CN1879198A - 化合物半导体外延基板的制造方法 - Google Patents

化合物半导体外延基板的制造方法 Download PDF

Info

Publication number
CN1879198A
CN1879198A CNA2004800330468A CN200480033046A CN1879198A CN 1879198 A CN1879198 A CN 1879198A CN A2004800330468 A CNA2004800330468 A CN A2004800330468A CN 200480033046 A CN200480033046 A CN 200480033046A CN 1879198 A CN1879198 A CN 1879198A
Authority
CN
China
Prior art keywords
epitaxial substrate
compound semiconductor
substrate
inp
semiconductor epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800330468A
Other languages
English (en)
Other versions
CN100576449C (zh
Inventor
小广健司
高田朋幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of CN1879198A publication Critical patent/CN1879198A/zh
Application granted granted Critical
Publication of CN100576449C publication Critical patent/CN100576449C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种凹状缺陷少的化合物半导体外延基板的制造方法。化合物半导体外延基板的凹状缺陷生成的抑制方法,其包括如下所述工序,即:在InP单结晶基板、或与InP单结晶基板晶格整合的外延层上,在V/III比:10~100、成长温度:630℃~700℃、成长速度:0.6μm/h~2μm/h的条件下,通过外延成长,而形成InGaAs层。

Description

化合物半导体外延基板的制造方法
技术领域
本发明涉及化合物半导体外延基板的制造方法。详细地说,本发明涉及凹状缺陷少的化合物半导体外延基板的制造方法。
背景技术
通过现有的气相外延成长法,特别是有机金属热分解法(MOCVD法)在单结晶基板上使外延层成长时,在外延层的表面,会有凸状缺陷或凹状缺陷生成。
凸状缺陷被称为泪状缺陷,小丘(hillock),缺陷的直径大约10μm~大约30μm,高度为数十nm。凸状缺陷,虽然并非使器件的制作变得不可能,但是根据情况,使在制作工序中使用的光掩模损伤,或使图案发生偏移。为了抑制凸状缺陷的发生,而提出了控制单结晶基板的偏离角的方法(例如,特开平2-239188号公报,特开平8-78348号公报)。
另一方面,凹状缺陷,缺陷的直径为数μm,深度会到达单结晶基板和外延层的界面附近。由具有凹状缺陷的化合物半导体外延基板制造器件时,器件的成品率低。
另外,在所述的抑制凸状缺陷的发生的方法中,很难降低凹状缺陷。
发明内容
本发明的目的在于,提供一种凹状缺陷少的化合物半导体外延基板的制造方法。
本发明者们对抑制凹状缺陷的发生进行了刻意的研究的结果,完成了本发明。
即,本发明,提供一种化合物半导体外延基板的制造方法,其包括如下所述的工序,即:在InP单结晶基板、或与InP单结晶基板晶格整合的外延层上,在V/III比:10~100、成长温度:630℃~700℃、成长速度:0.6μm/h~2μm/h的条件下,通过外延成长,而形成InGaAs层。
另外,本发明提供一种化合物半导体外延基板的凹状缺陷生成的抑制方法,其包括如下所述的工序,即:在InP单结晶基板、或与InP单结晶基板晶格整合的外延层上,在V/III比:10~100、成长温度:630℃~700℃、成长速度:0.6μm/h~2μm/h的条件下,通过外延成长,而形成InGaAs层。
根据本发明的化合物半导体外延基板的制造方法,能够得到凹状缺陷少的化合物半导体外延基板。
另外,根据本发明的方法,能够抑制化合物半导体外延基板的凹状缺陷的生成。
附图说明
图1表示根据本发明的制造方法得到的化合物半导体外延基板的截面图。
图2表示由实施例1得到的化合物半导体外延基板的截面图。
图3是由实施例1得到的化合物半导体外延基板表面的照片。
图4表示由实施例1得到的化合物半导体外延基板的InGaAs层的In组成分布。
图5表示由实施例2得到的化合物半导体外延基板的InGaAs层的In组成分布。
图6是由比较例2得到的化合物半导体外延基板表面的照片。
图7表示InGaAs层的成长温度、和所得的化合物半导体外延基板的表面缺陷密度的关系。
图8表示InGaAs层的成长速度、和所得的化合物半导体外延基板的表面缺陷密度的关系。
图9表示InGaAs层成长时的V/III比、和所得的化合物半导体外延基板的表面缺陷密度的关系。
具体实施方式
化合物半导体外延基板的制造方法
根据图1,说明本发明的化合物半导体外延基板的制造方法。图1表示由所述制造方法得到的化合物半导体外延基板(以下,简称为“外延基板”)1,外延基板1依序含有InP基板2、任意的InP层3、InGaAs层4以及任意的InP层5。
InP基板2,例如偏离角(从晶面方位(100)偏移)为大约5°以下,优选为0.5°以下的单结晶基板。InP基板2,从外延层的杂质摄取量的控制,还有半导体激光用途的观点出发,优选偏离角大约为0°的基板(最佳基板)。另外,优选基板的晶面方位精度为0.05°以内。
在InP基板2之上,优选形成与InP基板2晶格整合的层(例如,图1中的InP层3)。作为与InP基板2晶格整合的外延层,例如可以例举出InP、InGaAs、InAlAs、InGaAsP、GaAsSb。与InP基板2晶格整合的层,可以通过如MOCVD、分子线外延(molecular beam epitaxy)(以下,称为MBE)等的气相成长法形成。InP基板2的气相成长,可以由公知的条件进行。
InGaAs层4,位于InP基板2之上,或形成于InP基板2之上,形成在与InP基板2晶格整合的任意的外延层之上。InGaAs层4,例如,可以通过MOCVD、MBE等的气相成长法形成,优选由MOCVD法形成。
InGaAs层4的气相成长的V/III比,为10以上,优选为50以上,另外,在100以下,优选为70以下。若V/III比在所述范围内,则可以得到凹状缺陷少的外延基板。若V/III比低于10,则在外延层上产生V族空位,或发生III族元素占据V族位置的异位缺陷(antisite defect)。V族空位的发生,推断为V族元素的不足的影响。V/III比,是III-V族外延基板制造中的V族原料和III族原料的供给量的比。例如,在气相成长法中,作为原料的有机金属,从储存瓶或扩散器(bubbler)以气态供给。
在使用储存瓶时,原料气体的供给量,可以通过设于供给线路上的质量流(mass flow)控制器等流量控制装置进行控制。此时的原料气体的供给量,由(储存瓶内的原料气体浓度)×(原料气体流量)表示。
在使用扩散器时,原料气体的供给量,可以通过设于用于供给扩散器载气的供给线上的质量流控制器等的流量控制装置进行控制。此时的原料气体的供给量,由(运载气体(carrier gas)流量)×(扩散器内原料蒸气压)/(扩散器内压)表示。
V族原料,例如有氢化砷(AsH3等)。III族原料例如可以是如三甲基铟(TNIn)等铟化合物;三甲基镓(TMGa)、三乙基镓(TEGa)等镓化合物等。镓化合物,优选TMGa。通过使用TMGa,能够得到具有铟(In)的面内分布均一的外延层的外延基板。
InGaAs层4的气相成长的温度,为630℃以上,优选为640℃以上,更优选为650℃以上,另外,在700℃以下,优选为680℃以下,更优选为670℃以下。若温度在所述范围,则能够得到凹状缺陷少的外延基板。
InGaAs层4的气相成长的成长速度,为0.6μm/h以上,优选为0.8μm/h以上,另外,在2μm/h以下,优选为1.2μm/h以下。成长速度可以通过变更原料气体的供给量而进行调整。
在本发明的化合物半导体外延基板的制造方法中,在InGaAs层4之上,还可以形成有层,例如可以形成InP层5。InP层5,例如可以通过MOCVD、MBE等气相成长法形成。
化合物半导体外延基板的凹状缺陷的生成限制方法
本发明的化合物半导体外延基板的凹状缺陷的生成限制方法,可以在单结晶InP基板之上,通过MOCVD、MBE等气相成长法,以与所述(V/III比、温度、成长速度、In原料、Ga原料、As原料)相同的条件形成InGaAs层,而抑制凹状缺陷的生成。单结晶InP基板,可以使用偏离角为大约5°以下,优选为0.5°以下的单结晶基板等。
化合物半导体外延基板
本发明的化合物半导体外延基板,如图1所示,例如,依次含有InP基板2、任意的InP层3、InGaAs层4以及任意的InP层5。
InP基板2,例如厚度大约为250μm以上,大约700μm以下。含有InP层3的外延基板的情况,InP层3的厚度,例如大约为0μm以上,大约3μm以下。InGaAs层4,例如,厚度大约为0.1μm以上,大约6μm以下,In组成(In含有率)大约为0.51以上,优选为大约0.52以上,且大约0.53以下。另外,含有InP层5的外延基板的情况,InP层5的厚度,例如,大约0μm以上,大约2μm以下。
化合物半导体外延基板,例如,通过所述的化合物半导体外延基板的制造方法,可以得到。
(实施例)
以下,通过实施例,对本发明进行详细的说明,但是本发明不受限于这些实施例。
(实施例1)
如下制造图2所示层结构的p-I-n二极管制造用的化合物半导体外延基板1’。
在MOCVD薄膜制作装置内,放置晶面方位(100)的最佳基板,即,晶面方位精度为±0.05°以内,且直径大约为8cm的InP基板2’。
将装置内升温至660℃,导入PH3气体,在对InP基板2’进行表面处理后,作为原料使用TMIn,在InP基板2之上,形成厚度1μm的InP层3’。替代PH3气体而导入AsH3气体,原料:TMIn以及TEGa、V/III比:70、成长温度:660℃、成长速度:1μm/h,以此条件形成厚度3μm的InGaAs层4’。接着,替换AsH3气体而导入PH3气体,形成厚度1μm的InP层5’。
所得到的外延基板的(InP层5’的)表面,为良好,没有观察到凹状缺陷。图3中表示表面的照片。表面观察使用微分干涉显微镜而进行。图4中表示所得到的外延基板的InGaAs层4的In组成分布。图4中,纵轴为In组成(含有率(%))。In组成分布通过高分解能X线装置而求出。
(实施例2)
除了将InGaAs层4的形成中使用的Ga原料,从TEGa变更为TMGa以外,进行与实施例1相同的操作,得到外延基板。
所得到的外延基板的表面,为良好,没有观察到凹状缺陷。图5中表示所得到的外延基板的InGaAs层4的In组成分布。
(实施例3)
除了将InGaAs层4的形成条件,变更为V/III比:20、成长温度:690℃、成长速度:2μm/h以外,进行与实施例2相同的操作,得到外延基板。所得到的外延基板的表面,为良好,没有观察到凹状缺陷。
(比较例1)
除了将InGaAs层4的形成条件,变更为V/III比:70、成长温度:620℃、成长速度:1μm/h以外,进行与实施例1相同的操作,得到外延基板。所得到的外延基板的表面,为不合格,观察到很多凹状缺陷。
(比较例2)
除了将InGaAs层4的形成条件,变更为V/III比:70、成长温度:620℃、成长速度:3μm/h以外,进行与实施例1相同的操作,得到外延基板。所得到的外延基板的表面,为不合格,观察到很多凹状缺陷。图6中表示表面的照片。
(比较例3)
除了将InGaAs层4的形成条件,变更为V/III比:120、成长温度:620℃、成长速度:1μm/h以外,进行与实施例2相同的操作,得到外延基板。所得到的外延基板的表面,为不合格,观察到很多凹状缺陷。
(实验例1)
在MOCVD薄膜制作装置内,放置晶面方位(100)的最佳基板,即,晶面方位精度为±0.05°以内,且直径大约为8cm的InP基板2’。
将装置内升温至660℃,导入PH3气体,在对InP基板2’进行表面处理后,作为原料使用TMIn,在InP基板2’之上,形成厚度1μm的InP层3。替代PH3气体而导入AsH3气体,原料:TMIn以及TEGa、V/III比:63.4、成长温度:660~700℃、成长速度:1μm/h,以此条件形成厚度为3μm,In组成为0.53的InGaAs层4’。接着,替换AsH3气体而导入PH3气体,形成厚度1μm的InP层5’。将成长温度在所述范围内变更,分别得到外延基板1’。
图2中表示所得到的外延基板的(InP层5’的)表面的凹状缺陷密度。凹状缺陷密度,通过表面缺陷测定装置(surfscan6220)测定。
(实验例2)
除了将InGaAs层4的形成条件,变更为V/III比:63.4、成长温度:650℃、成长速度:0.5~3μm/h以外,进行与实验例1相同的操作。将成长速度在所述范围内变更,分别得到外延基板。图3中表示所得的外延基板的表面的凹状缺陷密度。
(实验例3)
除了将InGaAs层4的形成条件,变更为V/III比:30~112、成长温度:650℃、成长速度:1μm/h以外,进行与实验例1相同的操作。将V/III比在所述范围内变更,分别得到外延基板。图4中表示所得的外延基板的表面的凹状缺陷密度。

Claims (8)

1.一种化合物半导体外延基板的制造方法,其中,包括如下所述的工序:在InP单结晶基板、或与InP单结晶基板晶格整合的层上,通过外延成长,在V/III比:10~100、成长温度:630℃~700℃、成长速度:0.6μm/h~2μm/h的条件下,形成InGaAs层。
2.根据权利要求1所述的方法,其中,InP单结晶基板,在晶面方位(100)方向,晶面方位精度在±0.05°以内。
3.根据权利要求1或2所述的方法,其中,外延成长通过MOCVD进行。
4.根据权利要求1~3中任一项所述的方法,其中,外延成长所用的镓原料为三甲基镓、三乙基镓。
5.根据权利要求1~4中任一项所述的方法,其中,外延成长所用的铟原料为三甲基铟。
6.根据权利要求1~5中任一项所述的方法,其中,外延成长所用的砷原料为氢化砷。
7.一种化合物半导体外延基板的凹状缺陷生成的抑制方法,其中,包括如下所述的工序:在InP单结晶基板、或与InP单结晶基板晶格整合的层上,通过外延成长,在V/III比:10~100、成长温度:630℃~700℃、成长速度:0.6μm/h~2μm/h的条件下,形成InGaAs层。
8.一种化合物半导体外延基板,其中,通过权利要求1~6中任一项所述的方法得到。
CN200480033046A 2003-11-12 2004-11-08 化合物半导体外延基板的制造方法 Expired - Fee Related CN100576449C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003382116A JP2005150187A (ja) 2003-11-12 2003-11-12 化合物半導体エピタキシャル基板の製造方法
JP382116/2003 2003-11-12

Publications (2)

Publication Number Publication Date
CN1879198A true CN1879198A (zh) 2006-12-13
CN100576449C CN100576449C (zh) 2009-12-30

Family

ID=34587246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480033046A Expired - Fee Related CN100576449C (zh) 2003-11-12 2004-11-08 化合物半导体外延基板的制造方法

Country Status (8)

Country Link
US (1) US7393412B2 (zh)
JP (1) JP2005150187A (zh)
KR (1) KR20060123287A (zh)
CN (1) CN100576449C (zh)
DE (1) DE112004002173T5 (zh)
GB (1) GB2423637B (zh)
TW (1) TW200520061A (zh)
WO (1) WO2005048332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001173A1 (en) * 2006-06-23 2008-01-03 International Business Machines Corporation BURIED CHANNEL MOSFET USING III-V COMPOUND SEMICONDUCTORS AND HIGH k GATE DIELECTRICS
JP7046242B1 (ja) 2021-02-02 2022-04-01 Jx金属株式会社 リン化インジウム単結晶インゴットの製造方法及びリン化インジウム基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692278B2 (ja) 1989-03-09 1994-11-16 株式会社ジャパンエナジー エピタキシャル成長方法
JP2945464B2 (ja) 1990-11-13 1999-09-06 富士通株式会社 半導体装置の製造方法
JP3042186B2 (ja) 1992-07-02 2000-05-15 日立電線株式会社 化合物半導体ウェハの製造方法
JPH0864614A (ja) 1994-08-26 1996-03-08 Mitsubishi Electric Corp ヘテロ接合バイポーラトランジスタ、AlGaAsエピタキシャル成長層及び結晶成長方法
JP3129112B2 (ja) 1994-09-08 2001-01-29 住友電気工業株式会社 化合物半導体エピタキシャル成長方法とそのためのInP基板
JPH09213641A (ja) * 1996-02-06 1997-08-15 Oki Electric Ind Co Ltd 有機金属気相成長による急峻なヘテロ界面の作製方法

Also Published As

Publication number Publication date
KR20060123287A (ko) 2006-12-01
US20070087539A1 (en) 2007-04-19
CN100576449C (zh) 2009-12-30
GB0609683D0 (en) 2006-06-28
GB2423637B (en) 2007-05-23
US7393412B2 (en) 2008-07-01
TW200520061A (en) 2005-06-16
DE112004002173T5 (de) 2006-11-16
WO2005048332A1 (ja) 2005-05-26
JP2005150187A (ja) 2005-06-09
GB2423637A (en) 2006-08-30

Similar Documents

Publication Publication Date Title
KR101931394B1 (ko) 흑연 기판 상의 나노와이어 에피택시
CN1148810C (zh) 氮化镓单晶衬底及其制造方法
US7354850B2 (en) Directionally controlled growth of nanowhiskers
AU2019204449A1 (en) Process for growing nanowires or nanopyramids on graphitic substrates
CN100341116C (zh) 多孔基板及其制造方法、GaN系半导体叠层基板及其制造方法
JP5638772B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
KR20110099146A (ko) 수소화합물 기상 성장법에 의한 평면, 비극성 질화 갈륨의 성장
TWI740865B (zh) 製造複合GaN奈米柱之方法及由此方法製得之發光結構
US7361522B2 (en) Growing lower defect semiconductor crystals on highly lattice-mismatched substrates
CN1696358A (zh) 制备纳米线的方法
Sundaram et al. Large‐Area van der Waals Epitaxial Growth of Vertical III‐Nitride Nanodevice Structures on Layered Boron Nitride
US20220254625A1 (en) Non-polar iii-nitride binary and ternary materials, method for obtaining thereof and uses
Park et al. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer
CN1879198A (zh) 化合物半导体外延基板的制造方法
CN1958879A (zh) 利用原位掩膜进行外延生长氮化物单晶薄膜的方法
JP5647997B2 (ja) エピタキシャル結晶基板の製造方法、エピタキシャル結晶基板及びそれを用いて製造された半導体デバイス
TW202147640A (zh) 光電子器件及其製造方法
Rishinaramangalam et al. Three-dimensional GaN templates for molecular beam epitaxy of nonpolar InGaN/GaN coaxial light-emitting diodes
Lee et al. High Quality AlN Layer Grown on Patterned Sapphire Substrates by Hydride Vapor-Phase Epitaxy: A Route for Cost Efficient AlN Templates for Deep Ultraviolet Light Devices
KR101342490B1 (ko) 무촉매 방식의 대면적 나노선의 제조방법, 대면적 나노선, 이를 이용한 태양전지 및 발광다이오드
CN113471064B (zh) 基于斜切角衬底的ⅲ族氧化物薄膜制备方法及其外延片
JPH08335555A (ja) エピタキシャルウエハの製造方法
RU135186U1 (ru) Полупроводниковое светоизлучающее устройство
CN117276419A (zh) 一种用于深紫外发光二极管的AlN本征层及其制备方法
JP5721016B2 (ja) 酸化亜鉛系半導体発光素子及びZnO系単結晶層成長方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20191108

CF01 Termination of patent right due to non-payment of annual fee