CN1863854A - 超高分子量聚乙烯发泡体及其制造方法 - Google Patents

超高分子量聚乙烯发泡体及其制造方法 Download PDF

Info

Publication number
CN1863854A
CN1863854A CNA2004800293473A CN200480029347A CN1863854A CN 1863854 A CN1863854 A CN 1863854A CN A2004800293473 A CNA2004800293473 A CN A2004800293473A CN 200480029347 A CN200480029347 A CN 200480029347A CN 1863854 A CN1863854 A CN 1863854A
Authority
CN
China
Prior art keywords
molecular weight
weight polyethylene
ultra
foam
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800293473A
Other languages
English (en)
Other versions
CN100406503C (zh
Inventor
西川茂雄
有本昌司
江里口真男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Mitsui Chemical Industry Co Ltd
Original Assignee
Mitsui Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemical Industry Co Ltd filed Critical Mitsui Chemical Industry Co Ltd
Publication of CN1863854A publication Critical patent/CN1863854A/zh
Application granted granted Critical
Publication of CN100406503C publication Critical patent/CN100406503C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0058Inert to chemical degradation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • Y10T428/249977Specified thickness of void-containing component [absolute or relative], numerical cell dimension or density

Abstract

本发明提供一种不会大幅度降低超高分子量聚乙烯原本具有的耐摩耗性、自身润滑性、耐冲击性、耐药品性特征,且外观良好,附加有轻量化、绝热性、吸音性、低介电率、缓冲性、柔软性等功能,并具有表皮层的发泡体,以及稳定制造该发泡体的方法。本发明的发泡体是由粘均分子量为30万~1000万的超高分子量聚乙烯发泡得到的密度为0.02~0.7g/cm3的发泡体。上述发泡体是通过在挤压机内,向熔融状态的超高分子量聚乙烯中添加二氧化碳,将在模具部内的树脂滞留时间和压力设为特定值,并将刚从模具喷出后的树脂表面温度和中心部温度设为规定温度,进行挤压发泡制造的。

Description

超高分子量聚乙烯发泡体及其制造方法
技术领域
本发明涉及超高分子量聚乙烯发泡体及其制造方法。
背景技术
粘均分子量在30万以上的超高分子量聚乙烯,在塑料材料中,具有优良的耐摩耗性、自身润滑性、耐冲击性、低温特性、耐药品性等,为有效地利用这些特征,将其广泛地用于各种用途中,如建筑构件、医疗器械、有关食品的、有关运动器械的等。
近年来,对于超高分子量聚乙烯的独特特征,作为进一步的附加功能,越来越多地要求轻量化、绝热性、吸音性、低介电率、缓冲性、柔软性等功能。作为附加这些功能的方法,有发泡成形法。然而,由于超高分子量聚乙烯的分子量超过30万,所以熔融粘度高,流动性极低,成形加工较为困难。尤其是熔融粘度难以控制,所以说发泡成形非常困难。就其理由可以举出:(i)由于上述列举的难成形性,无法确保连续稳定的生产性;(ii)在用现有方法发泡成形时,超高分子量聚乙烯的原本特征即耐摩耗性、自身润滑性、耐冲击性,以此为主的机械强度的物性会大幅度降低等,就目前而言,存在的实际状况是作为实际制品,还尚未流通。
在专利文献1~3中,公开了一种将二氧化碳作为发泡剂供给到挤压机的固体输选部和/或液体输送部,得到发泡体的技术。然而,为了将二氧化碳供给固体输送部,需要在螺杆驱动轴和原料供给用漏斗等上具有耐压密封构造等的特殊设备,从而导致工业装置烦杂,就原料供给而言,难以进行连续生产。还公开了一种使用棒状模具和管状模具的超高分子量聚乙烯发泡成形法,这些专利文献的挤压机形式、挤压条件、作为原料的超高分子量聚乙烯等大致相同,进而记载了刚从模具喷出后的树脂温度尽管大致相同,但发泡倍率和平均气泡径却极大不同,所以存在着只在这些条件下,不可能稳定地得到所要的发泡倍率和平均气泡径的发泡体。
另外,专利文献1或2中公开的,目前一般在挤压发泡成形中使用的二段压缩型螺杆挤压机,存在压缩区域短、挤压机内的压力发生变动,不能稳定地挤压超高分子量聚乙烯发泡体的问题。
进而,使用现有的模具,形成超高分子量聚乙烯发泡体时,在得到的发泡体表面上形成不良的外观。这是由挤压机的螺杆刮板形成划痕(刮痕)所致,模具出口附近产生的气泡会集中在刮痕部,所以形成刮痕非常显眼的不良外观。这种现象出现在整个发泡体上时,会失去部分表皮层,有损于气泡(cell)均匀性,独立气泡率也会降低。即,产生超高分子量聚乙烯的优良特性变低的问题。尤其是存在耐冲击特性大幅度降低的问题。
专利文献1:日本专利特开平11-116721号公报
专利文献2:日本专利特开平11-335480号公报
专利文献3:日本专利特开2000-119453号公报
发明内容
本发明提供一种不损害超高分子量聚乙烯原本具有的优良耐摩耗性、自身润滑性、耐冲击性、低温特性、耐药品性等特征,外观良好,并附加有轻量化、绝热性、吸音性、低介电率、缓冲性、柔软性等功能的发泡体,以及能连续稳定制造该发泡体的制造方法。
本发明者们为了解决上述问题,经过深入研究,其结果是(i)将溶解有发泡剂的超高分子量聚乙烯树的、从通过挤压机螺杆前端到模具出口的滞留时间和螺杆前端部的树脂压力设定在特定范围内,可减少螺杆刮板的划痕(刮痕),作为发泡体的外观良好,同时得到各种机械物性,尤其是耐冲击特性良好的发泡体。进一步发现(ii)将成形时的刚从模具喷出后的树脂表面温度和树脂中心部温度控制在特定范围内,可稳定得到高发泡、厚表皮层、机械物性良好的发泡成形品,并至此完成了本发明。
即,(1)本发明提供一种超高分子量聚乙烯发泡体,其由粘均分子量为30万~1000万的超高分子量聚乙烯发泡得到,其特征在于:
该发泡体的密度为0.02~0.7g/cm3,在用该发泡体的密度ρ(g/cm3)近似表示温度-40℃下的拉伸冲击值X(kJ/m2)的下式(1)中,系数A为75~1500:
X=A×ρ    (1)。
(2)如(1)所述的超高分子量聚乙烯发泡体,其特征在于:
在用该发泡体的密度ρ(g/cm3)近似表示温度-150℃下的拉伸强度Y(MPa)的下式(2)中,系数B为50~1000:
Y=B×ρ    (2)。
(3)一种超高分子量聚乙烯发泡体,用于制造由粘均分子量为30万~1000万的超高分子量聚乙烯发泡得到的密度为0.02~0.7g/cm3的发泡体,其特征在于:
在用超高分子量聚乙烯的粘均分子量Mv近似表示溶解有发泡剂的超高分子量聚乙烯的、从挤压机的螺杆前端到模具出口的滞留时间T(分)的下式(3)中:系数E为0.5~10,且螺杆前端部的树脂压力为10~100MPa:
T=E×(Mv×10-6)2    (3)。
(4)如上述(3)所述的超高分子量聚乙烯发泡体,其特征在于,包括:
在挤压机内熔融超高分子量聚乙烯的工序;
向超高分子量聚乙烯中添加发泡剂的工序;和
以使刚从模具喷出后的树脂表面温度为60~140℃,且使刚从模具喷出后的树脂中心部温度为70~150℃的方式,进行挤压发泡的工序。
(5)如上述(3)或(4)所述的超高分子量聚乙烯发泡体制造方法,其特征在于:在100质量份超高分子量聚乙烯中,添加0.1~20质量份的二氧化碳,作为发泡剂。
(6)提供一种绝热材料,其特征在于:该绝热材料为上述(1)或(2)的任一种超高分子量聚乙烯发泡体,其热传导率为0.01~0.35
Kcal/m·hr·℃。
(7)提供液化天燃气用绝热材料、液体氢用绝热材料、超导磁共振装置等的构成材料、轻量高滑动材料、缓冲性高滑动材料,其特征在于:上述材料为上述(1)或(2)的任一种超高分子量聚乙烯发泡体。
通过使用本发明的超高分子量聚乙烯发泡体,可提供不损害超高分子量聚乙烯原本具有的优良耐摩耗性、自身润滑性、耐冲击性、低温特性、耐药品性等的特征,外观良好,附加有轻量化、绝热性、吸音性、低介电率、缓冲性、柔软性等功能的发泡制品。
另外,根据本发明的超高分子量聚乙烯发泡体制造方法,可稳定地制造发泡体,进而能减少螺杆的划痕,制造外观优异、机械物性也优异,并具有表皮层的超高分子量聚乙烯高发泡体。
附图说明
图1是表示超高分子量聚乙烯发泡体制造方法的一例子的简要构成图。
图2是杜邦冲击强度试验后的实施例6的试验片照片
图3是杜邦冲击强度试验后的比较例10的试验片照片。
具体实施方式
[超高分子量聚乙烯]
本发明中使用的超高分子量聚乙烯是利用乙烯作为主要成分(全部共聚成分中,是最大的摩尔%),例如有乙烯的单聚物、将乙烯作为主要成分的该乙烯与能和该乙烯共聚的其他单体的共聚物等。作为能与该乙烯共聚的其他单体,例如有碳原子数为3以上的α-烯烃等。作为这种碳原子数为3以上的α-烯烃,例如可列举丙烯、1-丁烯、异丁烯、1-戊烯、2-甲基-1-丁烯、3-甲基-1-丁烯、1-己烯、3-甲基-1-戊烯、4-甲基-1-戊烯、1-庚烯、1-辛烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯、1-二十碳烯等。
其中,从经济性等方面考虑,优选使用乙烯的单聚物或者将乙烯作为主体的与上述α-烯烃共聚的共聚物,优选乙烯占聚合物全体的80摩尔%以上,优选为90摩尔%以上,更优选为95摩尔%以上。
作为本发明使用的超高分子量聚乙烯,粘均分子量为30万~1000万,优选粘均分子量为90万~800万,更优选为190万~800万,尤其优选为210万~800万,更优选为260万~800万,极其优选粘均分子量为300万~600万。粘均分子量在上述范围时,可最大限度地有效利用耐摩耗性、自身润滑性、耐冲击性、低温特性、耐药品性等的特性。另外,可以使用2种以上的上述范围内的粘均分子量不同的超高分子量聚乙烯。
本发明中使用的超高分子量聚烯烃树脂,可以利用现有公知的方法进行制造,例如在日本专利特开昭58-83006号公报中记载的在催化剂存在下,将上述乙烯和α-烯烃进行聚合得到。
另外,在不影响本发明课题的范围内,也可添加各种公知的聚合物。例如可列举聚烯烃(粘均分子量低于30万的聚乙烯、粘均分子量为30万~1000万的聚丙烯、粘均分子量低于30万的聚丙烯、乙烯-丙烯共聚物、聚丁烯、4-甲基戊烯-1等)、弹性体(elastomer)、苯乙烯类树脂(聚苯乙烯、丁二烯·苯乙烯共聚物、丙烯腈·苯乙烯共聚物、丙烯腈·丁二烯·苯乙烯共聚物等)、聚酯(聚对苯二甲乙二酯、聚对苯二甲丁二酯、聚乳酸等)、聚氯乙烯、聚碳酸酯、聚缩醛(polyacetal)、聚苯醚(polyphenylene oxide)、聚乙烯醇、聚甲基甲基丙烯酸酯、聚酰胺类树脂、聚亚酰胺类树脂、氟类树脂、液晶聚合物等。
[超高分子量聚乙烯发泡体的制造]
[发泡剂]
作为本发明中使用的发泡剂,具体讲,作为化学发泡剂,可列举碳酸氢钠、碳酸铵、碳酸氢铵、亚硝酸铵、柠檬酸、偶氮甲酰胺、偶氮二异丁腈、苯磺酰肼、偶氮二羧酸钡、二亚硝基五亚甲基四胺(dinitrosopentamethylene tetramine)、P,P’-氧代二苯磺酰肼、对甲苯磺酰肼、对甲苯磺酰丙酮腙等。
作为物理发泡剂,可列举丙烷、丁烷、戊烷、异丁烷、新戊烷、异戊烷、己烷、乙烷、庚烷、乙烯、丙烯、石油醚等烃、甲醇、乙醇等醇、氯代甲烷、二氯甲烷、二氯氟甲烷、氯三氟甲烷、二氯二氟甲烷、氯二氟甲烷、三氯氟甲烷等卤化烃、二氧化碳、氮、氩、水等。这些发泡剂可单独使用1种,也可组合2种以上使用。这些发泡剂中,最为优选是二氧化碳。
二氧化碳与丁烷气体等其他物理发泡剂不同,不存在爆炸、毒性等危险,不存在如二氯二氟甲烷等氟类气体,破坏臭氧层等环境问题,也不存在如化学发泡剂的制品残渣问题。在挤压机内,二氧化碳达到超临界状态时,可提高对超高分子量聚乙烯的相溶性,认为由于可塑化效果,熔融粘度降低,容易显著成形。
[发泡体的成形方法]
本发明的发泡体成形方法是可连续成形的,就低成本制造而言,优选为挤压发泡法。
本发明中使用的挤压机种类,例如可列举单螺杆挤压机、双螺杆挤压机等。其中,优选单螺杆挤压机。也可使用2台以上连接的多段挤压机。
使用物理发泡剂时,挤压机的螺杆形状是在物理发泡剂的供给部之前,能熔融超高分子量聚乙烯,并能充分确保压缩区域长度的形状即可,螺槽深度逐渐减小,前端的计量部分达到恒定的全刮板(fulflight)型时,树脂在挤压机内的压力变动很小,能稳定挤压发泡体,所以优选。
本发明中,向挤压机内添加物理发泡剂的位置,必须是既能熔融超高分子量聚乙烯组合物,又能稳定供给物理发泡剂的位置,优选在挤压机和模具之间的接合部,特别在螺杆的计量部的位置进行添加。使用2台以上挤压机连接的多段挤压机时,也可在挤压机与挤压机之间的连接管处供给物理发泡剂。
作为本发明所用的二氧化碳的供给方法,例如有以下方法:由二氧化碳瓶,通过减压阀控制供给部的压力,以气体状态供给的方法;由二氧化碳瓶,通过定量泵控制二氧化碳流量,以液体状态或超临界状态进行供给的方法等,其中优选以超临界状态供给的方法。二氧化碳的添加量,相对于100质量份的超高分子量聚乙烯,为0.1~20质量份,优选为0.3~15质量份,更优选为0.4~9质量份。二氧化碳相对于100质量份超高分子量聚乙烯为0.1质量份以上时,发泡率增加,成形性提高。二氧化碳相对于100质量份超高分子量聚乙烯为20质量份以下时,可减少因破泡使发泡倍率降低的情况,压力变动很小,气泡均匀性和挤压稳定性都良好,所以优选。
本发明者们发现溶解有发泡剂的超高分子量聚乙烯的、从通过挤压机螺杆前端到模具出口的滞留时间T(分),和螺杆前端的树脂压力,对于发泡制品的外观,尤其是低温下的机械物性,都特别重要。
与一般的热可塑性树脂相比,超高分子量聚乙烯在成形体上很容易残留螺杆刮板的划痕(刮痕)。这种情况,分子量越高越显著。在目前不伴有发泡的挤压成形中,这种刮痕并不那样显著,也不存在过多的问题。但是,发泡成形时,在模具出口附近产生的气泡,由于集中在该刮痕部分,作为发泡制品,刮痕非常显著,有损外观。进而,在刮痕部未形成表皮层,所以存在各种机械物性,尤其是冲击强度降低的问题。
在本发明中,惊奇地发现,溶解有发泡剂的超高分子量聚乙烯组合物,在通过挤压机的螺杆前端后,若保持特定的时间和特定的压力,可得到无刮痕的、各种机械物性优良的超高分子量聚乙烯发泡体,而该滞留时间取决于超高分子量聚乙烯的粘均分子量。
即,在用超高分子量聚乙烯的粘均分子量Mv近似表示溶解有发泡剂的超高分子量聚乙烯的、从通过挤压机螺杆前端到模具出口的滞留时间T(分)的下式(3)中,系数E为0.5~10,优选为0.5~8,更优选为0.5~5,此时,螺杆前端部的树脂压力为10~100MPa,优选为10~50MPa,更优选为15~30MPa时,不会损害超高分子量聚乙烯具有的耐摩耗性、自身润滑性、耐冲击性、耐药品性等物性,并能稳定得到无刮痕的、外观良好的发泡体。
T=E×(Mv×10-6)2    (3)
溶解有发泡剂的超高分子量聚乙烯的、从通过挤压机螺杆前端到模具出口的滞留时间T(分),可由以下求出的熔融密度计算,熔融密度是由螺杆前端到模具出口的树脂流路容积、挤压量、和超高分子量聚乙烯树脂的PVT(压力、体积、温度)关系求出。
为了确保必要的滞留时间T(分),通过增大模具内树脂流路的容积、或者连接挤压机和模具的连接器内树脂流路的容积等能够确保。虽然减少挤压量也能确保,但为了不降低生产量,得到超高分子量聚乙烯发泡体,优选增大树脂流路的容积。
螺杆前端部的压力,通过增大连接挤压机和模具的连接器内树脂流路的长度和挤压量可确保。重要是保持特定时间、特定压力的状态。
进而,发明者们发现,为了得到稳定的发泡倍率和平均气泡径,同时为了得到表皮层厚度为0.2~3mm的超高分子量聚乙烯发泡体,重要的是控制刚从模具喷出后的树脂表面温度和刚从模具喷出后的树脂中心温度。刚从模具喷出后的树脂表面温度为60~140℃,优选为70~140℃,更优选为80~140℃。刚从模具喷出后的树脂表面温度在140℃以下时,所得发泡体的表皮层达到0.2mm以上,耐摩耗性、自身润滑性、耐冲击性、耐药品性等物性良好。刚从模具喷出后的树脂表面温度在60℃以上时,表皮层达到3mm以下,发泡倍率不降低,不会使模具部的压力上升而导致成形困难,作为发泡体,可充分发挥所期待的轻量性、绝热性、吸音性、低介电率、缓冲性、柔软性等功能。上述刚从模具喷出后的树脂表面温度是利用非接触式放射温度计,测定在超高分子量聚乙烯挤压成形中以通常进行的挤压速度,模具喷出后0mm~10mm之间的超高分子量聚乙烯发泡体的表面温度的数值。刚从模具喷出后的树脂中心部温度为70~150℃,优选80~140℃,更优选90~140℃。刚从模具喷出后的树脂中心部温度在150℃以下时,可得到充分的树脂粘度,并能得到高发泡倍率的发泡体。发泡体内部难以产生大的空洞。刚从模具喷出后的树脂中心部温度在70℃以上时,由于树脂压力不过度升高,所以易于成形。上述刚从模具喷出后的树脂中心部温度是利用针式的具有传感器的温度计,将针状的传感器一部分刺入树脂中心部,测定在超高分子量聚乙烯挤压成形中,以通常进行的挤压速度,模具喷出后0mm~10mm之间的超高分子量聚乙烯发泡体的中心部温度,测定数次直到测定温度稳定为止。
本发明中控制刚从模具喷出后的树脂表面温度和中心部温度的方法,例如可列举:刚从模具喷出后的树脂中心部温度,用挤压机圆筒、连接器、模具等的温度进行控制的方法;刚从模具喷出后的树脂表面温度,通过对模具出口附近进行局部冷却的方法。通过对模具出口附近进行局部冷却,以降低刚从模具喷出后的树脂表面温度,在成形品表面上形成表皮层,很容易提高外观(光泽性)等,并能保持耐摩耗性、自身润滑性、耐冲击性、耐药品性等物性。
作为本发明的温度控制中所使用的冷却方法,可列举冷介质流动法、气冷法等。例如,使用的冷介质,通常可以使用水,但也可以使用机械油、硅油、乙二醇等现有公知的冷介质。另外,进行气冷时,可使用常温·冷却空气等。
本发明中,在不影响完成课题的范围内,根据需要也可添加颜料、染料、润滑剂、抗氧化剂、填充剂、稳定剂、阻燃剂、防静电剂、防紫外线剂、交联剂、抗菌剂、晶核剂、防缩剂、发泡核剂等。其中,优选添加润滑剂和发泡核剂。
作为添加润滑剂的效果,如可抑制超高分子量聚乙烯成形时最大的问题即压力升高,并能稳定地生产气泡均匀性优良的发泡体。另外,也能得到防止挤压机内因剪切发热导致树脂劣化的效果。
作为润滑剂的添加量,相对于100质量份超高分子量聚乙烯,为0.01~5质量份,优选为0.03~3质量份,更优选为0.05~2质量份。该核剂在上述范围内时,可抑制挤压机内的压力大幅度升高,可消除因树脂混炼不足、压力不足而导致发泡不良的现象。
本发明中使用的润滑剂可使用一般广泛认知的能与树脂配合的润滑剂。作为润滑剂可使用选自脂肪酸酰胺、矿物油、金属皂、酯类、碳酸钙和硅酸盐的至少1种。这些可以单独使用,也可2种以上混合使用。特别优选脂肪酸的金属盐,其中,更优选硬脂酸钙。
作为使用发泡核剂的效果,如气泡径小且均匀。发泡核剂的添加量,相对于100质量份的超高分子量聚乙烯,为0.001~3质量份,优选为0.001~0.5质量份,更优选为0.01~0.2质量份,尤其优选为0.03~0.1质量份。该润滑剂在上述范围内时,很容易形成气泡径小且均匀的发泡体。
作为本发明中使用的发泡核剂,可列举碳酸钙、粘土、滑石、硅石、氧化镁、氧化锌、碳黑、二氧化硅、氧化钛、塑料微球、正硼酸、脂肪酸的碱土类金属盐、柠檬酸、碳酸氢钠(小苏打)等的1种或几种组合。其中优选柠檬酸、碳酸氢钠(小苏打)的组合。
以下参照图1对形成本发明超高分子量聚乙烯发泡体的一例进行说明。
将超高分子量聚乙烯、根据需要规定量的润滑剂和发泡核剂,用滚桶拌合机、亨舍尔混合机等混合,得到超高分子量聚乙烯组合物1,由料斗2装入,用挤压机3加热混炼,熔融。作为二氧化碳的供给方法,即由液化二氧化碳瓶4,将二氧化碳供给到保持液体状态的定量泵6内,进行升压。这时优选利用冷介质循环装置5对连接瓶和定量泵的管线进行冷却。
接着,用保压阀7控制定量泵6的喷出压力,使之在二氧化碳的临界压力(7.4MPa)~100MPa范围内形成一定压力,喷出后,供到熔融的超高分子量聚乙烯中。这时,供给到熔融超高分子量聚乙烯中的二氧化碳,可以是气体状态、液体状态、超临界状态中的任一种,从稳定供给的观点来看,优选为超临界状态。这时供给的树脂压力8为3~100MPa,优选为8~80MPa,更优选为15~60MPa,尤其优选为20~40MPa。供给的树脂压力在3MPa以上时,二氧化碳向熔融超高分子量聚乙烯组合物中的溶解度很高,所以能得到高发泡体。另外,供给的树脂压力在100MPa以下时,成形装置难以产生气漏,所以不需要高价的防气漏装置,就安全性、生产稳定性、成形费用等方面考虑优选。添加的二氧化碳,只要该添加量适量即可,若超高分子量聚乙烯组合物完全呈熔融状态,利用熔融树脂本身的熔融密封,不会向料斗侧形成倒流。溶解扩散有二氧化碳的超高分子量聚乙烯组合物,被送入设定为适宜发泡温度的模具9内。
从螺杆前端到模具出口的滞留时间T,如下式(3),由使用的超高分子量聚乙烯的粘均分子量Mv求得,其中,系数E为0.5~10。
T=E×(Mv×10-6)2    (3)
超高分子量聚乙烯的、从螺杆前端到模具出口的滞留时间,可通过改变螺杆转数、圆筒温度、作为从螺杆前端到模具出口的树脂流路容积、模具内的树脂流路容积或连接挤压机与模具的连接器内的树脂流路容积,来进行调节,螺杆转数减缓,增大螺杆前端到模具出口的容积时,可延长滞留时间。
在螺杆前端部的树脂压力10,可调节为10~100MPa。螺杆前端部的树脂压力,通过改变挤压量、树脂温度、从螺杆前端到模具出口的树脂流路长度,来进行调节,螺杆转数加速,降低挤压机设定温度,增长螺杆前端到模具出口的长度,都可提高树脂的压力。
从螺杆前端到模具出口的滞留时间和螺杆前端的树脂压力,当考虑到所得发泡体的各种物性的稳定性和生产性时,优选通过改变从螺杆前端到模具出口的树脂流路长度和容积等来进行调节。
另外,刚从模具喷出后的树脂中心部温度,可由挤压机3下流侧的圆筒温度和模具温度进行控制。
对于模具,在开口上下设置流通冷介质11的管子,可对开口出口附近进行局部冷却。通过由该冷介质11局部冷却的模具开口部,形成表皮层。从模具喷出后,压力释放,开始发泡。这时,为赋于发泡体形状,优选通过精制模具12。挤压的超高分子量聚乙烯发泡体13,由收取机14以一定速度收取,在规定长度处切断形成制品。关于挤压机3和模具9的设定温度,根据超高分子量聚乙烯的种类和用途及其组合,也根据成形装置而不同,所以可适当选择。
[超高分子量聚乙烯发泡体]
利用本发明的方法制造的超高分子量聚乙烯发泡体,可发泡形成为各种成形体。作为可适用的成形方法,只要是公知的成形方法都可适用,没有限制。例如,可列举发泡板成形、发泡充气成形、发泡网成形、发泡异型挤压成形、发泡多层成形、发泡中空成形、发泡管成形等。关于发泡成形体的形状也没有特殊限定,如板状、轨状、管状、方形状、圆柱状等。其中,优选由发泡板成形形成的发泡板、由发泡异型挤压成形形成的轨状、管状、方材状、圆柱状的形状。
其中,更优选的是发泡板,发泡板的宽度为30~10000mm,优选为50~5000mm,更优选为50~3000mm。发泡体的厚度为0.5~100mm,优选为1~80mm,更优选为5~70mm,尤其优选为10~50mm,极其优选20~50mm。
本发明超高分子量聚乙烯发泡体的密度为0.02~0.7g/cm3,优选为0.02~0.5g/cm3,更优选为0.02~0.4g/cm3。发泡体的密度在0.02g/cm3以上时,耐冲击性等机械物性良好,密度在0.7g/cm3以下时,作为发泡体,可充分发挥所需要的轻量性、绝热性、吸音性、低介电率、缓冲性、柔软性等功能。
另外,表皮层的厚度为0.2mm~3mm,优选为0.5~2mm,更优选为0.8~1.5mm。在0.2mm以上时,耐摩耗性、自身润滑性、耐冲击性、耐药品性等物性都良好,在3mm以下时,作为发泡体,可充分发挥所需要的轻量性、绝热性、吸音性、低介电率、缓冲性、柔软性等功能。
平均气泡径为0.1~3000μm,优选为20~1000μm,更优选为50~500μm。平均气泡径在上述范围时,作为发泡体,可充分发挥所需要的绝热性、吸音性、低介电率、缓冲性、柔软性等功能。
独立气泡率为50~100%,优选为65~100%,更优选为80~100%。独立气泡率在上述范围内时,作为发泡体,可发挥所需要的绝热性、低介电率等功能。
利用本发明的上述方法制得的超高分子量聚乙烯发泡体,作为脆性破坏指标,在低温下进行杜邦冲击试验时,脆性破坏温度域为-300~-100℃,优选为-300~-130℃,更优选为-300~150℃。未发生脆性破坏的温度域在上述范围内时,意味着在液体天然气、液体氮、液体氢、液体氧、液体氦等极其严酷的环境中,可耐使用。
另外,-40℃下的拉伸冲击值(JIS-K7160、成形两端有凹口),在用该发泡体的密度ρ(g/cm3)近似表示拉伸冲击值X(kJ/m2)的下式(1)中,系数A为75~1500,优选为100~1000,更优选为200~500。
X=A×ρ    (1)
-40℃下的悬臂梁(izod)冲击强度(ASTM-D256,成形有凹口),在用该发泡体的密度ρ(g/cm3)近似地表示悬臂梁冲击强度Z(J/m)的下式(4)中,系数C优选在500以上,更优选在1000以上,优选未破坏。
Z=C×ρ    (4)
上述范围的冲击强度,在轻量的含有聚烯烃的发泡体(密度:0.02~0.7g/cm3)中,在极低的温度下,具有其他类型未见到的高冲击特性。
关于-150℃下的拉伸强度(JIS-K7113),在用该发泡体的密度ρ(g/cm3)近似表示拉伸强度Y(MPa)的下式(2)中,系数B为50~1000,优选为70~800,更优选为100~500。
Y=B×ρ    (2)
-150℃下的拉伸强度在上述范围内时,作为极低温用材料,具有充分耐用的刚性。
另外,-150℃下的拉伸度(JIS-K7113)为2~30%,优选为2~20%,更优选为2~10%。-150℃下的拉伸度在上述范围内时,作为极低温用材料,可充分耐使用。
利用上述制造方法制得的本发明超高分子量聚乙烯发泡体,不仅不损害上述超高分子量聚乙烯具有的优良耐摩耗性、自身润滑性、耐药品性等特征,质量轻且在低温下具有优良的脆性、悬臂梁冲击强度、拉伸冲击值、拉伸冲击强度、拉伸度等机械物性值,而且外观良好。通过提高发泡倍率,可得到轻量化,通过降低发泡倍率,可提高拉伸强度、冲击特性等各种机械物性值。
[绝热材料]
含有本发明发泡体的绝热材料,热传导率(JIS-A1413)为0.01~0.35Kcal/m·hr·℃,优选为0.05~0.35Kcal/m·hr·℃,更优选为0.1~0.3Kcal/m·hr·℃。热传导率在上述范围内时,作为极低温用绝热材料,可发挥所要的绝热性。例如,提高发泡倍率,可抑制热传导率变低,通过调整发泡倍率,可控制所要的热传导率。含有本发明发泡体的绝热材料,例如,对液化天然气和液化氢等进行输送、贮存、处理时使用的绝热材料,更优选在极低温下作绝热材料使用。
[超导磁共振图像装置的构成材料]
医院等检查时使用的超导磁共振装置,使用现有磁共振图像装置能对难以触到的血管、胆道、胰管进行摄影,由于图像质量很高,被大多数医院所采用,由于使用超导磁铁,所以要求量轻,极低温下各种物性优良的材料。本发明的发泡体量轻、且极低温下的冲击强度和刚性等各种机械物性都很优良,所以优选用作对液化氦、液化氮等使用的超导磁共振装置的构成材料。
[轻量型高滑动材料]
作为用于滑动的材料,可使用磨擦系数、摩耗性优良的氟类树脂、工程塑料、聚氨脂、超高分子量聚乙烯等。其中,超高分子量聚乙烯,由于比重在1以下、量轻,在很多领域中使用。含有本发明发泡体的轻量型高滑动材料是使超高分子量聚乙烯更加轻量化的材料,而且不损害高分子量聚乙烯具有的优良耐摩耗性、自身润滑性、低温特性、耐药品性等物性。由于这种轻量化,可降低使用时的能量消耗量。尤其能使旋转、往复运动的衬片、化学泵、齿轮、轴承、螺杆、传送带、人工关节、假肢、假足一类的成形品和部件轻量化,由于能大幅度降低能量消耗,所以极为有效。
[缓冲性高滑动材料]
在滑动材料用途中,有需要缓冲性的用途。例如,可列举在半导体用硅晶片的研磨工序中使用的CMP衬垫,作为升降机部材使用的导块等。现有这些用途中,到目前为止,通过滑动材料和缓冲材料的组合等,得到滑动性和缓冲性的物性平衡,但是,含有本发明发泡体的缓冲性高滑动材料,通过由滑动性优良的超高分子量聚乙烯发泡,而具备滑动性和缓冲性两种特性,所以最适宜用作CMP衬垫、导块、导轨等缓冲性高的滑动材料。
实施例
根据以下实施例更具体地说明本发明,但本发明不受这些实施例限定,实施例和比较例中使用的物性评价,可按以下方法实施。
1)粘均分子量(Mv)
按照ASTM-D4020标准进行测定。
2)刚从模具喷出后的树脂表面温度
利用非接触式的放射温度计(minolta(ミノルタ)(株)制、HT-10D)测定刚从模具喷出后的0mm~10mm之间的超高分子量聚乙烯发泡体表面温度。
3)刚从模具喷出后的树脂中心部温度
利用具有针式传感器的温度计,用针状传感器部刺入到树脂中心部,测定刚从模具喷出后的0mm~10mm之间的超高分子量聚乙烯发泡体中心部温度,测定数次,直到温度稳定为止。
4)从挤压机螺杆前端到模具出口树脂的滞留时间
溶解有发泡剂的超高分子量聚乙烯组合物,从通过螺杆前端到模具出口的滞留时间,根据螺杆前端到模具出口的树脂流路容积、挤压量、和超高分子量聚乙烯树脂的PVT关系数据,由模具内相当于熔融树脂的熔融密度进行计算。
5)密度
连续制造超高分子量聚乙烯,每30分钟取一次样品,合计10个(5小时内),用电子密度计(mirage(ミラ一ジユ)(株)、MD-200S)测定密度,求其平均值。
6)表皮层厚度
使用具有宽20mm、厚5mm的长方形出口形状的模具,连续制造超高分子量聚乙烯发泡体,每5分钟取一次长10cm的样品,共3个,接着,相对于3个样品的树脂挤压方向,利用扫描型电子显微镜对垂直方向的断面摄影,针对一个样品,每次测定2处该断面上下左右的表皮层厚度,合计8处,算出平均值。接着由各个样品得到的平均值,求出3个样品的平均值,作为表皮层厚度。
7)平均气泡径
与上述(6)的表皮层厚度一样,取3个样品。接着针对3个样品,用扫描型电子显微镜,相对于树脂的挤压方向,对垂直方向的断面中心进行摄影,并对照片进行图像处理,针对样品断面中心部500μm见方的气泡,算出相当于圆的直径。对3个样品求出相当于圆的平均直径,将它们的平均值作为平均气泡径。
8)独立气泡率
根据ASTM-D2856标准,使用空气比重计(东京science(サイエンス)(株)制空气比较式比重计1000型)进行测定。
9)气泡均匀性
计算出平均气泡径的3个样品中相当于圆的最大直径,当在平均气泡径的2倍范围内时,取为○,同样相当于圆的最大直径,在平均气泡径的2~4倍范围内时,取为△,同样相当于圆的最大直径,在超过平均气泡径4倍的范围时,取为×,以此进行评价。
10)挤压稳定性
上述5)中得到的,每30分钟取样一次,得到合计10个样品的密度,与上述5)的密度平均值之差,在10%以内时,取为○,大于10%在30%以内时,取为△,在大于30%时,取为×。
11)杜邦冲击强度
作为试验机,使用杜邦冲击试验机(东洋精机制)。使用形成凿子形(宽20mm)的冲击心,使2kg重锤从250mm的高度落下,肉眼观察试验片的状态。作为试验片,将发泡体切割成50mm×10mm的试验片后使用,将该试验片在液体氮中浸渍5小时,将其取出,进行上述降落冲击试验。这时,从液体氮取出3秒以内进行试验。
12)悬臂梁冲击强度
按照ASTM-D256标准,在-40℃环境中进行悬臂梁冲击强度测定(成形有凹口)。在锤容量为3.92J,空振角度为149.1度的条件下测定。作为试验片,使用宽10.16mm、凹口角度为45°、凹口前端r为0.25mm的试验片。
13)拉伸冲击值
按照JIS-K7160标准,在-40℃环境中进行拉伸冲击值测定(两端成形有凹口)。在锤容量为7.5J、空振角度为149.2度的条件下测定。作为试验片,使用宽6.0mm、凹口角度为45°、凹口前端r为1.0mm的试验片。
14)拉伸强度、拉伸度
按照JIS-K7113标准,在-150℃环境中进行拉伸强度和拉伸强度测定。由发泡体,用试验片加工机加工成ASTM1号形试验片。在试验温度中保持60分钟后进行测定。将夹具间距取为110mm、以5mm/分钟测定拉伸速度。测定拉伸度,采用滑块移动量法。
15)发泡体的热传导率
按照JIS-A1413标准进行测定。
[实施例1]
作为挤压机,使用图1所示的螺杆直径为50mm的单螺杆挤压机3(L/D=32)。使用的模具,具有宽20mm、厚度5mm的长方形出口,从螺杆前端到模具出口的长度为330mm(螺杆前端到模具出口的容积为78.4cm3)。该模具,在开口上下设有流通冷介质水11的管,使开口出口附近局部冷却。将100质量粘均分子量为100万的超高分子量聚乙烯(三井化学(株)制Hi-Zex Million(ハイゼツクスミリオン)150M)、0.1质量份硬脂酸钙(堺化学工业制)和0.05质量份小苏打/柠檬酸(boehringer-ingelheim(ベ一リンガ一インゲルハイム)制CF)进行干混合,调制成超高分子量聚乙烯组合物1。
将超高分子量聚乙烯组合物1,由料斗2装入挤压机3内。这时,挤压机3设定温度为180℃,螺杆转数为10rpm,此状态下挤压量为3kg/hr。这时,从通过螺杆前端到模具出口的滞留时间为1.3分钟。
使用虹吸式的液化二氧化碳瓶4,由液相部分直接取出二氧化碳。使用冷介质循环机5,用调节到-12℃的乙二醇水溶液冷却从瓶4到定量泵6的流路,以液体状态将二氧化碳送入定量泵6。控制定量泵6,调节保压阀7,使喷出压力达到30MPa。由保压阀7将二氧化碳供给加热到180℃的挤压机3内。此时二氧化碳的供给量,相对100质量份热塑性树脂组合物为1质量份,供给部压力为20MPa。这样,对于100质量份熔融的超高分子量聚乙烯组合物,以2.0质量份的比率将二氧化碳供给挤压机3内,均匀溶解扩散。
由挤压机3挤压的、溶解有二氧化碳的超高分子量聚乙烯组合物,被送入设定为130℃的模具9内。从刚模具喷出之前,由于开口附近局部被冷却,所以表层温度比中央部的温度低。这时,形成发泡体的表皮层。从模具喷出后,压力被释放,开始发泡。测定刚从模具喷出后的表面温度和中心部温度时,刚从模具喷出后的表面温度为120℃,刚从模具喷出后的中心部温度为133℃。发泡结束后,通过精制模具12修整发泡体的形状,由收取机14以一定速度收取,切割,得到样品。发泡体的评价结果示于表1。
[实施例2]
相对于100质量份超高分子量聚乙烯组合物,以2.5质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为125℃,使刚从模具喷出后的中心部温度为130℃,除此之外,与实施例1同样进行实验。发泡体的评价结果示于表1。
[实施例3]
相对于100质量份超高分子量聚乙烯组合物,以3.6质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为123℃,使刚从模具喷出后的中心部温度为125℃,除此之外,与实施例1同样进行实验,发泡体的评价结果示于表1。
[实施例4]
相对于100质量份超高分子量聚乙烯组合物,以3.5质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为120℃,使刚从模具喷出后的中心部温度为125℃,除此之外,与实验例1同样进行实验,发泡体的评价结果示于表1。
[实施例5]
将100质量份粘均分子量为100万的超高分子量聚乙烯(三井化学(株)制Hi-Zex Million 150M)、0.2质量份硬脂酸钙(堺化学工业制)和0.05质量份小苏打/柠檬酸(boehringer-ingelheim制CF)进行干混合,调制成超高分子量聚乙烯组合物1,相对于100质量份超高分子量聚乙烯组合物,以6.0质量份的比率将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为120℃,使刚从模具喷出后的中心部温度为123℃,除此之外,与实施例1同样进行实验。发泡体的评价结果示于表1。
[实施例6]
相对于100质量份超高分子量聚乙烯组合物,以0.8质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为135℃,使刚从模具喷出后的中心部温度为138℃,除此之外,与实施例5同样进行实验,发泡体的评价结果示于表1和表3。
[实施例7]
除了不添加硬脂酸钙以外,其他与实施例1同样进行实验。发泡体的评价结果示于表1和表3。
[实施例8]
除了不添加小苏打/柠檬酸以外,其他与实施例1同样进行实验。发泡体的评价结果示于表1。
[实施例9]
作为模具,使用螺杆前端到模具出口的长度取为530mm(螺杆前端到模具出口的容积为143.2cm3)的模具,并使用粘均分子量为200万的超高分子量聚乙烯(三井化学(株)制Hi-Zex Million 240ME),相对于100质量份超高分子量聚乙烯组合物,以1.8质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为139℃,使刚从模具喷出后的中心部温度为142℃,除此之外,与实施例1同样进行实施。此时,从通过螺杆前端到模具出口的滞留时间为2.3分钟。发泡体的评价结果示于表1。
[实施例10]
作为模具,使用螺杆前端到模具出口的长度取为530mm(螺杆前端到模具出口的容积为143.2cm3)的模具,并使用粘均分子量为230万的超高分子量聚乙烯(三井化学(株)制Hi-Zex Million 240M),相对于100质量份超高分子量聚乙烯组合物,以10.0质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为120℃,使刚从模具喷出后的中心部温度为121℃,螺杆转数取为6rpm,除此之外,与实施例1同样进行实施。此时,从通过螺杆前端到模具出口的滞留时间为3.6分钟。发泡体的评价结果示于表1。
[比较例1]
在开口出口附近不通水,相对于100质量份超高分子量聚乙烯组合物,以1.0质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为170℃,使刚从模具喷出后的表面温度为170℃,除此之外,与实施例1同样进行实验。发泡体的评价结果示于表2。
[比较例2]
相对于100质量份超高分子量聚乙烯组合物,以1.0质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为120℃,使刚从模具喷出后的中心部温度为155℃,除此之外,与实施例1同样进行实验。发泡体的评价结果示于表2。
[比较例3]
在开口出口附近不通水,相对于100质量份超高分子量聚乙烯组合物,以0.05质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为170℃,使刚从模具喷出后的中心部温度为170℃,除此之外,与实施例1同样进行实验。发泡体的评价结果于表2。
[比较例4]
相对于100质量份超高分子量聚乙烯组合物,以1.8质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为55℃,使刚从模具喷出后的中心部温度为138℃,除此之外,与实施例1同样进行实验。发泡体的评价结果示于表2。
[比较例5]
相对于100质量份超高分子量聚乙烯组合物,以1.8质量份的比率,将二氧化碳供给挤压机3内,使刚从模具喷出后的表面温度为58℃,使刚从模具喷出后的中心部温度为68℃,除此之外,与实施例1同样进行实验。结果,由于树脂温度降低,在降低挤压机和模具设定温度的过程中,压力产生急剧升高,超高分子量聚乙烯组合物从模具无法喷出,所以不能挤压成形。结果示于表2。
[比较例6]
除了将螺杆转数取为30rpm以外,其他与实施例1同样进行实验。这时的通过时间为0.4分钟。发泡体的评价结果示于表2和表3。
[比较例7]
作为模具,除了使用螺杆前端到模具出口的长度为330mm(螺杆前端到模具出口的容积为78.4cm3)以外,其他与实施例9同样进行实验。此时,通过螺杆前端到模具出口的滞留时间为1.3分钟。发泡体的评价结果示于表2和表3。
[比较例8]
使用粘均分子量为230万的超高分子量聚乙烯(三井化学(株)制Hi-Zex Million 240M),相对于100质量份超高分子量聚乙烯组合物,以10.0质量份的比率将二氧化碳供给挤压机3,使刚从模具喷出后的表面温度为120℃,使刚从模具喷出后的中心部温度为152℃,除此之外,与实施例1同样进行实验。此时从通过螺杆前端到模具出口的滞留时间为1.3分钟。发泡体的评价结果示于表2。
[比较例9]
作为模具,除了使用螺杆前端到模具出口的长度为330mm(螺杆前端到模具出口的容积为78.4cm3)的模具,将螺杆转数设为10rpm之外,其他与实施例9同样进行实验。此时从通过螺杆前端到模具出口的滞留时间为1.3分钟。发泡体的评价结果示于表2和表3。
[比较例10]
使用粘均分子量为20万的高密度聚乙烯,使用挤压机和T模具,得到密度为0.31g·cm3和表皮层厚度为0.3mm的高密度聚乙烯发泡体。发泡体的评价结果示于表3。
表1
  实施例
  1   2   3   4   5   6   7   8   9   10
  粘均分子量(×104)   100   100   100   100   100   100   100   100   200   230
  硬脂酸钙添加量(质量份) 0.1 0.1 0.1 0.1 0.2 0.2 0 0.1 0.1 0.1
  小苏打/柠檬酸添加量(质量份) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0.05 0.05
  从螺杆前端到模具出口的长度(mm) 330 330 330 330 330 330 330 330 530 530
  二氧化碳添加量(质量份) 2.0 2.5 3.6 3.5 6.0 0.8 2.0 2.0 1.8 10.0
  刚从模具喷出后的树脂表面温度(℃) 120 125 123 120 120 135 120 120 139 120
  刚从模具喷出后的树脂中心部温度(℃) 133 130 125 125 123 138 133 133 142 121
  从螺杆前端到模具出口的滞留时间(分) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 2.3 3.6
  螺杆前端部的树脂压力(MPa) 29 21 23 25 25 24 30 28 27 31
  密度(g/cm3)   0.24   0.15   0.06   0.09   0.07   0.33   0.24   0.27   0.33   0.06
  表皮层厚度(mm) 1.0 0.7 0.3 0.9 0.7 0.3 1.0 1.0 0.3 0.6
  刮痕   无   无   无   无   无   无   无   无   无   无
  平均气泡径(μm) 200 250 300 270 280 170 200 550 190 200
  独立气泡率(%) 85 75 68 78 71 74 82 70 81 69
  气泡均匀性   ○   ○   ○   ○   ○   ○   △   △   ○   △
  挤压稳定性   ○   ○   ○   ○   ○   ○   △   ○   ○   △
表2
    比较例
    1     2   3   4   5   6   7   8   9
  粘均分子量(×104)     100     100   100   100   100   100   200   230   230
  硬脂酸钙添加量(质量份)     0.1     0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1
  小苏打/柠檬酸添加量(质量份)     0.05     0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05
  从螺杆前端到模具出口的长度(mm) 330 330 330 330 330 330 330 330 330
  二氧化碳添加量(质量份)     1.0     1.0   0.05   1.8   1.8   2.0   1.8   10.0   10.0
  刚从模具喷出后的树脂表面温度(℃) 170 120 170 55 58 120 139 120 120
  刚从模具喷出后的树脂中心部温度(℃) 170 155 170 138 68 133 142 152 121
  从螺杆前端到模具出口的滞留时间(分) 1.3 1.3 1.3 1.3 ※1 0.4 1.3 1.3 1.3
  螺杆前端部的树脂压力(MPa)     10     20   18   30   30   26   20   32
  密度(g/cm3)     0.85     0.90   0.88   0.75   0.29   0.37   ※3   0.08
  表皮层厚度(mm)     0.1     0.8   3.2   4.5   ※2   ※2   ※2
  刮痕     无     无   无   无   有   有   有
  平均气泡径(μm)     120     110   120   130   700   800   200
  独立气泡率(%)     41     94   95   93   31   27   12
  气泡均匀性     ○     ○   ○   ○   ×   ×   ×
  挤压稳定性     ○     ○   ○   ○   ×   ×   ×
※1因压力升高,不能挤压成形
※2划痕部没有表皮层
※3间断地产生气体吹出,不能挤压
表3
  实施例   比较例
  6   7   6   7   9   10
  原材料 超高分子量聚乙烯   高密度聚乙烯
  粘均分子量(×104)   100   200   100   200   230   20
  杜邦冲击强度(-196℃)   未破坏   未破坏   ※4   ※4   ※4   破坏
  密度(g/cm3)   0.33   0.24   0.29   0.37   0.08   0.31
  表皮层厚度(mm)   0.3   1.0   ※2   ※2   ※2   0.3
  悬臂梁冲击强度(-40℃)(J/m)   231   未破坏   21   22   5   29
  拉伸冲击值(-40℃)(kJ/m2)   29.1   96.9   8.8   9.2   4.1   14.3
  拉伸强度(-150℃)(MPa)   25.2   33.1   2.2   3.2   0.8   16.8
  拉伸度(-150℃)(%)   3.3   3.9   1.1   1.1   1.0   1.4
  发泡体的热传导率(Kcal/m·hr·℃)   0.15   0.15   0.13   0.17   0.04   0.17
※2划痕部没有表皮层
※4划痕部分有破坏
产业上的可利用性
本发明中得到的发泡体可应用于建筑、医疗、食品、能源、运动、旅游等各个领域。例如可列举有效利用超高分子量聚乙烯和发泡体的功能的极低温用绝热材料、精密研磨材料、轻量高滑动材料、缓冲性高滑动材料、高强度缓冲材料、人造骨材料等。其中,极低温下用材料,可列举在输送、贮存、处理等液化天然气和液化氢中使用的绝热材料等的构成材料,直线电动机汽车等的构成材料,保存血液成分、骨髓液、精子等体液和细胞等的冷冻保存容器和超导磁共振装置等的构成材料,火箭、宇宙输送系统等中使用的绝热材料等的构成材料,超高密度存储器等的构成材料。此外还有衬垫材料、导块、升降底座(elevator shoe)、蜗轮杆、导轨、辊筒导向、打栓机控制杆、抽吸机、箱盖、喷咀、齿轮、旋塞、刮刀、挖掘机的铲斗内衬、除雪机部件、阀门、垫圈、密封材料、船尾管、滚子、机动雪橇部件(底板等)、(幼儿)学步车部件、滑雪板背衬、护膝衬垫、电瓶隔离体、假肢材料、假足材料、人造骨材料、人造关节、医疗设备部件、(汽车)安全轮胎、中子隔离材料、CMP衬垫、玻璃输送用缓冲材料、液晶玻璃输送用缓冲材料、轮胎部件、绝缘板、消声部件、轻量填土、雕刻用材料等。
符号说明
1  超高分子量聚乙烯组合物
2  料斗
3  挤压机
4  液化二氧化碳瓶
5  冷介质循环装置
6  定量泵
7  保压阀
8  树脂压力计(二氧化碳供给部)
9  模具
10  树脂压力计(螺杆前端部)
11  冷介质
12  精制模具
13  超高分子量聚乙烯发泡体
14  收取机

Claims (11)

1.一种超高分子量聚乙烯发泡体,其由粘均分子量为30万~1000万的超高分子量聚乙烯发泡得到,其特征在于:
该发泡体的密度为0.02~0.7g/cm3,在用该发泡体的密度ρ(g/cm3)近似表示温度-40℃下的拉伸冲击值X(kJ/m2)的下式(1)中,系数A为75~1500:
X=A×ρ  (1)。
2.如权利要求1所述的超高分子量聚乙烯发泡体,其特征在于:
在用该发泡体的密度ρ(g/cm3)近似表示温度-150℃下的拉伸强度Y(MPa)的下式(2)中,系数B为50~1000:
Y=B×ρ  (2)。
3.一种超高分子量聚乙烯发泡体的制造方法,用于制造由粘均分子量为30万~1000万的超高分子量聚乙烯发泡得到的密度为0.02~0.7g/cm3的发泡体,其特征在于:
在用超高分子量聚乙烯的粘均分子量Mv近似表示溶解有发泡剂的超高分子量聚乙烯的、从挤压机的螺杆前端到模具出口的滞留时间T(分)的下式(3)中,系数E为0.5~10,且螺杆前端部的树脂压力为10~100MPa:
T=E×(Mv×10-6)2    (3)。
4.如权利要求3所述的超高分子量聚乙烯发泡体的制造方法,其特征在于,包括:
在挤压机内熔融超高分子量聚乙烯的工序;
向超高分子量聚乙烯中添加发泡剂的工序;和
以使刚从模具喷出后的树脂表面温度为60~140℃,且使刚从模具喷出后的树脂中心部温度为70~150℃的方式,进行挤压发泡的工序。
5.如权利要求3或4所述的超高分子量聚乙烯发泡体制造方法,其特征在于:在100质量份超高分子量聚乙烯中,添加0.1~20质量份的二氧化碳,作为发泡剂。
6.一种绝热材料,其特征在于:
该绝热材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体,热传导率为0.01~0.35Kcal/m·hr·℃。
7.一种液化天然气用绝热材料,其特征在于:
该绝热材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体,热传导率为0.01~0.35Kcal/m·hr·℃。
8.一种液化氢用绝热材料,其特征在于:
该绝热材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体,热传导率为0.01~0.35Kcal/m·hr·℃。
9.一种超导磁共振装置等的构成材料,其特征在于:
该构成材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体。
10.一种轻量高滑动材料,其特征在于:
该高滑动材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体。
11.一种缓冲性高滑动材料,其特征在于:
该高滑动材料为权利要求1或2中任一种的超高分子量聚乙烯发泡体。
CNB2004800293473A 2003-10-09 2004-10-08 超高分子量聚乙烯发泡体及其制造方法 Expired - Fee Related CN100406503C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP351309/2003 2003-10-09
JP2003351309 2003-10-09

Publications (2)

Publication Number Publication Date
CN1863854A true CN1863854A (zh) 2006-11-15
CN100406503C CN100406503C (zh) 2008-07-30

Family

ID=34431072

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800293473A Expired - Fee Related CN100406503C (zh) 2003-10-09 2004-10-08 超高分子量聚乙烯发泡体及其制造方法

Country Status (6)

Country Link
US (1) US20060234033A1 (zh)
EP (1) EP1674510B1 (zh)
KR (1) KR101148997B1 (zh)
CN (1) CN100406503C (zh)
DE (1) DE602004022570D1 (zh)
WO (1) WO2005035639A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434153A (zh) * 2013-09-06 2013-12-11 山东通佳机械有限公司 塑料挤出物理低发泡成型方法
CN102159379B (zh) * 2008-09-22 2014-07-16 江森自控科技公司 模制聚氨酯泡沫制品的后固化
CN106042245A (zh) * 2016-06-28 2016-10-26 广州市康水科技有限责任公司 一种有效减轻噪声污染的材料组合物的制备方法
CN106867083A (zh) * 2017-04-16 2017-06-20 罗松 一种能热压塑形的发泡聚乙烯材料配方及其产品
CN108034124A (zh) * 2017-12-28 2018-05-15 宁波俐辰新能源有限公司 一种超高分子量多孔聚乙烯泡沫塑料及其制造方法
CN108084541A (zh) * 2017-12-26 2018-05-29 佛山科学技术学院 一种超高分子量聚乙烯微孔滑动材料及制备方法
CN109651680A (zh) * 2018-12-11 2019-04-19 广德祥源新材科技有限公司 高温下具有优良性能的超薄发泡材料及其制备方法
CN111187441A (zh) * 2019-12-31 2020-05-22 杭州科百特科技有限公司 一种upe多孔材料制备工艺
CN112776439A (zh) * 2021-02-04 2021-05-11 泉州市锦恒服装实业有限公司 一种保暖型面料及内裤

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133091A (ja) * 2003-10-09 2005-05-26 Mitsui Chemicals Inc 超高分子量ポリエチレン発泡体、及びその製造方法
EP2585645B1 (en) * 2010-06-22 2018-01-24 Greenzone Pest Innovations Pty Ltd A construction element
WO2012174422A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Insulated container with molded brim
JP6235466B2 (ja) 2011-06-17 2017-11-22 ベリー プラスチックス コーポレイション 断熱容器
US9067705B2 (en) 2011-06-17 2015-06-30 Berry Plastics Corporation Process for forming an insulated container having artwork
MX2013014905A (es) 2011-06-17 2014-11-14 Berry Plastics Corp Manguito aislante para taza.
CA2845225C (en) * 2011-08-31 2022-11-15 Berry Plastics Corporation Polymeric material for an insulated container
KR20150040344A (ko) 2012-08-07 2015-04-14 베리 플라스틱스 코포레이션 컵 성형 공정 및 장치
MX2015005207A (es) 2012-10-26 2016-03-21 Berry Plastics Corp Material polimerico para un recipiente aislado.
AR093943A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Reborde de un envase termico
AR093944A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Troquelado para envase
US9840049B2 (en) 2012-12-14 2017-12-12 Berry Plastics Corporation Cellular polymeric material
US9957365B2 (en) 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
RU2015143424A (ru) 2013-03-14 2017-04-19 Берри Пластикс Корпорейшн Сосуд
EP3033208A4 (en) 2013-08-16 2017-07-05 Berry Plastics Corp. Polymeric material for an insulated container
US10696095B2 (en) * 2014-05-12 2020-06-30 James E. Curry Foam tire flap for low pressure applications
US9758655B2 (en) 2014-09-18 2017-09-12 Berry Plastics Corporation Cellular polymeric material
WO2016118838A1 (en) 2015-01-23 2016-07-28 Berry Plastics Corporation Polymeric material for an insulated container
EP3357958B1 (en) 2015-09-29 2020-11-18 Sekisui Chemical Co., Ltd. Polyolefin resin foamed sheet and adhesive tape
DE102016224607A1 (de) * 2016-12-09 2018-06-14 Raumedic Ag Silikonextrusionsanlage, Verfahren zur Silikonextrusion sowie hierdurch hergestelltes Silikonextrudat
CA3013585A1 (en) 2017-08-08 2019-02-08 Berry Global, Inc. Insulated container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112970A (en) * 1978-02-22 1979-09-04 Nippon Ekika Seikei Kk Method and apparatus for foaming and filmmforming filling olefin resin
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
ATE192762T1 (de) * 1992-12-15 2000-05-15 Dow Chemical Co Thermischen russ enthaltende kunststoffbauteile
JP3877394B2 (ja) * 1997-10-13 2007-02-07 三井化学株式会社 超高分子量ポリエチレン発泡体の製造方法
JP4091165B2 (ja) * 1998-05-26 2008-05-28 三井化学株式会社 超高分子量ポリエチレン発泡体及びその製造方法
JP2000119453A (ja) * 1998-10-14 2000-04-25 Sekisui Chem Co Ltd ポリオレフィン樹脂成形体およびその製造方法
KR100691576B1 (ko) * 2003-03-10 2007-03-12 아사히 가세이 케미칼즈 가부시키가이샤 초고분자량 에틸렌계 중합체

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159379B (zh) * 2008-09-22 2014-07-16 江森自控科技公司 模制聚氨酯泡沫制品的后固化
CN103434153A (zh) * 2013-09-06 2013-12-11 山东通佳机械有限公司 塑料挤出物理低发泡成型方法
CN106042245A (zh) * 2016-06-28 2016-10-26 广州市康水科技有限责任公司 一种有效减轻噪声污染的材料组合物的制备方法
CN106867083A (zh) * 2017-04-16 2017-06-20 罗松 一种能热压塑形的发泡聚乙烯材料配方及其产品
CN108084541A (zh) * 2017-12-26 2018-05-29 佛山科学技术学院 一种超高分子量聚乙烯微孔滑动材料及制备方法
CN108034124A (zh) * 2017-12-28 2018-05-15 宁波俐辰新能源有限公司 一种超高分子量多孔聚乙烯泡沫塑料及其制造方法
CN109651680A (zh) * 2018-12-11 2019-04-19 广德祥源新材科技有限公司 高温下具有优良性能的超薄发泡材料及其制备方法
CN111187441A (zh) * 2019-12-31 2020-05-22 杭州科百特科技有限公司 一种upe多孔材料制备工艺
CN112776439A (zh) * 2021-02-04 2021-05-11 泉州市锦恒服装实业有限公司 一种保暖型面料及内裤

Also Published As

Publication number Publication date
US20060234033A1 (en) 2006-10-19
EP1674510A4 (en) 2008-03-26
EP1674510B1 (en) 2009-08-12
DE602004022570D1 (de) 2009-09-24
KR20060130549A (ko) 2006-12-19
CN100406503C (zh) 2008-07-30
KR101148997B1 (ko) 2012-05-23
EP1674510A1 (en) 2006-06-28
WO2005035639A1 (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
CN1863854A (zh) 超高分子量聚乙烯发泡体及其制造方法
Ameli et al. Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors
CN1102490C (zh) 超临界二氧化碳的加入方法,和通过使用该加入法生产发泡热塑性树脂产品的方法
CN1104316C (zh) 注射发泡成型的热塑性树脂产品及其生产方法
CN1220718C (zh) 注射发泡方法和设备
CN1265955C (zh) 微孔泡沫塑料的挤塑/吹塑方法和借此制作的制品
JPH10230528A (ja) 熱可塑性樹脂発泡射出成形体およびその製造方法
CN1681873A (zh) 热塑性弹性泡沫材料及其制备方法
Vaxman et al. Void formation in short‐fiber thermoplastic composites
CN1380848A (zh) 注塑法
CN1396050A (zh) 热塑性树脂组合物的发泡制品和其制造方法
CN1038661A (zh) 聚乙烯组合物及其制品和它的泡沫制品的制造方法
JP2019171871A (ja) 発泡樹脂成形品の製造方法、該方法に使用される熱可塑性樹脂組成物および発泡樹脂成形品
JP2007169394A (ja) 型内発泡成形用ポリ乳酸系樹脂発泡粒子の製造方法
CN1211193C (zh) 包括注塑成形的微孔低密度聚合物材料的模塑聚合物材料
Yoon et al. A mold surface treatment for improving surface finish of injection molded microcellular parts
CN1225306A (zh) 柔性聚酯泡沫
Yang et al. Cell morphologies, mechanical properties, and fiber orientation of glass fiber-reinforced polyamide composites: Influence of subcritical gas-laden pellet injection molding foaming technology
JP2019137726A (ja) フッ化ビニリデン単独重合体の発泡成形体および発泡成形体の製造方法
CN1222563C (zh) 具有较低熔点的非交联聚丙烯树脂的粒料型泡沫材料和用于生产它的方法和设备以及由其得到的模塑泡沫材料
JP2005133091A (ja) 超高分子量ポリエチレン発泡体、及びその製造方法
CN111205632A (zh) 一种密度可调热塑性聚氨酯泡沫的制备方法
CN107250232B (zh) 具有防静电性能的聚乙烯系树脂发泡粒子和聚乙烯系树脂模内发泡成型体及其制造方法
CN115505161B (zh) 尼龙模压发泡材料及其制备方法
Feng et al. In‐situ ultrasonic compatibilization of unvulcanized and dynamically vulcanized PP/EPDM blends

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080730

Termination date: 20191008