CN1905132A - 用于Ⅲ族氮化物基器件的硅碳锗(SiCGe)衬底 - Google Patents

用于Ⅲ族氮化物基器件的硅碳锗(SiCGe)衬底 Download PDF

Info

Publication number
CN1905132A
CN1905132A CNA2006100995299A CN200610099529A CN1905132A CN 1905132 A CN1905132 A CN 1905132A CN A2006100995299 A CNA2006100995299 A CN A2006100995299A CN 200610099529 A CN200610099529 A CN 200610099529A CN 1905132 A CN1905132 A CN 1905132A
Authority
CN
China
Prior art keywords
carbon
layer
silicon
substrate
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100995299A
Other languages
English (en)
Other versions
CN1905132B (zh
Inventor
维金奈·M·罗宾斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Avago Technologies ECBU IP Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avago Technologies ECBU IP Singapore Pte Ltd filed Critical Avago Technologies ECBU IP Singapore Pte Ltd
Publication of CN1905132A publication Critical patent/CN1905132A/zh
Application granted granted Critical
Publication of CN1905132B publication Critical patent/CN1905132B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0211Substrates made of ternary or quaternary compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了用于由III族氮化物材料系统形成的电子器件的衬底,该衬底包含硅碳层以及在该硅碳层上的硅碳锗层,该硅碳层和硅碳锗层形成了用于由III族氮化物材料系统形成的器件的衬底。

Description

用于III族氮化物基器件的硅碳锗(SiCGe)衬底
技术领域
本发明涉及电子器件和光学器件的加工制造。
背景技术
碳化硅(SiC)被用作各种电子和光学器件的衬底。很多电子和光学器件是由一种或更多种III族元素和氮(通常称为III族氮化物)组成的层形成的。一种III族氮化物是氮化镓。通常用氮化镓材料系统形成的器件包括例如晶体管和发光器件。氮化镓材料系统包括用铝、硼、镓和铟与氮的各种组合形成的合金。这包括各种二元端点(binary endpoints)和三元端点(ternary endpoints),例如氮化铝(AlN)、氮化镓(GaN)、氮化铟镓(GaInN)等。碳化硅因其导电性而成为用氮化镓材料系统形成的器件的理想衬底。然而,尽管碳化硅具有与用氮化镓材料系统形成的材料的晶体结构相似的晶体结构时,碳化硅的晶格常数小于用氮化镓材料系统形成的材料的晶格常数。当氮化镓材料生长得比临界厚度更厚时,碳化硅与用氮化镓材料系统形成的材料之间的晶格失配导致在氮化镓材料中形成位错缺陷。这些位错使氮化镓基器件的性能和可靠性变差。
遗憾的是,能呈现合适的电气特性并且具有与用氮化镓材料系统形成的材料的晶格常数相似的晶格常数的衬底还未被开发出来。因此,为了在碳化硅衬底上用氮化镓材料系统形成器件,必须开发例如外延横向过生长(称为“ELOG”)的精密生长方法来降低缺陷密度。即使用例如ELOG的技术进行生长之后,碳化硅上生长的氮化镓中的缺陷密度仍为约106/cm2。能与用氮化镓基材料形成的材料更紧密地匹配的衬底可使氮化镓基材料在低位错密度的条件下生长并且改善器件的性能。
发明内容
本发明的实施方式提供了用于由III族氮化物材料系统形成的电子器件的衬底,包含硅碳层以及在该硅碳层上的硅碳锗层,该硅碳层和硅碳锗层构成了由III族氮化物材料系统形成的器件的衬底。
本发明的实施方式还包括形成用于由III族氮化物材料系统形成的电子器件的衬底的方法。该方法包括形成硅碳层、在该硅碳层上形成硅碳锗层以及直接在该硅碳锗层上用III族氮化物材料系统形成电子器件。
附图说明
参照附图可以更好地理解本发明。图中组件并不一定按照比例,而是注重于清楚地阐明本发明的原理。此外,在这些图中,类似的附图标记指示各图中的相应部分。
图1为根据本发明的一种实施方式在硅碳锗衬底上形成的光电器件的示意图。
图2为在图1的衬底上形成的示例性氮化镓基激光器的示意图。
图3为根据本发明在衬底上形成器件的示例性方法的流程图。
具体实施方式
降低衬底与氮化镓基材料之间的晶格失配的一种方法是向碳化硅衬底中添加锗。向碳化硅衬底添加锗会增大衬底的晶格常数。SiC:Ge合金的发展存在技术挑战,目前只能在碳化硅晶体中引入少量的锗。X射线衍射数据表明,SiC:Ge的晶格常数与碳化硅相比确实增加了。SiC:Ge的薄层已被引入电子器件以形成碳化硅异质结构器件。然而,至今为止还未实现用锗来形成与用III族氮化物特别是氮化镓材料系统形成的器件具有更紧密的晶格匹配的衬底。
尽管本文在形成用于氮化镓基器件的衬底的部分将对用于III族氮化物基器件的硅碳锗衬底的实例进行描述,但是在硅碳锗衬底上也可形成具有与氮化镓基器件的层的晶格常数相似的晶格常数的其他材料。
图1为根据本发明的一种实施方式在硅碳锗衬底上形成的光电器件的示意图。光电器件100可以是例如发光器件(例如激光器和发光二极管),或可以是用III族氮化物(特别是氮化镓)材料系统形成的任何其他电子器件。电子器件100包含由硅和碳组成的第一衬底层102。在一种实施方式中,第一衬底层102由碳化硅(SiC)组成。第一衬底层102的平面内(a轴)晶格常数为3.086埃()。在第一衬底层102上形成硅碳锗的第二衬底层104。在一种实施方式中,第二衬底层104是碳化硅锗(SiC:Ge),其组成为(Si0.5-xC0.5-y)Gex+y,其中0≤x≤0.5且0≤y≤0.5。
在一种具体实施方式中,第二衬底层104的组成为(Si0.5-xC0.5-y)Gex+y,其中锗含量在约5%至约40%的范围内变化。选择x和y的值以为后续的器件层提供所需的晶格常数。在一种实施方式中,第二衬底层104的组成为Si0.35C0.5Ge0.15。然而,第二衬底层104的组成范围可在Si0.45C0.5Ge0.05(含)与Si0.10C0.5Ge0.4(含)之间。由于硅、碳和锗的键长,锗倾向于取代硅,但一部分锗还可以取代碳。如果氮化镓器件随后在第二衬底层104上生长,第二衬底层104应当以(Si0.5-xC0.5-y)Gex+y的组成形成以得到3.19的平面内晶格常数。如果氮化铝器件随后在第二衬底层104上生长,第二衬底层104应当以(Si0.5-xC0.5-y)Gex+y的组成形成以得到3.11的平面内晶格常数。
第一衬底层102和第二衬底层104构成衬底110。第二衬底层104的晶格常数接近于氮化镓和在氮化镓材料系统中形成的其他材料的晶格常数。在一种实施方式中,用氮化镓材料系统形成的光电器件是在衬底110上并且直接在第二衬底层104上形成的。这在图中表示为作为第二衬底层104上的层106的氮化镓器件。通常,器件由多个层组成,这些层具有不同的硼、铝、镓、铟和氮组成。在此实施例中,氮化镓层106的晶格常数为3.19,与第二衬底层104的晶格常数紧密匹配。与氮化镓层106直接在碳化硅层102上生长的厚度相比,层104与106的材料之间的紧密晶格匹配使得氮化镓材料的层106(以及未示出的后续层)可以无位错地生长至更大的厚度。这允许在衬底110上形成光学品质高的氮化镓基器件。
在出现位错之前,可在第二衬底层104上形成的层106的厚度大于可直接在碳化硅层102上形成的厚度。以此方式,可以形成具有高光学品质的氮化镓基器件。含约5%至约40%锗的第二衬底层104与氮化镓材料层106之间的晶格失配明显低于第一衬底层102与氮化镓材料层106之间的晶格失配。第二衬底层104与氮化镓材料层106之间晶格匹配紧密,使材料层106在不形成位错的条件下生长的厚度明显大于层106直接在第一衬底层102上生长的厚度。
图2为在图1的衬底110上形成的示例性氮化镓基激光器结构的示意图。在衬底110上形成导电缓冲层202。在一种实施方式中,导电缓冲层202可在相对较低的生长温度下由氮化镓形成。在缓冲层202上形成n型氮化镓层204。在一种实施方式中,氮化镓层204的厚度约为1微米(μm)。在氮化镓层204上由氮化镓铝形成n型覆层(cladding layer)206。覆层206的厚度约为0.4μm并且该层是用AlxGa1-xN形成的,其中x=0.12。在覆层206上形成波导层208。波导层208的厚度约为0.1μm并且该层是用AlxGa1-xN形成的,其中x=0.06。在波导层208上形成包括氮化镓铟量子阱层和氮化镓阻挡层的交替层的有源区(active region)210。有源区可包含一个或更多个量子阱,在本例中,包含8个量子阱。
在有源区210上形成波导层212。波导层212的厚度约为0.1μm并且该层是用AlxGa1-xN形成的,其中x=0.06。在波导层212上由氮化镓铝形成p型覆层214。覆层214的厚度约为0.4μm并且该层是用AlxGa1-xN形成的,其中x=0.12。在覆层214上形成p型氮化镓层216。在一种实施方式中,氮化镓层216的厚度约为0.1μm。在衬底110上形成n型触点218,并在p型氮化镓层216上形成p型触点222。
图3为根据本发明在衬底上形成器件的示例性方法的流程图。在方框302中,由硅碳形成第一衬底层102。在一种示例性实施方式中,第一衬底层102是碳化硅(SiC)。在方框304中,由硅碳锗形成第二衬底层104。在一种示例性实施方式中,第二衬底层104是碳化硅锗(SiC:Ge),其组成为(Si0.5-xC0.5-y)Gex+y,其中0≤x≤0.5且0≤y≤0.5,且其晶格常数为3.19。第一衬底层102和第二衬底层104形成了衬底110。在方框306中,在衬底110上形成(具体地是在第二衬底层104上直接形成)III族氮化物特别是氮化镓基器件。氮化镓基器件的层的晶格常数与第二衬底层104的SiC:Ge材料的晶格常数紧密匹配。第二衬底层104的SiC:Ge材料与氮化镓基器件的材料之间的晶格匹配允许在衬底110上形成光学品质高的氮化镓基光电器件。
本说明书通过实施方式对本发明进行了详细描述。但应当理解,本发明的范围由所附权利要求所定义,而不限于所述的具体实施方式。

Claims (20)

1.形成用于由III族氮化物材料系统形成的电子器件的硅碳锗衬底的方法,包括:
形成硅碳层;
在所述硅碳层上形成硅碳锗层;以及
在所述硅碳锗层上直接形成含III族氮化物的电子器件。
2.如权利要求1的方法,其中所述硅碳锗的组成为(Si0.5-xC0.5-y)Gex+y,其中0≤x≤0.5且0≤y≤0.5。
3.如权利要求2的方法,其中所述硅碳锗的组成为Si0.35C0.5Ge0.15
4.如权利要求2的方法,其中相对于所述硅碳与氮化镓的晶格匹配,所述硅碳锗层与氮化镓的晶格匹配更紧密。
5.如权利要求2的方法,其中所述硅碳锗层被形成为具有3.19埃()的晶格常数。
6.如权利要求2的方法,其中所述硅碳锗层被形成为具有3.11埃()的晶格常数。
7.如权利要求2的方法,其中所述硅碳锗的组成为(Si0.5-xC0.5-y)Gex+y,其中0.1≤x≤0.40且0.0≤y≤0.40。
8.用于由III族氮化物材料系统形成的电子器件的衬底,包含:
硅碳层;和
在所述硅碳层上的硅碳锗层,所述硅碳层和所述硅碳锗层形成用于由III族氮化物材料系统形成的器件的衬底。
9.如权利要求8的衬底,还包含在所述硅碳锗层上直接形成的由氮化镓材料系统形成的电子器件。
10.如权利要求9的衬底,其中所述电子器件是光电器件。
11.如权利要求9的衬底,其中所述硅碳锗层包含(Si0.5-xC0.5-y)Gex+y,其中0≤x≤0.5且0≤y≤0.5。
12.如权利要求11的衬底,其中所述硅碳锗层包含Si0.35C0.5Ge0.15
13.如权利要求11的衬底,其中相对于所述硅碳层与氮化镓的晶格匹配,所述硅碳锗层与氮化镓的晶格匹配更紧密。
14.如权利要求11的衬底,其中所述硅碳锗层的晶格常数为3.19埃()。
15.如权利要求11的衬底,其中所述硅碳锗层的晶格常数为3.11埃()。
16.用于由III族氮化物材料系统形成的电子器件的硅碳锗衬底,包含:
硅碳层;
在所述硅碳层上的硅碳锗层,所述硅碳锗层包括(Si0.5-xC0.5-y)Gex+y,其中0≤x≤0.5且0≤y≤0.5;和
直接在所述硅碳锗层上的含镓和氮的电子器件。
17.如权利要求16的衬底,其中所述硅碳锗的组成在Si0.45C0.5Ge0.05与Si0.10C0.5Ge0.4之间,并包括这两个端点。
18.如权利要求17的衬底,其中相对于所述硅碳与氮化镓的晶格匹配,所述硅碳锗层与氮化镓的晶格匹配更紧密。
19.如权利要求16的衬底,其中所述硅碳锗层被形成为具有3.19埃()的晶格常数。
20.如权利要求16的衬底,其中所述硅碳锗层被形成为具有3.11埃()的晶格常数。
CN2006100995299A 2005-07-26 2006-07-26 用于III族氮化物基器件的硅碳锗(SiCGe)衬底及其形成方法 Expired - Fee Related CN1905132B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/189,286 US20070023761A1 (en) 2005-07-26 2005-07-26 Silicon carbon germanium (SiCGe) substrate for a group III nitride-based device
US11/189,286 2005-07-26

Publications (2)

Publication Number Publication Date
CN1905132A true CN1905132A (zh) 2007-01-31
CN1905132B CN1905132B (zh) 2010-09-29

Family

ID=37137522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100995299A Expired - Fee Related CN1905132B (zh) 2005-07-26 2006-07-26 用于III族氮化物基器件的硅碳锗(SiCGe)衬底及其形成方法

Country Status (6)

Country Link
US (1) US20070023761A1 (zh)
EP (1) EP1748497A3 (zh)
JP (1) JP2007036255A (zh)
KR (1) KR20070014054A (zh)
CN (1) CN1905132B (zh)
TW (1) TW200742099A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714144A (zh) * 2010-01-15 2012-10-03 住友化学株式会社 半导体基板、电子器件及半导体基板的制造方法
CN103646858A (zh) * 2013-12-03 2014-03-19 中国电子科技集团公司第十三研究所 采用SiGeC缓冲层在Si衬底上生长GaN的方法
CN105568385A (zh) * 2016-01-22 2016-05-11 山东大学 一种掺锗SiC体单晶材料的生长方法
CN111856626A (zh) * 2020-07-22 2020-10-30 中国建筑材料科学研究总院有限公司 硅掺杂碳化锗膜、光学薄膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399692B2 (en) * 2005-10-03 2008-07-15 International Rectifier Corporation III-nitride semiconductor fabrication
CN102449785A (zh) 2009-06-05 2012-05-09 住友化学株式会社 光器件、半导体基板、光器件的制造方法、以及半导体基板的制造方法
US10507469B2 (en) * 2013-01-18 2019-12-17 Kurt M. Schie Wood chipper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592501A (en) * 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
JP3409958B2 (ja) * 1995-12-15 2003-05-26 株式会社東芝 半導体発光素子
JP3822318B2 (ja) * 1997-07-17 2006-09-20 株式会社東芝 半導体発光素子及びその製造方法
JP4166885B2 (ja) * 1998-05-18 2008-10-15 富士通株式会社 光半導体装置およびその製造方法
US20030132433A1 (en) * 2002-01-15 2003-07-17 Piner Edwin L. Semiconductor structures including a gallium nitride material component and a silicon germanium component
EP1962340A3 (en) * 2004-11-09 2009-12-23 S.O.I. TEC Silicon Method for manufacturing compound material wafers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714144A (zh) * 2010-01-15 2012-10-03 住友化学株式会社 半导体基板、电子器件及半导体基板的制造方法
CN103646858A (zh) * 2013-12-03 2014-03-19 中国电子科技集团公司第十三研究所 采用SiGeC缓冲层在Si衬底上生长GaN的方法
CN105568385A (zh) * 2016-01-22 2016-05-11 山东大学 一种掺锗SiC体单晶材料的生长方法
CN111856626A (zh) * 2020-07-22 2020-10-30 中国建筑材料科学研究总院有限公司 硅掺杂碳化锗膜、光学薄膜及其制备方法和应用
CN111856626B (zh) * 2020-07-22 2021-11-26 中国建筑材料科学研究总院有限公司 硅掺杂碳化锗膜、光学薄膜及其制备方法和应用

Also Published As

Publication number Publication date
KR20070014054A (ko) 2007-01-31
TW200742099A (en) 2007-11-01
EP1748497A2 (en) 2007-01-31
EP1748497A3 (en) 2008-05-14
US20070023761A1 (en) 2007-02-01
JP2007036255A (ja) 2007-02-08
CN1905132B (zh) 2010-09-29

Similar Documents

Publication Publication Date Title
CN1909190B (zh) 含晶格参数改变元素的氮化镓器件衬底
US7288830B2 (en) III-V nitride semiconductor substrate and its production method
JP5331868B2 (ja) 窒化物層上の光電子又は電子デバイス及びその製造方法
CN100350639C (zh) 氮化物半导体led和其制造方法
CN1905132B (zh) 用于III族氮化物基器件的硅碳锗(SiCGe)衬底及其形成方法
EP1054442A2 (en) Method for growing epitaxial group III nitride compound semiconductors on silicon
US20040119063A1 (en) Gallium nitride-based devices and manufacturing process
US9397232B2 (en) Nitride semiconductor epitaxial substrate and nitride semiconductor device
Neubert et al. GaInN quantum wells grown on facets of selectively grown GaN stripes
US6967355B2 (en) Group III-nitride on Si using epitaxial BP buffer layer
US7014710B2 (en) Method of growing single crystal Gallium Nitride on silicon substrate
CN104518062A (zh) 制造半导体发光器件的方法
Xing et al. InGaN/GaN quantum well structures with greatly enhanced performance on a-plane GaN grown using self-organized nano-masks
US7859086B2 (en) Nitride semiconductor single crystal substrate, and methods of fabricating the same and a vertical nitride semiconductor light emitting diode using the same
CN100350638C (zh) 氮化物半导体及其制备方法
CN1138025C (zh) 一种控制氮化镓(GaN)极性的方法
US7875961B2 (en) Semiconductor substrate of GaAs and semiconductor device
JP4904726B2 (ja) 半導体エピタキシャルウェハ及びhemt用半導体エピタキシャルウェハの製造方法
Zang et al. Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111)
JP5173441B2 (ja) 化合物半導体成長用基板およびエピタキシャル成長方法
Shibata et al. High‐quality AlN epitaxial films on (0001)‐faced sapphire and 6H‐SiC substrate
JP7182172B2 (ja) Iii族窒化物半導体装置
JP2006120855A (ja) Iii−v族窒化物半導体エピタキシャルウェハ
Dumiszewska et al. Problems with cracking of Al x Ga 1-x N layers.
Wang et al. Violet light-emitting diodes grown on crack-free AlGaN templates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20130726