CN1806362A - 非水电解质二次电池 - Google Patents

非水电解质二次电池 Download PDF

Info

Publication number
CN1806362A
CN1806362A CNA2005800005038A CN200580000503A CN1806362A CN 1806362 A CN1806362 A CN 1806362A CN A2005800005038 A CNA2005800005038 A CN A2005800005038A CN 200580000503 A CN200580000503 A CN 200580000503A CN 1806362 A CN1806362 A CN 1806362A
Authority
CN
China
Prior art keywords
lini
nonaqueous electrolyte
positive electrode
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800005038A
Other languages
English (en)
Other versions
CN100433445C (zh
Inventor
出口正树
松井徹
芳泽浩司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1806362A publication Critical patent/CN1806362A/zh
Application granted granted Critical
Publication of CN100433445C publication Critical patent/CN100433445C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种非水电解质二次电池,其包括:能够吸收和解吸锂的正极;能吸收和解吸锂的负极;置于所述正极和所述负极之间的隔离膜;以及非水电解质。所述正极包括由式(1):LiNixM1-x-yLyO2表示的复合氧化物作为活性材料。式(1)满足0.3≤x≤0.9和0≤y≤0.1。元素M选自Co和Mn中的至少一种,并且元素L是选自以下组中的至少一种:Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe。所述非水电解质包括主溶剂、溶质和碳酸乙烯基亚乙酯。

Description

非水电解质二次电池
技术领域
本发明涉及一种非水电解质二次电池,并且特别涉及其正极活性材料和非水电解质的组合。
背景技术
当前,在非水电解质二次电池领域,在具有高电压和高能量密度的锂离子二次电池方面已经积极地进行了研究。锂离子二次电池的正极活性材料典型地为含锂的过渡金属氧化物,例如LiCoO2,并且负极活性材料典型地为碳材料。这类二次电池包括由非水溶剂和溶解于其中的溶质组成的电解质。非水溶解的实例包括环碳酸酯、链碳酸酯、以及环羧酸酯。溶质的实例是锂盐,例如六氟磷酸锂(LiPF6)和四氟磷酸锂(LiPF4)。
为了改进非水电解质二次电池的特性,已经尝试了向正极、负极和/或电解质中加入各种添加剂。例如,为了改进充电/放电循环特性或改进在低温下的充电/放电特性,已经提出了向电解质中加入碳酸亚乙烯酯或碳酸乙烯基亚乙酯(参见特开2003-151621、特开2003-31259和特开2003-249262)。碳酸亚乙烯酯或碳酸乙烯基亚乙酯在负极上分解形成保护膜,从而抑制在电解质和负极活性材料间的副反应。
发明内容
本发明所要解决的问题:
即使在电解质中含有碳酸亚乙烯酯或碳酸乙烯基亚乙酯,在电解质和正极活性材料间的副反应可特别在高温环境下剧烈地发生,导致环特性的极大降低。特别地,当使用特开2003-249262提出的高反应性正极活性材料时,高温环境下的环特性趋向于变得不充分。因此,本发明的目的是提供一种非水电解质二次电池,其尤其在高温环境下具有良好的充电/放电循环特性。
解决问题的方案
本发明的非水电解质二次电池包括:能够吸收和解吸锂的正极;能吸收和解吸锂的负极;置于正极和负极之间的隔离膜;以及非水电解质。所述正极包括由式(1):LiNixM1-x-yLyO2表示的复合氧化物作为活性材料,并且式(1)满足0.3≤x≤0.9和0≤y≤0.1。元素M为选自Co和Mn中的至少一种,并且元素L是选自以下组中的至少一种:Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe。所述非水电解质包括主溶剂、溶质和碳酸乙烯基亚乙酯。
在具有含碳酸乙烯基亚乙酯的非水电解质的非水电解质二次电池中,当碳酸乙烯基亚乙酯在负极上分解时,生成1,3-丁二烯。此1,3-丁二烯有效地作用于由式(1)表示的特定复合氧化物,从而抑制在电解质和正极活性材料之间的副反应。原因可能如下。
那就是,当足够量的Ni(占Ni、元素M和元素L的总量的30mol%或以上)结合在用作正极活性材料的复合氧化物的晶体结构中时,在复合氧化物的表面上产生金属氧化物NiO。由于此金属氧化物NiO作为引发剂的作用,在负极上碳酸乙烯基亚乙酯的分解生成的1,3-丁二烯引起在正极活性材料的表面上的聚合反应,从而在正极上形成聚合物类保护膜。此膜用于抑制在电解质和正极活性材料间的副反应,从而即使在高温下也提供好的充电/放电循环特性。
在式(1)中,元素L优选为选自以下组中的至少一种:Mg、Al、Ti和Sr。据认为,由这些元素生成的碱性氧化物,例如MgO和Al2O3,具有增强金属氧化物NiO用作聚合引发剂的作用,从而能够在正极上形成好的聚合物类保护膜。
所述非水电解质优选每100重量份主溶剂含有0.5-10重量份碳酸乙烯基亚乙酯。优选该非水电解质还含有碳酸亚乙烯酯。具有碳碳不饱和键的碳酸亚乙烯酯在充电时于正极活性材料的表面上形成薄聚合物类膜。另一方面,由碳酸乙烯基亚乙酯生成的1,3-丁二烯通过聚合在含有金属氧化物NiO的正极活性材料的表面上形成膜。这两个膜结合形成特别高耐热性的混合膜,并且此混合膜被认为非常能够抑制在电解质和正极活性材料间的副反应。
本发明的效果
本发明可抑制非水电解质和正极活性材料间的副反应,从而提供即使在高温下也具有良好充电/放电循环特性的非水电解质二次电池。
附图说明
图1是根据本发明实施例的圆柱形非水电解质的纵向截面图。
具体实施方式
如上所述,本发明是基于以下发现:含有由下式(1):LiNixM1-x-yLyO2表示的复合氧化物作为正极活性材料的正极与含有碳酸乙烯基亚乙酯的非水电解质的组合抑制了非水电解质和正极活性材料之间的副反应,从而即使在高温下也提供了良好的充电/放电循环特性。
在式(1)中,如果x小于0.3,当充电/放电循环在高温下重复时,容量保持比变得不充足。这可能是因为复合氧化物中的小的Ni含量导致生成小量的金属氧化物NiO,使得由碳酸乙烯基亚乙酯生成的1,3-丁二烯不太可能引起聚合反应,并且因此在正极上不形成充足的保护膜。
另一方面,如果x超过9,在高温下的循环特性劣化。这可能是因为复合氧化物中的过量的Ni含量导致过量生成金属氧化物NiO,使得由碳酸乙烯基亚乙酯生成的1,3-丁二烯的聚合反应剧烈地进行,在正极上形成过量的保护膜,从而妨碍充电/放电反应。当x在0.3≤x≤0.9的范围内时,高温循环性能是令人满意的。0.5≤x≤0.9是更优选的,0.7≤x≤0.9的范围是特别优选的。
元素M是选自以下组中的至少一种:Co和Mn,并且元素L是选自以下组中的至少一种:Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe。
元素L具有降低正极活性材料的晶体结构中的变化的作用,并且改进了容量和热稳定性。如果元素L的量、即y超过0.1,容量可降低或作为聚合引发剂的金属氧化物NiO的作用可变得过量。如果作为聚合引发剂的作用变得过量,高温循环特性则降低。在元素L中,Mg、Al、Ti和Sr是特别优选的。因为他们在活化作为聚合引发剂的金属氧化物NiO的作用方面产生了巨大作用,所以y的值可降低,使得高容量可有效地维持。
这些正极活性材料可单独或以两种或多重组合的形式使用。也可使用式(1)的复合氧化物和其他化合物(例如,LiCoO2、LiNiO2、LiMnO2、LiMn2O4等)的组合。然而,为了充分保证本发明的效果,优选除式(1)的复合化合物外的其他化合物不高过全部正极活性材料的70重量%。
在式(1)的复合氧化物中,特别优选由诸如以下式子表示的复合氧化物:LiNixCo1-xO2(0.3≤x≤0.9)、LiNixMn1-xO2(0.3≤x≤0.9)、LiNix(Mn1-zCoz)1-xO2(0.3≤x≤0.9,0.3≤z≤0.995)、LiNixCo1-x-yLyO2(0.3≤x≤0.9,0≤y≤0.1)、LiNixMn1-x-yLyO2(0.3≤x≤0.9,0≤y≤0.1)、LiNix(Mn1-zCoz)1-xLyO2(0.3≤x≤0.9,0≤y≤0.1,0.3≤z≤0.995),因为他们高度可能地得到本发明的效果。
除了正极活性材料外,正极可包括导电剂、由树脂制得的粘合剂等。例如,通过在由金属箔制得的正极集电器上放置含有正极活性材料、粘合剂和导电剂的正极混合物,可得到正极。
能够吸收和解吸锂的负极优选包括碳材料作为负极活性材料。作为碳材料,优选使用各种人造石墨、天然石墨等。再者,可以使用公知作为非水电解质二次电池的负极活性材料的材料,而没有任何特别限制。例如,可以使用各种复合氧化物、可与锂合金化的简单金属、合金和碱金属如锂和钠。
作为本发明的非水电解质的主溶剂,优选使用环碳酸酯、链碳酸酯、环羧酸酯等。优选以他们两种或多种组合的形式使用他们。然而,如果主溶剂含有环羧酸酯,那么环羧酸酯可通过开环聚合在正极上形成膜,从而妨碍由碳酸乙烯基亚乙酯产生的1,3-丁二烯的聚合反应。因此,特别优选主溶剂是环碳酸酯和链碳酸酯的混合物。
环碳酸酯的实例包括碳酸亚丙酯、碳酸亚乙酯、碳酸亚丁酯、碳酸氟亚乙酯和碳酸三氟亚丙酯、链碳酸酯的实例包括碳酸二乙酯、碳酸乙基甲基酯、碳酸二甲酯、碳酸乙基-2,2,2-三氟乙酯和碳酸二-2,2,2-三氟乙酯。环羧酸酯的实例包括γ-丁内酯、γ-戊内酯、α-甲基-γ-丁内酯及β-甲基-γ-丁内酯。应注意到虽然碳酸乙烯基亚乙酯和碳酸亚乙酯被归类为环碳酸酯的类别中,但是他们不属于本发明的主溶剂。
溶质的实例包括六氟磷酸锂(下文称作LiPF6)、四氟硼酸锂(下文称作LiBF4)和双三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)。他们可单独使用或者以两种或多种组合的形式使用。
非水电解质中所含由的碳酸乙烯基亚乙酯的量为:每100重量份的主溶剂,优选0.5-10重量份、更优选1-5重量份。再者,当非水电解质还含有碳酸亚乙烯酯时,碳酸乙烯基亚乙酯和碳酸亚乙烯酯的总量为:每100重量份的主溶剂,优选0.5-10重量份、更优选2-5重量份。碳酸乙烯基亚乙酯(VEC)和碳酸亚乙烯酯(VC)的重量比优选为:VEC∶VC=1∶9至10∶0。
对于本发明的电池的形状等,没有特别限制。本发明适用于任何形状的电池,例如圆柱形或矩形。再者,本发明也适用于通过使正极和负极用配置于期间的隔离膜分层而得到的具有分层的电极板组、和通过使正极和负极与配置于他们之间的隔离膜缠绕而得到的圆柱形电极板组的电池。
本发明下面将通过实施例来具体描述。然而,这些实施例不应被理解为以任何形式限制本发明。虽然能够吸收和解吸锂的碳材料被用于实施例的非水电解质二次电池的负极中,但是使用可与锂合金化的简单金属、合金或复合氧化物、或者使用碱金属如锂或钠也可得到实质上相同的效果。
实施例1
(i)非水电解质的制备
LiPF6以1.0mol/L的浓度溶解在碳酸亚乙酯(下文称为EC)和碳酸乙基甲基酯(下文称为EMC)的溶剂混合物(体积比1∶3)中。将每100重量份溶剂混合物的2重量份的碳酸乙烯基亚乙酯(下文称作VEC)加入到所得溶液中,以制备非水电解质。
(ii)正极板的制备
85重量份正极活性材料(LiNi0.75Co0.25O2)粉末、10重量份用作导电剂的乙炔黑、以及5重量份用作粘合剂的聚偏二氟乙烯树脂混合在一起,然后将混合物分散在脱水的N-甲基-2-吡咯烷酮中,以制备正极活性材料浆液。将此正极混合物涂覆至由铝箔制得的正极集电器上,干燥并滚压,得到正极板。
(iii)负极板的制备
75重量份人造石墨粉末、20重量份用作导电剂的乙炔黑、以及5重量份用作粘合剂的聚偏二氟乙烯树脂混合在一起,然后将混合物分散在脱水的N-甲基-2-吡咯烷酮中,以制备负极混合物浆液。将此负极混合物涂覆至由铜箔制得的负极集电器上,干燥并滚压,得到负极板。
(iv)圆柱形电池的制备
使用上述的正极板和负极板制备圆柱形电池。图1显示其纵向截面图。
正极板11和负极板12与放置在其间的隔离膜13缠绕,以制备电极板组。将该电池板组盛放在镀镍的铁电池壳18中。将连在正极板11上的铝正极引线14与正极端子20连接。正极端子20连接一个固定在树脂密封板19中心处的导电元件上,并且正极引线14与导电元件的后部连接。再者,连接负极板12的镍负极引线15与电池壳18的底部连接。绝缘板16和绝缘板17分别安装在电极板组的顶部和下面。然后,将预制的非水电解质注入到电池壳18中,该电池壳18的开口用密封板19密封。
(v)电池评估
如上所述制备的电池在45℃进行重复的充电/放电循环。假设在第3次循环的放电容量为100%,那么500次循环之后的容量被计做循环保持比。表1显示此结果。
在充电/放电循环中,在最大电流1050mA和上限电压4.2V下进行恒定电流—恒定电压充电2.5小时,充电后的非操作时间为10分钟。再者,在放电电流1500mA和放电终电压3.0V下进行恒定电流放电,放电后的非操作时间为10分钟。
表1
  正极活性材料  VEC(重量份)  500循环后的容量保持比(%)
  实施例1   LiNi0.75Co0.25O2  2  85.0
  比较例1   LiNi075Co0.25O2  无  17.8
  比较例2   LiCoO2  2  20.9
  比较例3   LiCoO2  无  15.5
比较例1
以与实施例1中相同的方式制备电池,区别是使用通过以1.0mol/L的浓度溶解LiPF6在EC和EMC的溶剂混合物(体积比1∶3)中制备的溶液作为非水电解质。此电池在45℃下进行充电/放电循环。
比较例2
以与实施例1中相同的方式制备电池,区别是使用钴酸锂(LiCoO2)作为正极活性材料。此电池在45℃下进行充电/放电循环。
比较例3
使用通过以1.0mol/L的浓度溶解LiPF6在EC和EMC的溶剂混合物(体积比1∶3)中制备的溶液作为非水电解质,并且使用钴酸锂(LiCoO2)作为正极活性材料。除这些以外,以与实施例1中相同的方式制备电池,此电池在45℃下进行充电/放电循环。
比较例1、2和3的电池的循环特性也显示于表1中。表1说明循环特性仅在LiNi0.75Co0.25O2用作正极活性材料、且非水电解质中包括VEC时,循环特性才得到改进。这可能是因为由VEC得到的1,3-丁二烯在含有足够量的金属氧化物NiO的正极活性材料的表面上引起聚合反应,从而在正极上形成聚合物类保护膜。
实施例2
单独或组合使用表2中所列的各种复合氧化物作为正极活性材料。在使用多种正极活性材料的混合物的情况下,混合比(重量%)示于表2中。除了正极活性材料改变外,以与实施例1中相同的方式制备电池,然后将他们在45℃下进行充电/放电循环。表2显示结果。
表2
  正极活性材料   VEC(重量份)  500循环后的容量保持比(%)
  实施例2   LiNi0.3Co0.7O2   2  80.2
  LiNi0.4Co0.6O2   2  80.5
  LiNi0.5Co0.5O2   2  80.8
  LiNi0.7Co0.3O2   2  85.1
  LiNi0.9Co0.1O2   2  84.4
  LiNi0.8Co0.15Mg0.05O2   2  87.6
  LiNi0.8Co0.15Al0.05O2   2  88.2
  LiNi0.8Co0.15Ti0.05O2   2  87.8
  LiNi0.8Co0.15Sr0.05O2   2  87.1
  LiNi0.8Co0.15Zn0.05O2   2  84.2
  LiNi0.8Co0.15B0.05O2   2  83.6
  LiNi0.8Co0.15Ca0.05O2   2  85.4
  LiNi0.8Co0.15Cr0.05O2   2  84.8
  LiNi0.8Co0.15Si0.05O2   2  84.2
  LiNi0.8Co0.15Ga0.05O2   2  85.3
  LiNi0.8Co0.15Sn0.05O2   2  83.7
  LiNi0.8Co0.15P0.05O2   2  84.1
  LiNi0.8Co0.15V0.05O2   2  84.0
  LiNi0.8Co0.15Sb0.05O2   2  83.9
  LiNi0.8Co0.15Nb0.05O2  84.5
  LiNi0.8Co0.15Ta0.05O2   2  84.1
  LiNi0.8Co0.15Mo0.05O2   2  84.2
  LiNi0.8Co0.15W0.05O2   2  83.7
  LiNi0.8Co0.15Zr0.05O2   2  85.0
  LiNi0.8Co0.15Y0.05O2   2  85.2
  LiNi0.8Co0.15Fe0.05O2   2  83.6
  LiNi0.8Co0.15Al0.03Zr0.02O2   2  88.4
  LiNi0.8Co0.15Al0.03Ta0.02O2   2  88.0
  LiNi0.8Co0.15Al0.03Nb0.02O2   2  87.5
  LiNi0.8Mn0.02Co0.15Al0.03O2   2  87.6
  LiNi0.5Mn0.5O2   2  81.0
  LiNi0.3Mn0.7O2   2  80.2
  LiNi0.5Mn0.4Co0.1O2   2  81.3
  LiNi1/3Mn1/3Co1/3O2   2  80.4
  LiNi0.6Co0.15Al0.05O2(80%)+LiNi1/3Mn1/3Co1/3O2(20%)   2  87.3
  LLNi0.8Co0.15Al0.05O2(80%)+LiCoO2(20%)   2  87.0
  LiNi1/3Mn1/3Co1/3O2(30%)+LiCoO2(70%)   2  80.1
  比较例4   LiNi0.25Co0.75O2   2  72.1
  比较例5   LiNiO2   2  43.8
比较例4
以与实施例2中相同的方式制备电池,区别是使用LiNi0.75Co0.25O2作为正极活性材料,然后此电池在45℃下进行充电/放电循环。
比较例5
以与实施例2中相同的方式制备电池,区别是使用LiNiO2作为正极活性材料,然后此电池在45℃下进行充电/放电循环。
比较例4和5的电池的循环特性也示于表2中。在比较例4中,循环特性降低。这可能是因为在正极活性材料中的Ni含量不充足导致生成的金属氧化物NiO的量小,使得由碳酸乙烯基亚乙酯产生的1,3-丁二烯不引起足够的聚合反应,并且因此在正极上未发现足够的保护膜。
在比较例5中,循环特性也降低。这可能是因为在正极活性材料中的Ni含量过量,导致生成的金属氧化物NiO过量,使得由碳酸乙烯基亚乙酯产生的1,3-丁二烯的聚合反应剧烈地进行,以在正极上形成过量的保护膜,从而妨碍充电/放电反应。
另一方面,表2表明:由LiNixM1-x-yLyO2(M=Co,L=Mg、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe,0.3≤x≤0.9和0≤y≤0.1)表示的正极活性材料和含有VEC的非水电解质的组合可使电池具有优良的高温循环特性。这也表明:使用由LiNixM1-x-yLyO2表示的复合氧化物、或使用由LiNixM1-x-yLyO2表示的复合氧化物和其他复合氧化物(例如,LiCoO2)的混合物也可提供实质上相同好的结果。另外,当M=Mn时,得到与M=Co时的相同的结果。这些结果解释了当正极活性材料中的Ni含量在0.3≤x≤0.9的范围时,高温循环性能是令人满意的,并且0.7≤x≤0.9的范围是特别优选的。
再者,表2表明当加入到正极活性材料中的元素N是选自Mg、Al、Ti和Sr的至少一种时,可得到具有特别好的高温循环特性的电池。
实施例3
使用LiNi0.75Co0.25O2作为正极活性材料。再者,所用非水电解质是通过以1.0mol/L的浓度溶解LiPF6在以下组成的液体混合物中来制备的:100重量份的EC和EMC的溶剂混合物(体积比1∶3);以及表3所示量的VEC。以与实施例1中相同的方式制备电池,区别是使用此非水电解质,然后电池在45℃下进行充电/放电循环。表3中显示结果。
表3
正极活性材料   VEC(重量份)  500循环后的容量保持比(%)
  LiNi0.75Co0.25O2   0.05  73.0
  0.1  75.7
  0.5  80.5
  1  83.2
  2  85.0
  3  85.5
  5  85.8
  10  86.1
  20  82.1
表3表明:高温循环特性随着其中混合的VEC量的增加而改进。再者,优选的VEC的混合范围是:每100重量份溶剂混合物,0.5-10重量份。
实施例4
使用LiNi0.75Co0.25O2作为正极活性材料。再者,所用非水电解质是通过以1.0mol/L的浓度溶解LiPF6在以下组成的液体混合物中来制备的:100重量份的EC、EMC和碳酸二乙酯(DEC)的溶剂混合物(体积比3∶5∶2);碳酸亚乙烯酯(下文称作VC)(表4所示的混合量);以及2重量份的VEC。以与实施例1中相同的方式制备电池,区别是使用此非水电解质,然后电池在45℃下进行充电/放电循环。表4中显示结果。
表4
  VC(重量份)   VEC(重量份)  500循环后的容量保持比(%)
 实施例4   0   2  81.7
  1   2  84.5
  2   2  85.8
比较例6   1   0  17.7
  2   0  21.7
比较例6
以与实施例4中相同的方式制备电池,区别是使用通过不向其中加入VEC并混合VC于其中(混合量示于表4中)而制备的非水电解质,然后电池在45℃下进行充电/放电循环。表4中显示结果。
比较例6的电池的循环特性也示于表4中。表4表明具有含VEC的电解质或具有含VEC和VC的电解质的本发明电池具有优良的高温循环特性。也表明使用VEC和VC的组合可提供特别优良的高温循环特性。
工业应用性
本发明的非水电解质电池在高温环境下具有优良的循环特性。此非水电解质二次电池可用作各种电子装置、包括蜂窝式电话的驱动电源。

Claims (4)

1、一种非水电解质二次电池,其包括:能够吸收和解吸锂的正极;能够吸收和解吸锂的负极;置于所述正极和所述负极之间的隔离膜;以及非水电解质,
其中,所述正极包括由式(1):LiNixM1-x-yLyO2表示的复合氧化物作为活性材料,并且所述式(1)满足0.3≤x≤0.9和0≤y≤0.1,元素M是选自Co和Mn中的至少一种,并且元素L是选自以下组中的至少一种:Mg、Al、Ti、Sr、Zn、B、Ca、Cr、Si、Ga、Sn、P、V、Sb、Nb、Ta、Mo、W、Zr、Y和Fe,并且
所述非水电解质包括主溶剂、溶质和碳酸乙烯基亚乙酯。
2、权利要求1的非水电解质二次电池,其中在所述式(1)中,所述元素L是选自以下组中的至少一种:Mg、Al、Ti和Sr。
3、权利要求1的非水电解质二次电池,其中所述非水电解质每100重量份所述主溶剂含有0.5-10重量份所述碳酸乙烯基亚乙酯。
4、权利要求1的非水电解质二次电池,其中所述非水电解质还含有碳酸亚乙烯酯。
CNB2005800005038A 2004-04-07 2005-03-16 非水电解质二次电池 Active CN100433445C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP113208/2004 2004-04-07
JP2004113208 2004-04-07

Publications (2)

Publication Number Publication Date
CN1806362A true CN1806362A (zh) 2006-07-19
CN100433445C CN100433445C (zh) 2008-11-12

Family

ID=35125395

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800005038A Active CN100433445C (zh) 2004-04-07 2005-03-16 非水电解质二次电池

Country Status (6)

Country Link
US (1) US8470475B2 (zh)
EP (1) EP1734607A4 (zh)
JP (1) JP5160088B2 (zh)
KR (1) KR100716880B1 (zh)
CN (1) CN100433445C (zh)
WO (1) WO2005099022A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707251B (zh) * 2008-11-28 2012-10-24 松下电器产业株式会社 含锂复合氧化物的制造方法及非水系二次电池
CN102947983A (zh) * 2010-06-22 2013-02-27 日亚化学工业株式会社 非水电解液二次电池用正极组合物、以及使用该正极组合物制造正极浆料的方法
CN114008822A (zh) * 2019-06-27 2022-02-01 松下电器产业株式会社 非水电解质二次电池用正极活性物质及非水电解质二次电池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527605B2 (ja) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 リチウムイオン二次電池用電解液及びこれを含むリチウムイオン二次電池
KR101122339B1 (ko) * 2006-05-19 2012-03-23 파나소닉 주식회사 비수 전해질 이차전지
KR20080080163A (ko) * 2006-05-19 2008-09-02 마쯔시다덴기산교 가부시키가이샤 비수전해질 이차전지
WO2008123311A1 (ja) 2007-03-27 2008-10-16 Tokyo Institute Of Technology 二次電池用正極材料の製造方法
EP2162935A1 (en) 2007-06-22 2010-03-17 Boston-Power, Inc. Cid retention device for li-ion cell
WO2010056020A2 (ko) * 2008-11-11 2010-05-20 주식회사 엘지화학 비수 전해액 리튬 이차전지
US20120183855A1 (en) * 2009-09-30 2012-07-19 Solvay Sa Positive active electrode material for lithium secondary battery, process for preparing the same and lithium secondary battery
JP2013048053A (ja) * 2011-08-29 2013-03-07 Sony Corp 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102179968B1 (ko) * 2017-10-20 2020-11-17 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849343A1 (de) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Lithiumcompositoxid, dessen Herstellung und sekundäre Lithiumionzelle mit Lithiumcompositoxid als aktives Material der positiven Elektrode
US20020102456A1 (en) * 1999-09-20 2002-08-01 Mitsubishi Denki Kabushiki Kaisha Battery
JP4187965B2 (ja) * 2001-12-06 2008-11-26 三菱化学株式会社 非水系電解液及びそれを用いたリチウム二次電池
WO2002056408A1 (fr) * 2001-01-04 2002-07-18 Mitsubishi Chemical Corporation Liquides electrolytiques non aqueux et pile au lithium secondaire faisant intervenir ces liquides
KR100444410B1 (ko) * 2001-01-29 2004-08-16 마쯔시다덴기산교 가부시키가이샤 비수전해액이차전지
JP4153700B2 (ja) * 2001-01-29 2008-09-24 松下電器産業株式会社 非水電解液二次電池
JP4151060B2 (ja) * 2001-11-14 2008-09-17 株式会社ジーエス・ユアサコーポレーション 非水系二次電池
CN1282272C (zh) * 2001-07-12 2006-10-25 株式会社杰士汤浅 非水系二次电池
JP2003031259A (ja) 2001-07-12 2003-01-31 Japan Storage Battery Co Ltd 非水電解質二次電池
CN1314159C (zh) * 2001-08-24 2007-05-02 索尼株式会社 电池
JP2003151621A (ja) 2001-11-09 2003-05-23 Yuasa Corp 非水電解質電池
JP2003234127A (ja) * 2001-12-06 2003-08-22 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP4366901B2 (ja) * 2002-06-12 2009-11-18 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
JP4492040B2 (ja) * 2002-12-17 2010-06-30 株式会社ジーエス・ユアサコーポレーション 非水電解質電池
JP2004214139A (ja) * 2003-01-08 2004-07-29 Sony Corp 電解液およびそれを用いた電池
US20070072086A1 (en) * 2003-05-15 2007-03-29 Yuasa Corporation Nonaqueous electrolyte cell
WO2004107480A2 (en) * 2003-05-28 2004-12-09 National Research Council Of Canada Lithium metal oxide electrodes for lithium cells and batteries
JP4781262B2 (ja) * 2004-04-07 2011-09-28 パナソニック株式会社 非水電解質二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707251B (zh) * 2008-11-28 2012-10-24 松下电器产业株式会社 含锂复合氧化物的制造方法及非水系二次电池
CN102947983A (zh) * 2010-06-22 2013-02-27 日亚化学工业株式会社 非水电解液二次电池用正极组合物、以及使用该正极组合物制造正极浆料的方法
CN114008822A (zh) * 2019-06-27 2022-02-01 松下电器产业株式会社 非水电解质二次电池用正极活性物质及非水电解质二次电池

Also Published As

Publication number Publication date
KR20060030905A (ko) 2006-04-11
JP5160088B2 (ja) 2013-03-13
US20060083988A1 (en) 2006-04-20
EP1734607A1 (en) 2006-12-20
JPWO2005099022A1 (ja) 2008-03-06
CN100433445C (zh) 2008-11-12
WO2005099022A1 (ja) 2005-10-20
KR100716880B1 (ko) 2007-05-09
EP1734607A4 (en) 2008-09-03
US8470475B2 (en) 2013-06-25

Similar Documents

Publication Publication Date Title
CN100433445C (zh) 非水电解质二次电池
JP5063948B2 (ja) 非水電解質二次電池及びその製造方法
CN1271742C (zh) 非水电解质蓄电池
CN1226802C (zh) 锂聚合物二次电池
CN1398013A (zh) 非水系二次电池
CN1943072A (zh) 非水电解质二次电池
CN1325147A (zh) 固体或凝胶电解质和使用该电解质的电池
CN1306313A (zh) 无水二次电池的正极活性材料及其无水二次电池
KR20080031151A (ko) 비수전해질 2차 전지 및 그의 제조방법
CN108878769A (zh) 二次电池
CN111640985A (zh) 一种非水电解液及含有该非水电解液的高电压锂离子电池
CN1300873C (zh) 非水二次电池用负极及其制造方法、非水二次电池和使用其的电子设备
JP2007273445A (ja) ポリマーゲル電解質およびそれを用いたポリマー二次電池
CN1801521A (zh) 非水电解质二次电池
JP6011607B2 (ja) 非水系電解質二次電池
CN1783571A (zh) 电池
JPH08236155A (ja) リチウム二次電池
CN102315481A (zh) 高比能富锂多元系锂离子蓄电池及其制造方法
KR20050031436A (ko) 비수 전해질 전지
JP2012243461A (ja) 二次電池
CN1790799A (zh) 高功率锂离子电池及制备无定形碳包覆正极材料的方法
JP2013131486A (ja) リチウムイオン二次電池
JP2004319133A (ja) 非水電解質二次電池
JP2012185911A (ja) リチウムイオン二次電池用複合正極活物質及びこれを用いたリチウムイオン二次電池
CN111052486B (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant