CN1696358A - 制备纳米线的方法 - Google Patents

制备纳米线的方法 Download PDF

Info

Publication number
CN1696358A
CN1696358A CNA2005100672315A CN200510067231A CN1696358A CN 1696358 A CN1696358 A CN 1696358A CN A2005100672315 A CNA2005100672315 A CN A2005100672315A CN 200510067231 A CN200510067231 A CN 200510067231A CN 1696358 A CN1696358 A CN 1696358A
Authority
CN
China
Prior art keywords
crystal
grain
nano wire
substrate
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100672315A
Other languages
English (en)
Inventor
李常贤
郑太远
许廷娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1696358A publication Critical patent/CN1696358A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D29/00Manicuring or pedicuring implements
    • A45D29/11Polishing devices for nails
    • A45D29/12Polishing devices for nails manually operated
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D29/00Manicuring or pedicuring implements
    • A45D29/04Nail files, e.g. manually operated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/814Group IV based elements and compounds, e.g. CxSiyGez, porous silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/825Heterojunction formed between semiconductor materials that differ in that they belong to different periodic table groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种使用晶体结构制备纳米线的方法。在该制备纳米线的方法中,使用具有多个晶面的晶粒作为籽晶,在所述晶粒上沉积晶格常数差异在预定范围之内的晶体生长材料,由此允许从至少一个晶面上生长纳米线。所以,使用晶体生长原理通过简单的方法可以产生位置选择性,并且产生具有好结晶度的比如纳米线等的纳米结构。此外,通过调节用作籽晶的晶粒的特征可以产生具有不同形状的异质结结构。

Description

制备纳米线的方法
技术领域
本发明涉及制备纳米线的方法,更具体地,本发明涉及制备用在电子元件中的纳米线的方法。
背景技术
近来,许多半导体纳米结构研究已经取得了进展,并且通过使用形状和尺寸方面独特的特征将半导体纳米结构应用到电子元件、光电子元件、气体传感器等多个领域的研究也已经取得了进展。
在传统的代表性合成方法中,使用金属催化剂和使用激光烧蚀、热沉积等来合成材料。(参见,Alfredo M.Morales等人发表于Science Vol.279 208(1998)的文章“A Laser Ablation Method for the Synthesis of CrystallineSemiconductor Nanowires”,以及Zheng Wei Pan等人发表于Science Vol.2911948(2001)的文章“Nanobelts of Semiconducting Oxides”)
在Morales等人所提出的方法中,使用金属催化剂的表面分解,被用作衬底中籽晶的或粉末形状的金属可以作为本征杂质,可获得简单的二维结构。而且,使用催化剂金属合成材料对用催化剂金属合成的材料产生限制。
发明内容
本发明提供了制备具有极好结晶度、高纯度和应用领域广泛的纳米线的方法。
根据本发明的一个方面,提供了一种制备纳米线的方法,其中,使用具有多个晶面的晶粒作为籽晶,在所述晶粒上沉积晶格常数差异在预定范围之内的晶体生长材料,由此允许从至少一个晶面上生长纳米线。
相同或不同种类的材料可以被用作所述晶粒和所述晶体生长材料,并且可以使用化学气相沉积方法或真空沉积方法来进行沉积。
当在沉积期间需要晶体生长材料的氧化物时,可以通过在沉积空间内提供预定量的氧气或包括氧气的空气来在晶粒表面上生长氧化物。
根据本发明的实施例,所述晶粒可以是碎晶粒或从衬底生长的晶粒。
附图说明
通过参考附图对本发明示范性实施例进行详细的说明,本发明的上述和其他特征以及优点将变得更加清楚,在附图中:
图1A和图1B示意性地示出了根据本发明在衬底上生长为岛状的籽晶的晶粒结构;
图1C是图示从图1A和图1B所示的晶粒的一个晶面上生长的纳米线的立体图;
图1D是图示从图1A和图1B所示的晶粒的两个晶面上生长的纳米线的立体图;
图2A示出了图示根据本发明作为从衬底生长的晶粒的ZnO点的SEM(扫描电子显微)图像;
图2B示出了图示根据本发明从图2A所示的ZnO晶粒生长的纳米线样品的SEM图像;
图3A示出了图示根据本发明用作生长纳米线的晶粒的GaN粉末的SEM图像;
图3B示出了图示根据本发明从图3A所示的GaN晶粒生长的纳米线样品的SEM图像;
图4和图5示出了图示根据本发明合成的ZnO纳米线晶体的TEM图像;以及
图6和图7是图示了根据本发明的方法合成的ZnO纳米线的光学特征和场发射特征的图形。
具体实施方式
现在将参考附图对本发明进行更加详细的说明。
本发明基本上使用具有立体结构的籽晶。具有立体结构的籽晶具有预定的晶体结构,并且待生长的线是从晶面生长的,根据条件可以从籽晶的几个晶面上生长一条或多条线。
首先,晶粒作为籽晶制备在衬底上。晶粒具有多个晶面,且直接从衬底生长或以碎晶粒附着。
直接从衬底生长的晶粒在衬底(例如,硅衬底)上通过化学气相沉积方法等生长为岛状。在生长岛状晶体时,可以应用已知的方法,在生长岛状晶体时,可以应用已知方法中的化学气相沉积方法。
使用碎颗粒制备的晶粒在分散于如丙酮的有机溶剂中的状态下以极小的数量喷洒在衬底上,该有机溶剂在喷洒之后通过自然干燥或强制干燥去除。碎晶粒的晶粒尺寸很小,并且即使在去除有机溶剂之后,也通过分子力等吸附在衬底上。
在晶粒上生长相同或不同种类的材料,即在晶粒的晶面上生长纳米线是通过化学气相沉积方法或真空热沉积方法来进行的。
图1A和图1B示意性地示出了在衬底11上生长为岛状籽晶的晶粒结构。该晶粒具有多个晶面,且纳米线就生长自这些晶面。图1A图示了晶粒的立体结构的立体图,和图1B是其俯视平面图。
图1C是图示生长自晶粒的一个晶面的纳米线的立体图。图1D是图示生长自两个晶面的纳米线状态的立体图。
图1C示出了从相同种类多晶体或不同种类晶格常数几乎相同处的部分产生的一维纳米线。图1D示出了从衬底上具有棱角形状的岛状晶粒生长的纳米线,就如相同种类材料生长的情形。
图2A示出了根据本发明作为从Si衬底生长的晶粒的ZnO点的SEM图像。图2B示出了图示纳米线样品的SEM图像,该纳米线是从生长自衬底的ZnO晶粒生长的。
在图2A示出的ZnO晶粒的大小大约为30nm并且在450~550℃的温度下生长。在图2B示出的单晶ZnO一维生长了约20分钟。用作试验用籽晶的ZnO小岛是使用化学气相沉积方法合成的,并且该ZnO小岛是通过短时间提供Zn和空气(氧气)从Si衬底生长的。
下表示出了用于从ZnO晶粒、即ZnO籽晶及其晶面生长ZnO纳米线的条件。
温度  时间 空气流速  气压
ZnO籽晶 400  5分钟 50sccm  5×10-2
ZnO纳米线 500  1小时 50sccm  5×10-2
图3A示出了图示根据本发明的分散在衬底上作为生长纳米线的晶粒的GaN粉末的SEM图像。图3B示出了图示从GaN晶粒生长的纳米线样品的SEM图像。
如图3A所示,为了将GaN粉末用作籽晶,GaN粉末在随同有机溶剂(如,丙酮)分散在Si衬底上之后干燥。图3A示出了ZnO在GaN晶粒表面上生长约20分钟之后的生长结果。图3B示出了在GaN晶粒表面上三维生长的ZnO纳米线。ZnO晶粒从GaN晶粒的生长条件与上文所述的ZnO纳米线从ZnO小岛的生长条件相同。
图4和图5示出了图示根据本发明合成的ZnO纳米线晶体的TEM图像。图4示出了厚度非常薄为5nm的ZnO纳米线的晶体形状。图5示出了在不同种类生长材料界面处具有好结晶度的ZnO纳米线层间结构。
图6和图7是图示了根据本发明的方法合成的ZnO纳米线的光学特征和场发射特征的图形。
如图6所示,由本发明方法制备的ZnO纳米线在约3.28ev的波长处具有高的光电效应,从而该线可以用作发光元件。
图7是图示了3个样品的电场-电流密度特性的图形,并且确认了ZnO纳米线可以用作电子发射元件。
如上所述,根据本发明,可以产生在电学元件、光学元件、传感器等各种用途中可用到的纳米线,并且可以通过使用相同或不同种类的用于产生纳米线的具有类似晶形的晶粒来合成纳米线。
即,本发明使用这样的晶粒作为籽晶,其与产生纳米线的材料具有类似的晶格常数。
根据本发明,通过使用晶体颗粒生长一维结构或三维结构的纳米线,可以克服使用传统金属颗粒催化剂合成方法的结构调整局限,并可以根据被用作籽晶的晶粒特征来实现异质结结构的特征。
通过使用不同种类的材料作为籽晶,可以产生具有异质结特征的纳米线或纳米结构。例如,通过使用p型(Mg掺杂的GaN)半导体材料和n型(ZnO)纳米结构作为籽晶材料可以实现p-n结元件。
如上所述,根据本发明,使用晶体生长原理通过简单的工艺可以产生位置选择性,并且可以产生具有好结晶度的比如纳米线等的纳米结构。此外,通过调节用作籽晶的晶粒的特征可以产生具有不同形状的异质结结构。
所以,本发明可以被应用于电元件、光电元件、气体传感器等多个领域,更加具体而言,可以应用于FET、LED、传感器、电子发射元件等。
虽然通过参考本发明示范性实施例对其进行了具体的图示和说明,但是本领域普通技术人员能够理解,在不偏离权利要求书所界定的本发明的精神和范围的情形可以进行形式和细节的各种变化。

Claims (7)

1.一种制备纳米线的方法,其中,使用具有多个晶面的晶粒用作籽晶,将晶格常数差异在预定范围之内的晶体生长材料沉积在所述晶粒上,由此使得所述纳米线从至少一个所述晶面上生长。
2.根据权利要求1的方法,其中,相同或不同种类的材料被用作所述晶粒和所述晶体生长材料。
3.根据权利要求2的方法,其中,所述晶体生长材料是II-VI或III-IV族化合物元素。
4.根据权利要求1的方法,其中,使用化学气相沉积方法或真空沉积方法来进行所述沉积。
5.根据权利要求1的方法,其中,所述籽晶制备在衬底上,并且所述籽晶具有直接从所述衬底上生长的晶体结构。
6.根据权利要求1的方法,其中,所述籽晶是分散在衬底上的碎晶粒。
7.根据权利要求1的方法,其中,所述籽晶和所述晶体生长材料之间的晶格常数差别是5%或更少。
CNA2005100672315A 2004-04-27 2005-04-19 制备纳米线的方法 Pending CN1696358A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR29193/04 2004-04-27
KR1020040029193A KR20050104034A (ko) 2004-04-27 2004-04-27 나노와이어 제조방법

Publications (1)

Publication Number Publication Date
CN1696358A true CN1696358A (zh) 2005-11-16

Family

ID=35135157

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100672315A Pending CN1696358A (zh) 2004-04-27 2005-04-19 制备纳米线的方法

Country Status (3)

Country Link
US (1) US7393410B2 (zh)
KR (1) KR20050104034A (zh)
CN (1) CN1696358A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302816A (zh) * 2012-02-03 2015-01-21 昆南诺股份有限公司 具有可调节属性的纳米线的高吞吐量连续气相合成

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593264B1 (ko) * 2003-06-26 2006-06-26 학교법인 포항공과대학교 p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자
KR100661696B1 (ko) * 2005-02-22 2006-12-26 삼성전자주식회사 이종 구조의 반도체 나노 와이어 및 그의 제조방법
TWI300632B (en) * 2006-05-25 2008-09-01 Ind Tech Res Inst Group-iii nitride vertical-rods substrate
US7804149B2 (en) * 2007-04-02 2010-09-28 The University Of Utah Research Foundation Nanostructured ZnO electrodes for efficient dye sensitized solar cells
KR100972842B1 (ko) * 2007-09-11 2010-07-28 포항공과대학교 산학협력단 나노막대를 포함하는 나노디바이스 및 그 제조 방법
JP2011514656A (ja) * 2008-01-30 2011-05-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ナノ構造、及び同構造を作成する方法
JP2010135185A (ja) * 2008-12-04 2010-06-17 Japan Science & Technology Agency 電子放出素子の製造方法及び電子放出素子
US20110203772A1 (en) * 2010-02-19 2011-08-25 Battelle Memorial Institute System and method for enhanced heat transfer using nanoporous textured surfaces
KR101053115B1 (ko) * 2011-02-28 2011-08-01 박건 결정성 및 휘도가 우수한 질화물계 발광소자 및 그 제조 방법
KR101053111B1 (ko) * 2011-02-28 2011-08-01 박건 실리콘 기판을 이용한 질화물계 발광소자 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352512A (en) * 1989-03-15 1994-10-04 The United States Of America As Represented By The Secretary Of The Air Force Microscopic tube material and its method of manufacture
US6221154B1 (en) * 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
WO2001018866A1 (en) * 1999-09-10 2001-03-15 Starmega Corporation Strongly textured atomic ridges and dots
US6656573B2 (en) * 2001-06-26 2003-12-02 Hewlett-Packard Development Company, L.P. Method to grow self-assembled epitaxial nanowires
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US7211143B2 (en) * 2002-12-09 2007-05-01 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7303628B2 (en) * 2004-03-23 2007-12-04 The Regents Of The University Of California Nanocrystals with linear and branched topology
US7235475B2 (en) * 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7772543B2 (en) * 2005-01-12 2010-08-10 New York University System and method for processing nanowires with holographic optical tweezers
WO2006096821A1 (en) * 2005-03-09 2006-09-14 University Of Massachusetts Microbial nanowires, related systems and methods of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302816A (zh) * 2012-02-03 2015-01-21 昆南诺股份有限公司 具有可调节属性的纳米线的高吞吐量连续气相合成

Also Published As

Publication number Publication date
KR20050104034A (ko) 2005-11-02
US20050235904A1 (en) 2005-10-27
US7393410B2 (en) 2008-07-01

Similar Documents

Publication Publication Date Title
CN1696358A (zh) 制备纳米线的方法
KR101931394B1 (ko) 흑연 기판 상의 나노와이어 에피택시
US6656573B2 (en) Method to grow self-assembled epitaxial nanowires
US9306099B2 (en) Material including graphene and an inorganic material and method of manufacturing the material
US20040105810A1 (en) Metal oxide nanostructures with hierarchical morphology
Auer et al. Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires
US20030126742A1 (en) Method of fabrication of ZnO nanowires
Hong et al. Position‐Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet‐Controlled GaN Micropatterns
Khranovskyy et al. Selective homoepitaxial growth and luminescent properties of ZnO nanopillars
CN101030596A (zh) 一种异质p-n结纳米线阵列及其制备方法和应用
CN1789495A (zh) 用于制备高质量氧化锌薄膜的蓝宝石衬底原位处理方法
US20160172193A1 (en) Controlled manufacturing method of metal oxide semiconductor and metal oxide semiconductor structure having controlled growth crystallographic plane
CN1740406A (zh) 硅纳米线结构及其生长方法
Ueda et al. Fabrication of carrier-doped Si nanoarchitecture for thermoelectric material by ultrathin SiO 2 film technique
KR20030066968A (ko) 이종접합구조의 산화아연계 나노선 및 그 제조방법
CN1676678A (zh) ZnO纳米晶柱/纳米晶丝复合结构产品及其制备工艺
CN1696330A (zh) 物理气相沉积法直接生长成分单一的金属纳米线
Chiu et al. Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties
Chen et al. A solid-state cation exchange reaction to form multiple metal oxide heterostructure nanowires
CN100349803C (zh) 氧化钨微米管及其制备方法
CN1958877A (zh) 一种ZnO塔状的周期性单晶纳米结构及其制备方法
JP2006306688A (ja) ナノワイヤーの製造方法
Ghafouri et al. The effect of substrate distance to evaporation source on morphology of ZnO: In nanorods fabricated by means of a vapor transfer route and the study of their optical and electrical properties
Kouklin et al. Self-driven formation and structure of single crystal platelets of Zn3As2
JP2003282450A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20051116