CN1915805A - 碳纳米管阵列制备装置及方法 - Google Patents

碳纳米管阵列制备装置及方法 Download PDF

Info

Publication number
CN1915805A
CN1915805A CNA2005100367469A CN200510036746A CN1915805A CN 1915805 A CN1915805 A CN 1915805A CN A2005100367469 A CNA2005100367469 A CN A2005100367469A CN 200510036746 A CN200510036746 A CN 200510036746A CN 1915805 A CN1915805 A CN 1915805A
Authority
CN
China
Prior art keywords
carbon
carbon nano
reaction chamber
pipe array
nano pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100367469A
Other languages
English (en)
Other versions
CN100418876C (zh
Inventor
姜开利
陈卓
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2005100367469A priority Critical patent/CN100418876C/zh
Priority to US11/414,040 priority patent/US7824649B2/en
Priority to JP2006221220A priority patent/JP4436821B2/ja
Publication of CN1915805A publication Critical patent/CN1915805A/zh
Application granted granted Critical
Publication of CN100418876C publication Critical patent/CN100418876C/zh
Priority to US12/398,458 priority patent/US8142568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/129Radiofrequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect

Abstract

本发明涉及一种碳纳米管阵列制备装置,其包括:一反应腔;一局部加热装置,用以加热装载于该反应腔内的碳纳米管生长用催化剂;及一气态碳供给装置,用以在装载于该反应腔内的催化剂的上游位置向该反应腔提供一气态碳。本发明通过设置一局部加热装置及气态碳供给装置,可在反应腔的催化剂层位置处形成明显的温度梯度,及在反应腔内提供充足的碳源;其可实现碳纳米管阵列的快速生长,且可在基底上生长出单壁碳纳米管阵列。本发明还提供一碳纳米管阵列制备方法。

Description

碳纳米管阵列制备装置及方法
【技术领域】
本发明涉及一种碳纳米管阵列制备装置及方法,尤其是利用化学气相沉积法的碳纳米管阵列制备装置及方法。
【背景技术】
碳纳米管是一种新型碳材料,由日本研究人员S Iijima于1991年发现,可参见″Helical microtubules of graphitic carbon″,S Iijima,Nature,vol.354,p56(1991)。碳纳米管具有极优异的导电特性,传热特性及机械特性等。目前已广泛应用于电子、光电,热传导等领域。
一般而言,碳纳米管分为单壁碳纳米管与多壁碳纳米管两种。多壁碳纳米管是由2~50层同心圆柱管状结构叠套而成,这些圆柱管由碳原子构成,就好像是把石墨片卷起来那样,碳原子在管壁上呈六边形排列,两端由五边形或七边形碳环组成的端冒封口,形成凹或凸的结构。单壁碳纳米管直径一般为1~6nm(最小直径为0.4nm),只有一层石墨结构。由于单壁碳纳米管具有单层壁结构,其相对于多壁毯纳米管而言,具有更少的原子缺陷。进而更具较大的应用潜力。
现有技术中,单壁碳纳米管的制备方法有:(1)Smalley等人在Science 273,483~487(1996),Crystalline Ropes of Metallic Carbon Nanotubes一文中揭露的激光蒸发法,其采用聚焦激光束消融碳-镍-钴混合物制备出由100~500根单壁碳纳米管组成的碳纳米管束,该碳纳米管的定向性较好,产出率为70%。(2)Journet等人在Nature 388,756~758(1997),Large-scale production ofsingle-walled carbon nanotubes by the electric-arc technique一文中揭露的电弧放电法,其采用直流电弧法制备出大量的单壁碳纳米管束,该大量单壁碳纳米管束的取向较混乱。(3)Dai等人在Chemical Physics Letters 292,567~574(1998),Chemical Vapor Deposition of Methane for Single-WalledCarbon Nanotubes一文中揭露的化学气相沉积法,其以甲烷为碳源气,氧化镍(NiO)、氧化钴(CoO)、或氧化镍/氧化钴(NiO/CoO)层作为催化剂;当采用晶态氧化铝纳米粒子作为催化剂支撑体时,制备出大量单根的单壁碳纳米管及少量的单壁碳纳米管束;当采用非晶态硅石(Amorphous Silica)作为催化剂支撑体时,仅能制备出单壁碳纳米管束。
综上所述,现有技术仅可制备出单根的单壁碳纳米管,及单根或定向性较好的单壁碳纳米管束;而难以实现单壁碳纳米管的阵列式生长,也即难以制备出单壁碳纳米管阵列。其将限制单壁碳纳米管阵列在场发射平面显示器、场发射平面光源、以及热界面材料等领域的应用。
有鉴于此,有必要提供一种碳纳米管阵列制备装置及方法,其可实现单壁碳纳米管阵列的生长。
【发明内容】
下面将以具体实施例说明一种碳纳米管阵列制备装置及方法,其可实现单壁碳纳米管阵列的生长。
为实现以上内容,提供一种碳纳米管阵列制备装置,其包括:
一反应腔;
一局部加热装置,用以加热装载于该反应腔内的碳纳米管生长用催化剂;及
一气态碳供给装置,用以在装载于该反应腔内的催化剂的上游位置向该反应腔提供一气态碳。
优选的,所述局部加热装置为一高频炉或加热台。
优选的,所述气态碳供给装置包括一石墨块及一激光装置,通过该激光装置产生一激光束轰击该石墨块以产生一气态碳。
可优选的,所述气态碳供给装置包括一对石墨电极及一电弧放电装置,通过电弧放电装置使该对石墨电极进行电弧放电以产生一气态碳。
也可优选的,所述气态碳供给装置包括一石墨块及一与该石墨块串联形成电气回路的电源,通过该电源加热该石墨块至石墨气化温度以产生一气态碳。
以及,提供一种碳纳米管阵列制备方法,其包括以下步骤:
将形成有一催化剂层的基底置于一反应腔内;
向该反应腔内通入保护气体,以使该反应腔内的空气排出;
对该反应腔内的基底进行局部加热,将催化剂加热至碳纳米管生长温度;
在基底的上游位置(Upstream)向反应腔内提供一气态碳;
向该反应腔内通入一碳源气,以进行碳纳米管阵列生长。
优选的,所述碳纳米管生长温度为650~1200℃。
优选的,所述气态碳是通过向一石墨块通以一加热电流使其到达高温而形成的。
可优选的,所述气态碳是通过采用激光束蒸发一石墨块而形成的。
也可优选的,所述气态碳是通过采用电弧放电法使一对石墨电极进行电弧放电而形成的。
所述基底包括硅、玻璃或氧化铝。
相对于现有技术,本技术方案所提供的碳纳米管阵列制备装置及方法,其通过一局部加热装置及气态碳供给装置,可在反应腔的催化剂层位置处形成明显的温度梯度,及在反应腔内提供充足的碳源;其可实现碳纳米管阵列的快速生长,且可在基底上生长出单壁碳纳米管阵列。
【附图说明】
图1是本发明第一实施例单壁碳纳米管阵列制备装置示意图。
图2是本发明第一实施例在950℃生长条件下生长出的单壁碳纳米管拉曼光谱(Raman Shift)图。
图3是本发明另一实施例在1000℃生长条件下生长出的单壁碳纳米管拉曼光谱(Raman Shift)图。
【具体实施方式】
下面结合附图将对本发明实施例作进一步的详细说明。
第一实施例
参见图1,本发明第一实施例所提供的碳纳米管阵列制备装置100,其包括一反应腔10,一局部加热装置20,及一气态碳供给装置30。
反应腔10具有一进气口12,及一与该进气口12相对设置的出气口14。该反应腔10可为现有技术中化学气相沉积法生长碳纳米管常用的石英管。该进气口12与出气口14分别设于该反应腔10的两端。进气口12可用于向反应腔10提供保护气体(如,氩气、氮气、氦气、或其混合)及生长碳纳米管用碳源气(如,甲烷、乙烯或乙炔等碳氢化合物)。出气口14可用于排放气体。
局部加热装置20用以对装载于反应腔10内的基底40进行局部加热,以将基底40表面上的催化剂层42加热至碳纳米管生长温度。该催化剂层42用作碳纳米管生长的触媒层。该局部加热装置20的选用以能实现仅对形成在基底40表面的催化剂42加热为佳。本实施例中选用高频炉,其只能对导体加热;因此其可实现仅对形成在基底40表面的催化剂层42加热,进而可在催化剂层42位置与催化剂层42上方形成明显的温度梯度,有利于碳纳米管的快速生长。当然,局部加热装置20也可选用一加热台,其可对整个基底40加热,但非对整个反应腔加热;其也可在催化剂层42位置与催化剂层42上方形成明显的温度梯度。
气态碳供给装置30用以向反应腔10提供一额外碳源。该气态碳供给装置30可产生气态碳,并在反应腔10的装载有碳纳米管生长用催化剂层42的上游位置提供气态碳。所述上游位置是指催化剂层42的位于进气口12一侧某一位置处。所述气态碳供给装置30与反应腔10密封连接。该气态碳供给装置30包括一石墨块(图未示)及一激光装置(图未示),该激光装置产生一激光束轰击该石墨块即可产生一气态碳,该气态碳可经由通入惰性气体将其导入反应腔10内的催化剂层42的上游位置。该气态碳供给装置30也可采用其它结构形式,如:其包括一对石墨电极及一电弧放电装置,将该对石墨电极装载于该电弧放电装置内以进行电弧放电;进而产生一气态碳。向该电弧放电装置内通入一惰性气体可将该气态碳导入反应腔10内的催化剂层42的上游位置。
当然,也可以另一种气态碳供给装置,其包括一石墨块及与该石墨块串联形成一电气回路的电源。该石墨块直接放置于反应腔内装载催化剂的上游位置,该电源设于反应腔10外部;使用一穿过进气口12的导线实现石墨块与电源的电气连接。该电源可于石墨块两端施加加热电路以使石墨块到达石墨的气化温度而于反应腔10装载催化剂层42的上游位置产生一气态碳。
下面将详细描述本实施例中碳纳米管阵列制备装置100的操作过程。
(1)向反应腔10提供一上表面有一催化剂层42的基底40。该基底40的基体材质可为半导体材料(如,硅)、或玻璃及氧化铝等。所述催化剂层42为一金属膜,其厚度以纳米量级(小于1μm)为佳;该催化剂层42的材质可选用常用的碳纳米管生长用催化剂,如铁、钴、镍、或其合金等。
(2)经由该进气口12向该反应腔10内通入保护气体,以使该反应腔10内的空气经由该出气口14排除。并且,在后续催化剂层42加热及碳纳米管生长过程中持续通入该保护气体。其中,保护气体可选用氩气、氮气、氦气等惰性气体,或其混合。
(3)通过一局部加热装置30,将该基底40表面的催化剂层42加热至碳纳米管生长温度。碳纳米管生长温度一般为650℃~1200℃。本实施例中,局部加热装置30为一高频炉,其将基底50加热至950℃。
(4)在基底50的上游位置(Upstream)向反应腔提供一气态碳。该气态碳是由气态碳供给装置30提供,该气态碳的提供方法可为下列方法之一:(1)启动Nd:YAG等激光装置产生一激光束轰击一石墨块产生一气态碳,同时采用一惰性气体将该气态碳导入反应腔10中的基底50的上游位置。通过控制激光功率可控制气态碳的蒸出量,进而可控制碳纳米管的生长速度。(2)将一对石墨电极装载于电弧放电装置,并使该对石墨电极的间距足够小(小于1mm);启动该电弧放电装置使石墨电极发生电弧放电产生一气态碳。向电弧放电装置内通入一惰性气体以将该气态碳导入反应腔10中的基底50的上游位置。通过控制电弧放电的放电电流的大小可控制气态碳的蒸出量,进而可控制碳纳米管的生长速度。(3)在反应腔内装载的催化剂层42的上游位置放置一石墨块,通过一位于反应腔10外部的电源向石墨块通入加热电流,使其到达石墨气化温度以在催化剂层42的上游位置产生一气态碳。通过控制加热电流的大小可控制气态碳的蒸出量,进而可控制碳纳米管的生长速度。
(5)经由进气口12向该反应腔10内通入一碳源气,以进行碳纳米管生长。为精确控制碳纳米管阵列的生长高度,以在在通入气态碳的同时通入碳源气为佳。在碳源气及保护气体的携带作用下,气态碳被携带至基底40上的催化剂层42位置。碳源气在催化剂层42的高温下分解出碳和氢气;碳源气遇高温分解出的碳及向反应腔10通入的气态碳与催化剂层42中的催化剂粒子形成金属碳化物,当金属碳化物中的碳达到饱和后,其中的碳将向低温方向(即催化剂层42上方位置)析出而形成碳纳米管。其中,碳源气可选用碳纳米管生长常用的甲烷、乙烯或乙炔等碳氢化合物。图1中箭头所指方向为气流方向。在碳纳米管生长过程中,保护气体与碳源气的体积比优选为1∶1~1∶10;反应腔10内的气压优选为400Torr~600Torr;保护气体的流速优选为200sccm~500sccm;碳源气的流速优选为20sccm~60sccm。本实施例中,反应腔10内的气压为500Torr;保护气体的流速为360sccm;碳源气选用乙炔,其流速为40sccm。
本实施例中,单壁碳纳米管的生长速率极快,在40秒生长时间中单壁碳纳米管阵列高度达1mm以上,甚至可达2.5mm/s(毫米每分钟)。图2为本实施例中,950℃生长条件下生长出的单壁碳纳米管阵列中的单壁碳纳米管的拉曼光谱图;由图2可知,该单壁碳纳米管阵列中单壁碳纳米管的最高计数径向呼吸模式显示179.92cm-1,其对应的单壁碳纳米管的直径为1.29nm。
本实施例中,通过实现基底40的局部加热,在反应腔10的基底40位置处形成明显的温度梯度,其有利于碳向温度低方向析出及催化剂的成核率的提升,进而实现碳纳米管的快速生长;通过提供气态碳,有其利于碳纳米管快速生长过程中的碳供给;并且,充足的碳分子与催化剂形成金属碳化物可放出大量热。而单壁碳纳米管的热传导性质最佳,为使热量快速传导出去,其将可在基底40上生长出单壁碳纳米管阵列。
另一实施例中,设置碳纳米管生长温度为1000℃。图3为1000℃生长条件下生长出的单壁碳纳米管阵列中的单壁碳纳米管的拉曼光谱图;由图3可知,该单壁碳纳米管阵列中单壁碳纳米管的径向呼吸模式显示的主要峰位有184.9cm-1,165.76cm-1,148.21cm-1;其分别对应的单壁碳纳米管的直径为1.25nm,1.40nm,1.58nm。
另外,本领域技术人员还可在本发明精神内做其它变化,如适当变更反应腔内的气压,保护气体及碳源气的流速,碳纳米管阵列生长温度等设计以用于本发明,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (14)

1.一种碳纳米管阵列制备装置,其包括:
一反应腔;
一局部加热装置,用以加热装载于该反应腔内的碳纳米管生长用催化剂;及
一气态碳供给装置,用以在装载于该反应腔内的催化剂的上游位置向该反应腔提供一气态碳。
2.如权利要求1所述的碳纳米管阵列制备装置,其特征在于所述局部加热装置为一高频炉或加热台。
3.如权利要求1所述的碳纳米管阵列制备装置,其特征在于所述气态碳供给装置包括一石墨块及一激光装置,通过该激光装置产生一激光束轰击该石墨块以产生一气态碳。
4.如权利要求1所述的碳纳米管阵列制备装置,其特征在于所述气态碳供给装置包括一对石墨电极及一电弧放电装置,通过电弧放电装置使该对石墨电极进行电弧放电以产生一气态碳。
5.如权利要求1所述的碳纳米管阵列制备装置,其特征在于所述气态碳供给装置包括一石墨块及一与该石墨块串联形成电气回路的电源,通过该电源加热该石墨块至石墨气化温度以产生一气态碳。
6.一种碳纳米管阵列制备方法,其包括以下步骤:
将形成有一催化剂层的基底置于一反应腔内;
向该反应腔内通入一保护气体;
对该基底进行局部加热,将催化剂加热至碳纳米管生长温度;
在该基底的上游位置向反应腔内提供一气态碳;
向该反应腔内通入一碳源气,以进行碳纳米管阵列生长。
7.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述碳纳米管生长温度为650~1200℃。
8.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述气态碳是通过向一石墨块通以一加热电流使其到达高温而形成的。
9.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述气态碳是通过采用激光束蒸发一石墨块而形成的。
10.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述气态碳是通过采用电弧放电法使一对石墨电极进行电弧放电而形成的。
11.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述基底包括硅、玻璃或氧化铝。
12.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述保护气体包括氩气、氮气、氦气、或其混合。
13.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述碳源气包括甲烷、乙烯或乙炔。
14.如权利要求6所述的碳纳米管阵列制备方法,其特征在于所述催化剂层的材质为铁、钴、镍、或其合金。
CNB2005100367469A 2005-08-19 2005-08-19 碳纳米管阵列制备装置及方法 Active CN100418876C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB2005100367469A CN100418876C (zh) 2005-08-19 2005-08-19 碳纳米管阵列制备装置及方法
US11/414,040 US7824649B2 (en) 2005-08-19 2006-04-28 Apparatus and method for synthesizing a single-wall carbon nanotube array
JP2006221220A JP4436821B2 (ja) 2005-08-19 2006-08-14 単層カーボンナノチューブ配列の成長装置及び単層カーボンナノチューブ配列の成長方法
US12/398,458 US8142568B2 (en) 2005-08-19 2009-03-05 Apparatus for synthesizing a single-wall carbon nanotube array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100367469A CN100418876C (zh) 2005-08-19 2005-08-19 碳纳米管阵列制备装置及方法

Publications (2)

Publication Number Publication Date
CN1915805A true CN1915805A (zh) 2007-02-21
CN100418876C CN100418876C (zh) 2008-09-17

Family

ID=37736908

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100367469A Active CN100418876C (zh) 2005-08-19 2005-08-19 碳纳米管阵列制备装置及方法

Country Status (3)

Country Link
US (2) US7824649B2 (zh)
JP (1) JP4436821B2 (zh)
CN (1) CN100418876C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372327B (zh) * 2008-09-26 2011-03-23 厦门大学 一种碳纳米管阵列的生长方法
CN101357757B (zh) * 2008-01-18 2011-06-08 中国科学院上海微系统与信息技术研究所 同时制备多方向水平定向单壁碳纳米管阵列的方法
CN104555988A (zh) * 2015-01-27 2015-04-29 北京理工大学 一种化学气相沉积法生产微米级直径碳线的方法及应用
CN104641028A (zh) * 2013-06-18 2015-05-20 Lg化学株式会社 制备碳纳米管纤维的装置及利用所述装置制备碳纳米管纤维的方法
CN106276846A (zh) * 2016-07-15 2017-01-04 华北电力大学 一种制备碳纳米管的系统及方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294159A1 (en) * 2008-06-03 2009-12-03 Kuo-Ching Chiang Advanced print circuit board and the method of the same
EP2570385A3 (en) * 2005-05-03 2013-10-16 Nanocomp Technologies, Inc. Carbon composite materials and methods of manufacturing same
US7993620B2 (en) 2005-07-28 2011-08-09 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
CN100418876C (zh) * 2005-08-19 2008-09-17 清华大学 碳纳米管阵列制备装置及方法
CN101205059B (zh) * 2006-12-20 2010-09-29 清华大学 碳纳米管阵列的制备方法
US9061913B2 (en) * 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
EP2173473A2 (en) * 2007-07-25 2010-04-14 Nanocomp Technologies, Inc. Systems and methods for controlling chirality of nanotubes
JP2011508364A (ja) * 2007-08-07 2011-03-10 ナノコンプ テクノロジーズ インコーポレイテッド 非金属電気伝導性および熱伝導性ナノ構造体ベースアダプター
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators
KR100946704B1 (ko) 2007-11-29 2010-03-12 한국전자통신연구원 VLS법을 이용한 GeTe 나노와이어의 제조 방법
JP5674642B2 (ja) * 2008-05-07 2015-02-25 ナノコンプ テクノロジーズ インコーポレイテッド カーボンナノチューブベースの同軸電気ケーブルおよびワイヤハーネス
US9198232B2 (en) * 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
CN102011101B (zh) * 2009-09-04 2013-06-05 清华大学 金刚石薄膜的生长装置
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
ES2721377T3 (es) 2011-01-04 2019-07-31 Nanocomp Technologies Inc Aislantes térmicos basados en nanotubos, su uso y método de aislamiento térmico
JP6404916B2 (ja) 2013-06-17 2018-10-17 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブ、束および繊維のための剥離剤および分散剤
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
GB2545643B (en) 2015-12-15 2022-06-15 Levidian Nanosystems Ltd Apparatus and method for plasma synthesis of carbon nanotubes
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
CN108807562B (zh) * 2017-04-28 2021-01-05 清华大学 光电探测器及其制备方法
CN108996489A (zh) 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备装置
CN108996487B (zh) 2017-06-07 2021-01-26 清华大学 一种碳纳米管阵列与生长基底分离的方法
CN108996490A (zh) 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备方法
CN108996488A (zh) 2017-06-07 2018-12-14 清华大学 一种碳纳米管阵列的制备方法
JP7088571B2 (ja) * 2018-03-09 2022-06-21 国立大学法人 東京大学 単層カーボンナノチューブ及び該単層カーボンナノチューブに積層された層を有する構造体、及びその製造方法
US11773484B2 (en) * 2020-06-26 2023-10-03 Tokyo Electron Limited Hard mask deposition using direct current superimposed radio frequency plasma

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2335659C2 (de) * 1973-07-13 1982-10-28 Krupp-Koppers Gmbh, 4300 Essen Verfahren zur Erzeugung eines methanhaltigen Gases
DE69728410T2 (de) * 1996-08-08 2005-05-04 William Marsh Rice University, Houston Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen
TW353758B (en) * 1996-09-30 1999-03-01 Motorola Inc Electron emissive film and method
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
US7097821B1 (en) * 1997-08-04 2006-08-29 Hyperion Catalysis International, Inc. Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method
JP3077655B2 (ja) * 1997-12-22 2000-08-14 日本電気株式会社 カーボンナノチューブの製造装置及びその製造方法
EP1061041A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
US6878360B1 (en) * 1999-09-01 2005-04-12 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US6692324B2 (en) * 2000-08-29 2004-02-17 Ut-Battelle, Llc Single self-aligned carbon containing tips
KR100382879B1 (ko) * 2000-09-22 2003-05-09 일진나노텍 주식회사 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치.
US6743408B2 (en) * 2000-09-29 2004-06-01 President And Fellows Of Harvard College Direct growth of nanotubes, and their use in nanotweezers
DOP2001000282A (es) * 2000-11-10 2002-12-30 Vector Tabacco Bermuda Ltd Metodo y producto para remover calcinogenos del humo del tabaco (method and products for removing calcinogenos from tobacco smoke)
US20020102193A1 (en) * 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing two zones for making single-wall carbon nanotubes
US20020172767A1 (en) * 2001-04-05 2002-11-21 Leonid Grigorian Chemical vapor deposition growth of single-wall carbon nanotubes
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
JP3606232B2 (ja) * 2001-06-01 2005-01-05 富士ゼロックス株式会社 炭素構造体の製造装置および製造方法
US7052667B2 (en) * 2001-10-30 2006-05-30 Materials And Electrochemical Research (Mer) Corporation RF plasma method for production of single walled carbon nanotubes
CN1176014C (zh) 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
TW200307773A (en) * 2002-05-22 2003-12-16 Showa Denko Kk Process for producing vapor-grown carbon fibers
GB0216654D0 (en) * 2002-07-17 2002-08-28 Univ Cambridge Tech CVD Synthesis of carbon nanoutubes
US7431965B2 (en) * 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
AU2003287801A1 (en) * 2002-11-15 2004-06-15 Mgill University Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch
CN100473601C (zh) * 2003-01-23 2009-04-01 佳能株式会社 制造纳米碳材料的方法
JP2004332093A (ja) * 2003-05-08 2004-11-25 Hiroshi Ashida 連続cvd製造装置
JP3872775B2 (ja) * 2003-07-10 2007-01-24 株式会社ノリタケカンパニーリミテド カーボンナノチューブの製造方法
WO2005113854A2 (en) * 2004-05-18 2005-12-01 Board Of Trustees Of The University Of Arkansas Apparatus and methods of making nanostructures by inductive heating
US7365289B2 (en) * 2004-05-18 2008-04-29 The United States Of America As Represented By The Department Of Health And Human Services Production of nanostructures by curie point induction heating
US7473873B2 (en) * 2004-05-18 2009-01-06 The Board Of Trustees Of The University Of Arkansas Apparatus and methods for synthesis of large size batches of carbon nanostructures
KR100656985B1 (ko) * 2004-11-02 2006-12-13 한국에너지기술연구원 나노필터 여재 제조 방법과 제조 장치
CA2588134A1 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
US20080199389A1 (en) * 2005-05-23 2008-08-21 Chiu Wilson K S Method and device for producing carbon nanotubes
CN100418876C (zh) * 2005-08-19 2008-09-17 清华大学 碳纳米管阵列制备装置及方法
FI120450B (fi) * 2007-03-21 2009-10-30 Beneq Oy Laite nanoputkien tuottamiseksi

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357757B (zh) * 2008-01-18 2011-06-08 中国科学院上海微系统与信息技术研究所 同时制备多方向水平定向单壁碳纳米管阵列的方法
CN101372327B (zh) * 2008-09-26 2011-03-23 厦门大学 一种碳纳米管阵列的生长方法
CN104641028A (zh) * 2013-06-18 2015-05-20 Lg化学株式会社 制备碳纳米管纤维的装置及利用所述装置制备碳纳米管纤维的方法
US9556542B2 (en) 2013-06-18 2017-01-31 Lg Chem, Ltd. Device for manufacturing carbon nanotube fibers and method for manufacturing carbon nanotube fibers using same
CN104555988A (zh) * 2015-01-27 2015-04-29 北京理工大学 一种化学气相沉积法生产微米级直径碳线的方法及应用
CN106276846A (zh) * 2016-07-15 2017-01-04 华北电力大学 一种制备碳纳米管的系统及方法

Also Published As

Publication number Publication date
JP4436821B2 (ja) 2010-03-24
JP2007051059A (ja) 2007-03-01
US8142568B2 (en) 2012-03-27
US20090269257A1 (en) 2009-10-29
CN100418876C (zh) 2008-09-17
US7824649B2 (en) 2010-11-02
US20070048211A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
CN100418876C (zh) 碳纳米管阵列制备装置及方法
US7713589B2 (en) Method for making carbon nanotube array
CN1290763C (zh) 一种生产碳纳米管的方法
US7682658B2 (en) Method for making carbon nanotube array
US7625544B2 (en) Method for manufacturing carbon nanotubes
Yu et al. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature
CN1234604C (zh) 一种碳纳米管、其制备方法和制备装置
CN1239387C (zh) 碳纳米管阵列及其生长方法
CN1286716C (zh) 一种生长碳纳米管的方法
JP5470610B2 (ja) グラフェンシートの製造方法
US7700048B2 (en) Apparatus for making carbon nanotube array
KR20090103985A (ko) 그라펜 시트 및 그의 제조방법
CN101948105A (zh) 一种制备高纯度单壁碳纳米管垂直阵列的方法
JP5965901B2 (ja) カーボンナノチューブの製造装置
CN1757595A (zh) 多壁碳纳米管原位自组装制备定向微米管的方法
KR101936447B1 (ko) 카본 나노 튜브의 제조 방법
JP2009012176A (ja) 高密度カーボンナノチューブアレイ及びその成長方法
Cole et al. Engineered carbon nanotube field emission devices
JP2003277029A (ja) カーボンナノチューブ及びその製造方法
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
JP2003115255A (ja) 電界電子放出電極およびその製造方法
CN1424250A (zh) 单温区电阻炉热解法生长并纯化碳纳米管的工艺
Lee et al. Synthesis of carbon nanotubes on silicon nanowires by thermal chemical vapor deposition
CN1275851C (zh) 一种碳纳米管的制备方法
KR101956920B1 (ko) 그래핀 층 및 중공 탄소 튜브를 포함하는 탄소 혼성 구조

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant