度。然后,CPU 61执行步骤1632的处理以及后面的步骤。
然后,直到点火发生为止,CPU 61重复执行步骤1600到1604、1610到1624、1644、1646、1632和1634到1640的处理。因此,步骤1646被重复执行,从而在每个计算循环中,用作绝热气体混合物温度的气体混合物温度当前值Tmix(k)被修正了温降ΔT。
接下来,将描述在该状态下点火已经发生的情况。在这种情况下,CPU 61在它前进到步骤1632时作出″是″的判断,并接着前进到步骤1648,以便获得燃烧导致的温升Tburn(λ),并将通过增加温升Tburn(λ)到前述步骤1646中计算出的最新的气体混合物温度当前值Tmix(k)而获得的数值存储为新的气体混合物温度当前值Tmix(k),从而修正了气体混合物温度。这时,λ是在前述步骤1614中计算出的最新的过量空气系数λ。值得注意地,温升Tburn(λ)是一个函数,当λ为化学计量空气-燃料比stoich时,该函数提供最大值,而且当λ与化学计量空气-燃料比stoich产生偏差时,随着λ与化学计量空气-燃料比stoich的偏差增加,该函数值减小。
接下来,CPU 61前进到步骤1650,以便将相应于面积Snox的NOx量初始化为″0″,接着前进到步骤1652,以便将燃烧发生标志BURN的值从″0″变为″1″,并接着前进到步骤1654,以便将空腔壁表面到达标志WALL的值设置为″1″。然后,CPU 61执行步骤1634和后面步骤的处理。当燃烧发生标志BURN的值为″1″时,它表示当前有点火发生,当它的值为″0″时,表示当前没有点火发生。
值得注意地,像在气体混合物最前部分已经到达燃烧室的壁表面之后点火发生的当前时间点的情况下,在执行上述步骤1642时,WALL的值已经被设置为″1″。因而,即使在执行步骤1654的处理时,WALL的值也不会发生变化。换句话说,在气体混合物最前部分到达燃烧室的壁表面之前点火发生的情况下,通过执行步骤1654的处理,WALL的值瞬间从″0″变为″1″。这是因为,认为点火(爆炸)的能量可使气体混合物瞬间到达燃烧室壁表面,并停滞在环形结构中。
然后,在燃料喷射执行标志EXE的值被保持为″1″的范围内(除非后述图19的步骤1920没有执行),CPU 61重复执行步骤1600到1604、1610到1624、1644、1646和1634到1640的处理。因此,步骤1646被重复执行,从而在每个计算循环中,用作绝热气体混合物温度的点火后混合物温度当前值Tmix(k)(即火焰温度)被修正了温降ΔT。
<计算NOx量对应面积>
为了计算NOx量对应面积Snox,CPU 61以预定间隔重复地执行图19的流程图显示的程序。因而,当预定时间已经到达时,CPU 61从步骤1900起开始处理,并接着前进到步骤1905,以便确定燃料发生标志BURN的值是否为″1″。当CPU 61在步骤1905中作出″否″的判断时,CPU 61直接前进到步骤1995,以便结束本程序的当前执行。
此处,假定了当前时间点是在执行前述步骤1652(和步骤1650)之后的瞬间(即点火发生后的瞬间)。在这种情况下,CPU 61在步骤1905作出″是″的判断,CPU 61前进到步骤1910,以便确定由图16和17的程序获得的、最新的气体混合物温度当前值Tmix(k)是否高于参考温度Tref。
既然当前时间点是点火发生之后的瞬间,由于前述步骤1648的执行,所以气体混合物温度当前值Tmix(k)高于参考温度Tref。因此,CPU61在步骤1910作出″是″的判断,并前进到1915,以便通过用新的NOx量对应面积Snox替换NOx量对应面积Snox来更新它,这个新的NOx量对应面积Snox是通过增加(Tmix(k)-Tref)Δt到NOx量对应面积Snox的当前值(在当前时间点,因步骤1650的执行,该值为″0″)而获得的。然后,CPU 61前进到步骤1995,以便结束本程序的当前执行。
然后,在气体混合物温度当前值Tmix(k)高于参考温度Tref的范围内,CPU 61重复执行步骤1900到1915的处理。因此,NOx量对应面积Snox的值在步骤1915被反复地更新。当由于例如燃烧室体积增加,气体混合物温度当前值Tmix(k)变为等于或者低于参考温度Tref时,CPU 61在步骤1910作出″否″的判断,并接着前进到步骤1920,以便将燃料喷射执行标志EXE的值从″1″变为″0″。随后,CPU 61前进到步骤1925,以便将燃烧发生标志BURN的值从″1″变为″0″,并然后前进到步骤1995,以便结束本程序的当前执行。
由于步骤1925的处理结果,燃烧发生标志BURN的值已变为″0″,因此CPU 61在它前进到1905时作出″否″的判断,并直接前进到步骤1995。因此,更新NOx量对应面积Snox结束,在该时间点计算出的数值与通过对在点火后气体混合物温度Tmix(k)高于参考温度Tref期间内的点火后气体混合物温度Tmix(k)和参考温度Tref之间的差值在时间上求积分而获得的数值(即确定NOx量的数值)一致。随后,数值Snox被用于图9所示程序的步骤925,用于下一个燃料喷射汽缸的执行。因此,基于数值Snox来反馈控制发动机的燃料喷射正时和燃料喷射压力。
既然由于上述流程,燃料喷射执行标志EXE的值变为″0″,因此CPU 61在它前进到图16的步骤1602时作出″否″的判断,并直接前进到步骤1695。因此,结束计算(更新)(点火后的)气体混合物温度(即火焰温度)Tmix(k)。当燃料被喷射到下一个燃料喷射汽缸时,恢复计算气体混合物温度Tmix(k),并再次执行步骤975。
如上所述,在发动机控制装置的实施例中,该控制装置执行根据本发明的气体混合物温度估算方法,在气体混合物最前部分到达燃烧室的内壁表面(空腔24d的侧表面24b)之前,用作绝热气体混合物温度的气体混合物温度Tmix(k)仅根据上述公式(9)而被反复计算(步骤1622),该计算基于以下假定:在气体混合物和存在于它周围而没有与燃料混合的缸内气体(外围缸内气体)之间没有热交换发生。在气体混合物最前部分到达燃烧室的内壁表面之后,在假定由于与燃烧室侧壁(侧表面24b)的碰撞,全部的气体混合物损失了动量,并停滞在侧表面24b附近的环形结构中的前提下,考虑到气体混合物和存在于它周围彼此接触的缸内气体之间的热传递量Qgas、以及气体混合物和与它接触的空腔24d的壁之间的热传递量Qwall,重复修正根据上述公式(9)计算出的气体混合物温度Tmix(k)(参见上述公式(29)和步骤1646)。
因此,在认为气体混合物停滞在燃烧室侧壁附近的环形结构中的情况下(例如,在气体混合物在已经到达燃烧室的内壁表面之后被点火的情况下,气体混合物到达燃烧室内壁表面时的时间点与气体混合物被点火时的时间点之间的时间段,以及点火时刻与点火后的气体混合物被排放到燃烧室外部时的时间点之间的时间段),考虑上述热传递,从而可精确地估算出点火前后的气体混合物温度Tmix(k)。因此,可更精确地控制气体混合物的点火正时和NOx量,该NOx量极大地依赖于点火后气体混合物温度随时间的变化(相应地,排气温度)。
本发明不限于上述实施例,且在本发明范围内可以各种方式修改。例如,可使用下列修改。在上述实施例中,以如下方式反馈控制燃料喷射(喷射正时、喷射压力)的方式:基于气体混合物温度Tmix(k)计算出的NOx量对应面积Snox(参见步骤1915)与目标NOx量对应面积Snoxt一致(步骤920)。然而,实施例可以如下方式修改:目标点火时刻和目标点火时刻的目标气体混合物温度基于例如发动机的工作状态和燃料喷射反馈控制的方式设置,以使在目标点火时刻计算的气体混合物温度Tmix(k)与目标气体混合物温度一致。
在上述实施例中,假定了全部的气体混合物在气体混合物最前部分到达燃料燃烧室内壁表面之后停滞在燃烧室侧壁(侧表面24b)附近的环形结构中。然而,可假定全部的气体混合物在燃料喷射开始之后瞬间停滞在燃烧室侧壁附近的大致环形结构中。在这种情况下,从燃料喷射开始后瞬间的时间点开始,在计算气体混合物温度Tmix(k)中考虑气体混合物和缸内气体之间的热传递以及气体混合物和燃烧室壁之间的热传递。
在上述实施例中,计算停滞在环形结构中的气体混合物厚度rc,该数值仅依赖于燃料喷射量qfin而变化(参见上述公式(23)和步骤965)。然而,可计算气体混合物厚度rc,使该数值不仅依赖于燃料喷射量qfin而变化,而且还依赖于缸内气体压力Pa、缸内气体温度Ta和气体混合物过量空气系数λ中的至少一个而变化。
在上述实施例中,根据表示气体绝热变化的公式来计算缸内气体压力Pa(参见步骤1530和1805)。然而,缸内气体压力Pa可通过利用缸内压力传感器77来检测。

Claims (12)

1、一种用于内燃机的气体混合物温度估算方法,该方法包括以下步骤:
在气体混合物停滞在位于燃烧室侧壁附近的大致环形结构中,并且在该气体混合物停滞期间,在该气体混合物与存在于该气体混合物周围的物体或物质之间发生热传递的假定前提下,估算通过混合被喷射到内燃机燃烧室的燃料和气缸内气体而产生的气体混合物的温度,其中该气缸内气体是已经进入燃烧室的气体。
2、如权利要求1所述的用于内燃机的气体混合物温度估算方法,其中,在该气体混合物的停滞发生在其到达燃烧室的内壁表面之后的假定前提下,估算该气体混合物温度。
3、如权利要求1所述的用于内燃机的气体混合物温度估算方法,其中,存在于该气体混合物周围的物体或物质包括所述燃烧室中的与该气体混合物相接触的壁以及与该气体混合物相接触的所述气缸内气体。
4、如权利要求2所述的用于内燃机的气体混合物温度估算方法,其中,存在于该气体混合物周围的物体或物质包括所述燃烧室中的与该气体混合物相接触的壁以及与该气体混合物相接触的所述气缸内气体。
5、如权利要求3所述的用于内燃机的气体混合物温度估算方法,其中,根据该气体混合物和所述燃烧室壁之间的接触面积和热传导率,计算出该气体混合物和燃烧室壁之间传递的热量;并且根据该气体混合物和所述气缸内气体之间的接触面积和热传导率,计算出该气体混合物和气缸内气体之间传递的热量。
6、如权利要求4所述的用于内燃机的气体混合物温度估算方法,其中,根据该气体混合物和所述燃烧室壁之间的接触面积和热传导率,计算出该气体混合物和燃烧室壁之间传递的热量;并且根据该气体混合物和所述气缸内气体之间的接触面积和热传导率,计算出该气体混合物和气缸内气体之间传递的热量。
7、如权利要求5所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率和该气体混合物与所述气缸内气体之间的热传导率随着该气缸内气体的压力变化而单独变化。
8、如权利要求6所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率和该气体混合物与所述气缸内气体之间的热传导率随着该气缸内气体的压力变化而单独变化。
9、如权利要求5所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率随着一表示由涡流所产生的该气体混合物的流动速度的数值的变化而变化。
10、如权利要求6所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率随着一表示由涡流所产生的该气体混合物的流动速度的数值的变化而变化。
11、如权利要求7所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率随着一表示由涡流所产生的该气体混合物的流动速度的数值的变化而变化。
12、如权利要求8所述的用于内燃机的气体混合物温度估算方法,其中,该气体混合物与所述燃烧室壁之间的热传导率随着一表示由涡流所产生的该气体混合物的流动速度的数值的变化而变化。
CN200580004388.1A 2004-02-10 2005-02-08 用于内燃机的估算气体混合物温度的方法 Expired - Fee Related CN1918378B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004032950A JP3991996B2 (ja) 2004-02-10 2004-02-10 内燃機関の混合気温度推定方法
JP32950/2004 2004-02-10
PCT/JP2005/002188 WO2005075802A1 (en) 2004-02-10 2005-02-08 Method of estimating temperature of gas mixture for internal combustion engine

Publications (2)

Publication Number Publication Date
CN1918378A true CN1918378A (zh) 2007-02-21
CN1918378B CN1918378B (zh) 2011-02-09

Family

ID=34836113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580004388.1A Expired - Fee Related CN1918378B (zh) 2004-02-10 2005-02-08 用于内燃机的估算气体混合物温度的方法

Country Status (5)

Country Link
US (1) US7537382B2 (zh)
EP (1) EP1714019B1 (zh)
JP (1) JP3991996B2 (zh)
CN (1) CN1918378B (zh)
WO (1) WO2005075802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297744A (zh) * 2010-06-23 2011-12-28 罗伯特·博世有限公司 用于内燃机工作的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635804B2 (ja) * 2005-09-28 2011-02-23 トヨタ自動車株式会社 内燃機関の燃料噴射時期決定装置
JP4594260B2 (ja) * 2006-03-15 2010-12-08 株式会社豊田中央研究所 内燃機関の混合気の不均一度取得装置、及び混合気状態取得装置
US20080285616A1 (en) * 2006-12-22 2008-11-20 Espec Corp. System for testing the durability of objects under thermally hard circumstances
JP4775303B2 (ja) * 2007-04-13 2011-09-21 トヨタ自動車株式会社 内燃機関の燃料噴射時期決定装置
JP2009264176A (ja) * 2008-04-23 2009-11-12 Yanmar Co Ltd ガスエンジン制御装置
JP4958850B2 (ja) * 2008-06-20 2012-06-20 トヨタ自動車株式会社 内燃機関の混合気温度推定装置
US9731593B2 (en) * 2008-08-07 2017-08-15 Ford Global Technologies, Llc Fuel storage system
US8353196B2 (en) * 2008-09-24 2013-01-15 Toyota Jidosha Kabushiki Kaisha Gas-mixture-nonuniformity acquisition apparatus and gas-mixture-state acquisition apparatus for internal combustion engine
JP5299181B2 (ja) * 2009-09-07 2013-09-25 トヨタ自動車株式会社 内燃機関の筒内ガス温度推定装置
JP5644220B2 (ja) * 2010-07-13 2014-12-24 トヨタ自動車株式会社 内燃機関の制御装置
US9395252B1 (en) * 2012-02-06 2016-07-19 Dynamic Ratings Pty Ltd. Method of estimating internal dielectric fluid temperature of an electrical device
JP6070346B2 (ja) * 2013-03-27 2017-02-01 トヨタ自動車株式会社 内燃機関の熱発生率波形作成装置および燃焼状態診断装置
JP2014202181A (ja) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 内燃機関の筒内温度推定装置および熱発生率波形作成装置ならびに燃焼状態診断装置
PT3249201T (pt) * 2016-05-24 2020-07-09 CleanTech Swiss AG Dispositivo para uma operação de um motor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736167A (en) * 1956-02-28 teague
JPS5880446A (ja) * 1981-11-07 1983-05-14 Toshiba Corp 給湯器
JPS6053741A (ja) * 1983-09-01 1985-03-27 Matsushita Electric Ind Co Ltd 温水ボイラ
US4930309A (en) * 1988-11-03 1990-06-05 Fleck Aerospace Limited Partnership Gas compressor for jet engine
JPH0544479A (ja) * 1991-08-20 1993-02-23 Mazda Motor Corp エンジンの吸気装置
JP2731338B2 (ja) * 1993-07-30 1998-03-25 日立金属株式会社 耐熱管状部材の試験装置
US6287534B1 (en) * 1994-03-28 2001-09-11 Ping Wha Lin Method for manufacturing sulfuric acid
US5771984A (en) * 1995-05-19 1998-06-30 Massachusetts Institute Of Technology Continuous drilling of vertical boreholes by thermal processes: including rock spallation and fusion
US6089081A (en) * 1998-01-27 2000-07-18 Siemens Canada Limited Automotive evaporative leak detection system and method
JP2000161790A (ja) * 1998-11-25 2000-06-16 Noritz Corp 給湯器
JP3089236B2 (ja) * 1998-11-25 2000-09-18 三菱重工業株式会社 廃棄物焼却炉
US6367970B1 (en) * 1999-06-07 2002-04-09 The United States Of America As Represented By The Secretary Of The Navy Rapid response h-q-T sensor
JP3817977B2 (ja) * 1999-07-06 2006-09-06 株式会社日立製作所 圧縮着火式エンジンの制御方法
JP3680259B2 (ja) 2000-03-08 2005-08-10 トヨタ自動車株式会社 ディーゼル機関の燃料噴射装置
JP2002180894A (ja) 2000-12-12 2002-06-26 Toyota Motor Corp 内燃機関の制御装置
KR100932677B1 (ko) * 2001-08-10 2009-12-22 요코하마 티엘오 가부시키가이샤 열전달 장치
JP4782423B2 (ja) * 2002-09-05 2011-09-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 高純度水素の製造装置及び方法
GB2395561B (en) * 2002-11-19 2006-03-08 Qinetiq Ltd Fluid temperature measurement
US7032383B2 (en) * 2003-09-10 2006-04-25 Caterpillar Inc. Connecting duct for fluid compression system
WO2008127467A2 (en) * 2006-12-15 2008-10-23 State Of Franklin Innovation, Llc Ceramic-encased hot surface igniter system for jet engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297744A (zh) * 2010-06-23 2011-12-28 罗伯特·博世有限公司 用于内燃机工作的方法
US9222841B2 (en) 2010-06-23 2015-12-29 Robert Bosch Gmbh Method for operating an internal combustion engine

Also Published As

Publication number Publication date
EP1714019A1 (en) 2006-10-25
EP1714019B1 (en) 2015-12-23
CN1918378B (zh) 2011-02-09
US7537382B2 (en) 2009-05-26
WO2005075802A1 (en) 2005-08-18
US20090097525A1 (en) 2009-04-16
JP2005226461A (ja) 2005-08-25
JP3991996B2 (ja) 2007-10-17

Similar Documents

Publication Publication Date Title
CN1918378A (zh) 用于内燃机的估算气体混合物温度的方法
CN1270067C (zh) 内燃发动机控制装置
EP1568876B1 (en) Gas mixture temperature estimation apparatus for internal combustion engine
CN100335767C (zh) 内燃机的燃料喷射控制器和燃料喷射控制方法
CN1745236A (zh) 用于内燃机的NOx排放量估算方法
CN101151453B (zh) 用于内燃机的气体混合物状态估计设备和排放物生成量估计设备
CN1657767A (zh) 内燃发动机的点火定时控制
CN1135317C (zh) 粉煤燃烧炉的炉内状态测算控制设备
CN1657765A (zh) 用于内燃发动机的点火定时控制
CN1657766A (zh) 内燃发动机的点火定时控制
CN1463322A (zh) 预热排气处理装置的催化剂的方法
CN1534180A (zh) 内燃机的燃烧控制
CN1966959A (zh) 内燃机的控制装置以及控制方法
CN1934344A (zh) 内燃机空燃比控制设备
CN1654798A (zh) 发动机的燃料喷射控制装置
CN1492134A (zh) 内燃机燃烧状态推定装置
CN1673507A (zh) 内燃机气缸内燃空比的估算方法
CN1523226A (zh) 爆燃指标值计算装置及其计算方法
CN1648429A (zh) 发动机燃料喷射控制系统
CN1675459A (zh) 用于内燃机的egr控制装置和方法
CN1853037A (zh) 用于内燃机的估计混合气状态量或温度的方法
CN101061305A (zh) 内燃机的控制装置以及空燃比计算方法
EP1529941A2 (en) NOx generation quantity estimation method for internal combustion engine
CN1637264A (zh) 用于内燃机的废气再循环系统
JP6927084B2 (ja) 内燃機関

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110209

Termination date: 20180208

CF01 Termination of patent right due to non-payment of annual fee