CN1747729A - Janus酪氨酸激酶3(JAK3)的选择性抑制方法 - Google Patents

Janus酪氨酸激酶3(JAK3)的选择性抑制方法 Download PDF

Info

Publication number
CN1747729A
CN1747729A CNA2003801054687A CN200380105468A CN1747729A CN 1747729 A CN1747729 A CN 1747729A CN A2003801054687 A CNA2003801054687 A CN A2003801054687A CN 200380105468 A CN200380105468 A CN 200380105468A CN 1747729 A CN1747729 A CN 1747729A
Authority
CN
China
Prior art keywords
cell
jak3
chemical compound
inhibition
suppress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2003801054687A
Other languages
English (en)
Inventor
罗伯特·A·柯肯
巴里·D·卡汉
斯坦尼斯瓦夫·M·斯特普科夫斯基
沃尔德马·普里贝
伊莎贝拉·福克特
希蒙·科辛斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Texas System filed Critical University of Texas System
Publication of CN1747729A publication Critical patent/CN1747729A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/04Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated
    • C07C225/08Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and containing rings
    • C07C225/12Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and containing rings with doubly-bound oxygen atoms bound to carbon atoms being part of rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/9121Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
    • G01N2333/91215Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases with a definite EC number (2.7.1.-)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Transplantation (AREA)
  • Pulmonology (AREA)
  • Surgery (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开的方法用于抑制或破坏淋巴或骨髓源细胞中Janus酪氨酸激酶3(Jak3)依赖性功能,尤其用于阻断淋巴细胞(如T细胞,B细胞)的增殖和功能。采用能选择性抑制Jak3而对其他蛋白质酪氨酸激酶活性作用程度较小或者根本不起作用的Mannich碱化合物或衍生物或改性化合物,从而得到有益效果,例如减轻移植排斥,缓和变应性应答,且其副作用比常规免疫抑制剂更小。

Description

Janus酪氨酸激酶3(JAK3)的选择性抑制方法
发明背景
发明领域
总的来说,本发明涉及含有Janus酪氨酸激酶3(Jak3)的淋巴细胞和其他淋巴源细胞的增殖和功能的抑制。更特别地,本发明涉及采用阻断淋巴细胞功能的化学试剂的治疗和测试方法,特别是免疫活性的调节。更特别地,本发明涉及选择性破坏Janus酪氨酸激酶3(Jak3)介导的细胞活性和细胞增殖。
相关技术描述
现今用于对抗器官异体移植排斥的治疗策略的效力由于依赖于产生强副作用的免疫抑制药物,因而具有严重的局限性。当前的临床免疫抑制疗法主要为丝氨酸-苏氨酸磷酸酶钙调磷酸酶(Calcineurin)(CaN)抑制剂环孢菌素A(CsA)和他克莫司(tacrolimus)(FK506)1,它们通过从细胞循环的早期G1阶段阻断T细胞进程从而起到T细胞修饰剂的作用1,2。与这些药物相关的不期望副作用包括肾毒性、神经毒性、糖尿病、高血脂、高血压、多毛症和牙龈增生3。新近的药物雷帕霉素(rapamycin)(RAPA),其靶向为RAPA的哺乳动物靶标(mTOR)丝氨酸-苏氨酸激酶,使用该药物同样出现粘膜溃疡、淋巴增殖紊乱、血钾过低,以及低密度脂蛋白、胆固醇和甘油三酯增加4。这些临床批准药物的严重缺点是其不能得到异体移植的永久接受性,因而需对患者持续输药。
近来对抗器官异体移植排斥的治疗策略集中于T细胞信号传导通道和包含所述通道的分子。Kirken和Stepkowski描述了T细胞信号传导级联及其在免疫抑制中的潜在作用,以及对移植耐受的潜在诱导5。T细胞的完全活化需要三个受阈值限制的顺序信号6
由结合特异性T细胞受体(TCR)的抗原传递的信号1后接的是由B7/CD28相互作用所传递的信号2。结合TCR之后数秒至数分钟之内,CD3ζ链即在Zap70,Lck,和Fyn蛋白酪氨酸激酶的自活化过程中发生酪氨酸(Tyr)磷酸化7-9。伴随发生的是,钙(Ca2+)移动触发了CaN磷酸酶的催化活化,以使活化T细胞的核因子(NFAT)去磷酸化,这是使NFAT易位至胞核并结合白介素(IL)-2基因启动子内的不连续DNA结合元件的必要步骤10。信号1和2对于IL-2的合成和分泌是关键性的,IL-2和诸如IL-4,-7,-9,-13,-15和-21的其他T细胞生长因子(TCGFs)一道通过细胞因子受体传递信号3,这是驱动T细胞克隆扩增的必要步骤11。这些细胞因子受体具有共同的γ链(γc),γ链与每一细胞因子的独特α链结合时即经由Janus酪氨酸(Tyr),Jak1和Jak3传递胞内信号,并且活化信号转导子及转录激活子(Stat)1,Stat3,Stat5a/b和Stat611-18
CaN酶(参与T细胞内的信号1通道)和mTOR酶(参与T细胞内的信号3通道)在整个身体的各种组织中普遍有表达。这极大限制了其抑制性药物如特异性靶向T细胞的CsA,FK506和RAPA的效力。RAPA是迄今唯一被临床批准有效的信号3抑制剂24。与作为治疗干预的侯选靶标的其他信号传导通道分子不同,Jak3表达显示了组织表达的有限模式,并且划分为T细胞,B细胞,自然杀伤(NK)细胞和单核细胞,或通常称为免疫源细胞。
由于Jak3主要局限于淋巴型细胞,因而其有望作为消除大量免疫源疾病的唯一分子和治疗靶标19-21。该酶几乎排他性地经由γc结合及活化,因而Jak3或γc的遗传性破坏被证明是严重的结合性免疫缺陷疾病22。这种完全的免疫抑制是由于Jak3在T细胞发育以及如上所述被TCGFs家族募集中的关键性作用。由于Jak3与接近的受体组分和膜相联结,因而所有源自这些受体的下游信号,包括Stat和促细胞分裂原活化的蛋白激酶(Mapk)级联信号均可被活化。因而Jak3的破坏随即阻断了这些细胞内受TCGF介导的所有信号,这些信号调节基因转录的能力因此也被阻断。然而,如果能对该唯一且冗长的信号通道的抑制进行控制,则可获得有利的免疫活性调节,如在这些基因有缺陷的患者和小鼠中所观察到。此外,理论上靶向该通道还可抑制引起排斥对CsA无应答的激活和增殖T细胞群体。
抑制Jak3的几种报道药物还会抑制其他酪氨酸激酶的过多,所述其他酪氨酸激酶的过多对于许多机体组织中的日常细胞功能是必需的,鉴于这一事实,识别在淋巴细胞内特异性靶向Jak3的抑制剂的努力受到阻碍。实际上在淋巴细胞之外的其他细胞类型中,这些蛋白酪氨酸激酶对于将胞外信号从细胞表面受体转导至胞核,随后调节生长、分化和功能是十分重要的。
美国专利申请公布号2002/0042513(Uckun等)描述了采用基于对胰岛素受体酪氨酸激酶结构同源性的Jak3同源模型,在评测的对接(docking)亲和性基础上选择的某些喹唑啉化合物。评价了一些喹唑啉化合物治疗或预防移植并发症、自身免疫诱导的糖尿病或延长异体移植存活率的能力。
美国专利公布号2002/0032204(Moon等)描述了某些3-(吡咯-2-基亚甲基)-2-吲哚酮衍生物的Mannich碱前药,所述前药可调节受体酪氨酸激酶(RTKs)、非受体蛋白酪氨酸激酶(CTKs)和丝氨酸/苏氨酸蛋白激酶(STKs)的催化活性。据称这些前药可用于治疗由蛋白激酶活性异常介导的许多疾病。据称所公开的化合物可以调节RTK、CTK和/或STK介导的信号转导通道作为治疗方法,从而治疗许多类型的实体肿瘤。其他的Mannich碱化合物也有描述,并评价了其细胞毒性和抗癌特性34,35。美国专利号6,017,933主题是具有抗真菌和抗肿瘤特性的某些共轭二苯乙烯酮的Mannich碱。
最近识别出对Jak3具有选择性的两种试剂21,24,25。表示为AG-490的一种试剂是酪氨酸激酶抑制剂(tyrphostin)家族成员并且是苯亚甲基丙二腈的衍生物,其具有如下通式:
Figure A20038010546800131
另一种试剂是PNU156804,其是毒性母化合物十一烷基灵杆菌素的同族体,具有如下通式:
Figure A20038010546800132
AG-490和PNU156804均竞争性抑制由TCGFs和Jak3自激酶活性介导的T细胞增殖,然而其对未能表达Jak3的未活化T细胞则效果有限。已发现这两种试剂均不能影响包括p56Lck或Zap70酪氨酸激酶的T细胞受体活化级联中间体23,25
在一份研究中,AG-490治疗减少了单核细胞的移植渗入(GICs)以及离体IL-2刺激的TICs的Stat5a/b DNA结合,但不能影响通过RNA酶保护分析判断的IL2R□表达。因而可以断定Jak3的抑制延长了异体移植的存活率并且加强了CsA的免疫抑制效果,但不加强RAPA的效果。研究还发现AG-490不能抑制其他的酪氨酸激酶家族成员Lck,Lyn,Btk,Syk,Src,Jak1或Tyk2激酶,但对其最紧密相关的家族成员Jak2却可施以类似效应24。AG-490的不利副作用阻止了其作为免疫抑制治疗的日常临床应用。
另一方面,与采用Jak2的其他生长因子(催乳素)相比,PNU156804通过IL-2抑制Jak3介导的T细胞生长从而显示出更高的特异性。激酶分析显示,与Jak2相比,PNU156804优先抑制Jak3的自磷酸化,并且共用诸如Stat5通道的中间体效应分子25。该研究显示PNU156804延长了异体移植存活率并且与CsA协同作用但与RAPA加成作用。研究还确立PNU156804优先使Jak3破坏(与Jak2自激酶活性相比),从而选择性抑制γc驱动的T细胞克隆扩增。当前的模型认为Jak3是mTOR的上游激活子。由于Jak3表达于免疫细胞内,因而Jak3的抑制将阻断mTOR的激活,而不存在当前与RAPA关联的不利作用。此外,CsA(阻断G0-G1过渡期)和PNU156804(阻断G1-S进程)之间的协同通过阻断顺序活化信号提供了免疫抑制的新颖策略,从而维持有益治疗效果的同时每种药所需剂量更低25。然而PNU156804随即被证明对人体治疗应用毒性过高。
尽管现有的一些可用药物均显示有阻断急性排斥的希望,然而如果没有持续性免疫抑制,则慢性移植破坏和永久性异体移植接受性(如移植耐受性)的问题仍未减弱。因而仍需要充分解决上述问题的治疗方法和避免不利副作用的药物。朝着这些目标,在T细胞信号转导的认识和设计信号传导通路中靶向某些分子的策略上已有极大跨越。对唯一用于TCGFs激活的T和B淋巴细胞信号3通道的分子,对选择性或特异性抑制这些分子的试剂存在迫切需求。此类试剂对于阻断T细胞的克隆扩增而不影响其他细胞具有极大潜力。如上所述,Jak3代表了信号3通道中用于调节不期望的免疫应答的唯一分子靶标,所述不期望的免疫应答例如宿主抗移植物和移植物抗宿主的疾病。
优选实施方案概述
本发明通过提供使表达Janus酪氨酸激酶3(Jak3)的任意细胞类型的功能和/或增殖破坏或抑制的新途径,从而寻求克服现有技术中固有的某些缺点,所述任意细胞类型优选为淋巴或骨髓源细胞(“淋巴或骨髓细胞”),包括T细胞,B细胞,自然杀伤(NK)细胞,单核细胞,巨噬细胞和树突状细胞。相应地,在本发明的某些实施方案中,通过以优选为Mannich碱的某些化合物处理淋巴细胞,以完成淋巴细胞功能和/或增殖的破坏或抑制,从而达到治疗性免疫抑制。在本发明的某些实施方案中,提供了采用某些Mannich碱化合物或其他化合物的体内和体外治疗和测试方法,所述化合物之前未知或未被识别出,作为能起免疫抑制剂作用优先破坏Jak3而其他广泛散布的蛋白酪氨酸激酶基本上则不受影响。进行治疗使用时,这些试剂能够完全或至少某种程度上避免通常与现今使用的常规免疫抑制剂相关的严重副作用。此类方法预期可临床用于减轻器官移植排斥,促进自身免疫疾病、呼吸道过敏(如哮喘)、变态反应的缓解,及抑制Jak-3依赖性的白血病和淋巴瘤的增生,和抑制表达Jak3的淋巴或骨髓源细胞中的其他Jak-3依赖性病症。
相应地,在本发明的一些实施方案中,提供了淋巴或骨髓细胞增殖和/或活性的体外抑制方法,其中淋巴或骨髓细胞如T淋巴细胞、单核细胞或树突细胞含有或表达Jak3。该方法包含在存在能选择性抑制Jak3的化合物情况下培养细胞。在某些实施方案中,采用具有通式(1)的化合物
Figure A20038010546800151
其中R1是H,=CH2,CH2N(CH3)2,CH2SC(O)CH3,CH2SC6H5,CH2SCH2-(4-C6H4OCH3),CH2SC(O)C6H5,或CH2N(CH2CH3)2;R2是O;R3是CH2N(CH3)2,CH2N(CH2CH3)2和CH2-(N-morphyl)。在优选实施方案中,该化合物是具有通式(1)的649641P(NC1153),其中R1和R3各自为CH2N(CH3)2。在另一优选实施方案中,该化合物是表示为WP938的649641P(NC1153)的立体异构形式。
在某些实施方案中,提供了抑制淋巴或骨髓细胞功能和/或增殖的方法,所述方法包含以至少一种通式(II)的化合物或其盐与表达Jak3的淋巴或骨髓细胞接触,所述化合物或其盐的浓度能有效选择性抑制所述Jak3活性:
Figure A20038010546800161
其中n是1,2,3,4或6;R1是H,=CH2,或CH2N(CH3)2;R3是CH2N(CH3)2
在某些实施方案中,提供了抑制淋巴或骨髓细胞功能和/或增殖的方法,所述方法包括以至少一种通式(III)的化合物或其盐与表达Jak3的淋巴或骨髓细胞接触,所述化合物或其盐能有效地选择性抑制所述Jak3活性:
Figure A20038010546800162
其中n是1或2;R1是H或CH2N(CH3)2;R3是CH2N(CH3)2
如上所述,在一些抑制淋巴细胞功能和/或增殖的方法的实施方案中,淋巴细胞是激活的T细胞,所述方法包括干扰信号3通道使得细胞分裂被阻断。在一些实施方案中,以其浓度能有效地选择性抑制Janus酪氨酸激酶3而对其他蛋白酪氨酸激酶的活性抑制基本不起作用的化合物与淋巴细胞接触。在一些实施方案中,在诸如T细胞的淋巴细胞群体中,激酶分析中Jak3活性受到的抑制比Jak2活性多出至少50倍。在一些实施方案中,所述方法包括选择一种或多种浓度足以抑制IL2激活的Jak3和Stat5a/b,但不能抑制催乳素(PRL)活化Jak2和Stat5a/b或抑制能力较弱的化合物。
在本发明其他实施方案中,提供了辅助识别可用作治疗性免疫抑制剂的物质的体外测试方法。所述方法可包含:(a)从细胞培养基中获得Jak3依赖性的静止T淋巴细胞群体;(b)任选地,以细胞因子对静止T淋巴细胞预处理,以刺激淋巴细胞增殖;(c)以如上所述具有通式(I)、(II)或(III)的任一种化合物或其盐对步骤(a)或(b)的静止或受激淋巴细胞进行处理;(d)在促进细胞生长条件下培养步骤(c)的淋巴细胞;(e)评价步骤(d)之后的细胞增殖程度;(f)任选地,评价所述化合物对Jak2依赖性的T淋巴细胞增殖的抑制效果;(g)任选地,评价所述化合物的细胞毒性;(h)从步骤(e),以及从步骤(f)和(g)(如果存在)的评价中确定,Jak3依赖性淋巴细胞或其他表达Jak3的细胞类型的增殖的显著抑制不归因于化合物的细胞毒性,从而暗示该化合物具有作为T细胞介导的免疫抑制剂和/或作为T细胞增殖抑制剂的体内治疗用候选药物的潜力;以及(i)任选地,比较步骤(e)和(f)的评价,如果步骤(f)评价的抑制效果明显低于步骤(e)中评价的抑制效果,则从所述比较中可确定与抑制Jak2或其他激酶活性相比,所述化合物至少某种程度上对抑制Jak3活性具有选择性。
根据本发明的另一实施方案,提供了哺乳动物受试者中含有Jak3的细胞的不期望功能的体内抑制方法。所述方法包括将至少一种如上所述具有通式(I),(II)或(III)的化合物或其代谢物或衍生物,以有效干扰胞内信号3通道的用量与细胞接触,从而抑制细胞功能。所述接触包含将治疗有效量的药物组合物给药至受试者,以抑制Jak3依赖性的细胞功能,所述药物组合物含有可药用载体以及至少一种这样的化合物,或者所述化合物的成熟形式如活性代谢物,或者在受试者体内能转化为所述化合物的所述化合物前体,或者这些物质任一种的可药用盐。在一些实施方案中,含Jak3的细胞是T细胞,药物组合物的施用量可有效阻断T细胞内的细胞分裂。在某些优选实施方案中,所述化合物、代谢物、衍生物或前体的肾毒性低于环孢菌素A的肾毒性。
根据本发明的某些实施方案,提供了对哺乳动物受试者进行治疗以抑制不期望免疫应答的方法,其中的受试者正经受不期望的免疫应答或处于其危险之中。该方法包括实施上述抑制哺乳动物受试者中不期望的淋巴细胞功能的方法,其中治疗有效量的药物组合物缓和或防止了所述不期望的免疫应答。在某些实施方案中,该方法进一步包括对受试者施用治疗有效量的除Jak3抑制剂之外的免疫抑制剂;例如环孢菌素A或FK506。这就通过阻断经由信号1通道的T细胞活化,以及通过干扰信号3通道而阻断激活T细胞的细胞分裂,从而提供了抑制T细胞功能的优势。
根据本发明的某些实施方案,提供了哺乳动物移植接受体内的器官移植排斥的减轻方法,所述方法包含在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制T细胞介导的对移植器官的免疫应答,从而减轻或阻止器官排斥。
根据本发明的某些实施方案,提供了哺乳动物异体移植接受体内的急性异体移植排斥的减轻方法,所述方法包括在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制T细胞介导的抗异体移植免疫应答,从而减轻或防止异体移植的急性排斥。在一些实施方案中,提供了慢性异体移植排斥的预防方法,所述方法包括连续或定期施用Jak3抑制剂组合物。
根据本发明的某些实施方案,提供了哺乳动物移植接受体内移植耐受性的诱导方法。所述方法包括在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制T细胞介导的移植排斥应答。
根据本发明的某些实施方案,提供了在遭受自身免疫疾病的哺乳动物受试者内促进所述疾病缓和的方法。所述方法包含在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制所述受试者内的T细胞介导的自身免疫应答,从而减少或阻止由内源性Jak3依赖性T细胞介导的对受试者天生组织的自身免疫性攻击。
根据本发明的某些实施方案,提供了在遭受呼吸道过敏症的哺乳动物受试者内缓和所述过敏症的方法。所述方法包括在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制受试者内T细胞介导的过敏反应,从而减少或阻止受试者内的呼吸道组织过敏。
本发明的一些实施方案提供了在遭受变态反应的哺乳动物受试者内缓和所述变态反应的方法,所述方法包括在哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法,以有效抑制受试者内T细胞介导的过敏反应,从而减少或阻止受试者内的过敏反应。
本发明的其他实施方案提供了Jak3依赖性的白血病或淋巴瘤增生的抑制方法,所述方法包含在遭受白血病或淋巴瘤的哺乳动物受试者内实施上述抑制不期望的淋巴细胞功能的方法。在优选实施方案中,与其他激酶(如Jak2)的活性抑制相比较,化合物或其代谢物或衍生物能选择性或特异性抑制Jak3活性。药物组合物的用量可有效抑制或阻断白血病或淋巴瘤细胞的增生。
在本发明的其他实施方案中,提供了可用于阐明与T细胞介导的免疫应答相关的生物学过程及用于识别新免疫抑制药物的体外方法。在一些实施方案中,提供了辅助识别新免疫抑制药物的体外方法,所述方法包含(a)通过将含Jak3的T细胞与某一范围浓度的目的化合物接触,并确定所述化合物是否在该范围内的一个或多个浓度处抑制Jak3活性,从而测试目的化合物破坏T细胞功能的活性;(b)将所述目的化合物的Jak3抑制活性与优选为649641P(NC1153)的、已知具有Jak3抑制活性的通式(I)、(II)或(III)的化合物进行比较;以及(c)采用该测试和比较结果以确定目的化合物是否为体内用作治疗性免疫抑制剂的候选药物。在一些实施方案中,所述方法还包括(d)测试所述目的化合物对一种或多种其他激酶(如Jak2)的抑制活性;(e)将所述目的化合物的Jak3抑制活性与其对一种或多种其他激酶的抑制活性(如有的话)进行比较;以及(f)采用该比较结果以鉴别作为选择性Jak3抑制剂的目的化合物。
在本发明的另一实施方案中,提供了采用某些Jak3选择性或特异性抑制剂的体内测试方法。所述方法将用于研究动物模型中T细胞介导的免疫应答,诸如649641P(NC1153),WP938和其他图14B-39B中所鉴别的化合物可用作比较候选Jak3特异性抑制剂的活性的标准。测试候选免疫抑制药物对异体移植存活率的效果的一种此类方法包括:(a)将取自合适供体动物的异体移植物植入合适的受体动物;(b)对动物保持基本的营养和健康促进条件;(c)将候选药物施用至至少一个动物中的每一个,以得到治疗的受体动物或组;(d)将权利要求1中定义的化合物施用至至少一个动物,以作为阳性对照组,所述化合物中R1和R3各自为CN(CH3)2且R2是O;(e)任选地,保留至少一个受体动物不受治疗,以作为未治疗的对照受体动物或组;(f)确定每一异体移植物在每一受体内的异体移植存活时间;(g)在可适用范围内,对每一异体移植物进行组织学检查,并评测与候选药物相关的对每一异体移植物的结构损伤;(h)将每一异体移植物内异体移植物存活时间与候选药物诱导的组织学结构变化进行比较;以及(i)采用(h)的比较结果,与未治疗对照受体的异体移植物或阳性对照受体的异体移植物对比,当确定移植物存活时间增加且对药物处理的异体移植物没有药物诱导的结构损伤时,则表示该候选药物作为免疫抑制剂在体内治疗使用时可能有效。在一些实施方案中,该方法还包括确定候选药物能在体外选择性抑制Jak3依赖性的T细胞增殖。
在某些其他实施方案中,提供了候选药物体内免疫抑制潜力的体内评价方法。候选药物优选的是首先被识别为能在体外选择性抑制Jak3依赖性的T细胞增殖。所述方法包括(a)将取自合适供体动物的异体移植物植入合适的受体动物;(b)对动物保持基本的营养和健康促进条件;(c)将候选药物施用至至少一个动物中的每一个,以得到治疗过的受体或组;(d)将649641P(NC1153)各自施用至至少一个动物,以作为标准受体或组;(e)优选地,保留至少一个受体动物不受治疗,以作为未治疗的对照受体或组;(f)确定每一异体移植物在每一受体内的异体移植存活时间;(g)在可适用范围内,对每一异体移植物进行组织学检查,并评测与药物相关的对每一异体移植物的结构损伤;以及(h)将每一异体移植物内异体移植物存活时间与候选药物诱导的组织学结构变化进行比较;以及(i)采用(h)的比较结果,与未治疗对照受体的异体移植物或阳性对照受体的异体移植物对比,当确定移植物存活时间增加且对药物处理的异体移植物没有药物诱导的结构损伤时,则表示该候选药物作为免疫抑制剂在体内治疗使用时可能有效。参考如下说明和附图可清楚了解本发明的这些和其他实施方案、特征及优点。
附图简述
图1A所示为649641P(NC1153)对γc/Jak3依赖且PHA激活的、在不存在或存在1nM人IL-2(■),IL-4(●)或IL-7(▲)情况下培养的人T细胞增殖的剂量依赖型作用,归一化至未处理对照。
图1B所示为649641P(NC1153)对Jak2与Jak3依赖型、在Jak2活化子(PRL[○])或Jak3活化子(IL-2[■])存在下培养的大鼠T细胞增殖的抑制作用。
图2A-2C的蛋白质印迹显示649641P(NC1153)对磷酸化的抑制或无抑制作用。图2A所示为人YT细胞中IL-2激活的Jak3酪氨酸磷酸化。图2B所示为649641P(NC1153)对人YT细胞中IL-2激活的Stat5a酪氨酸磷酸化的作用。图2C所示为649641P(NC1153)对YT细胞中IL-2激活的Stat5b酪氨酸磷酸化的作用。
图3的蛋白质印迹显示649641P(NC1153)对PHA激活的T细胞中IL-2激活的p44/42ERK1/2磷酸化作用。
图4的蛋白质印迹表示649641P(NC1153)对YT细胞中激活的Fyn和Lck无作用。
图5所示为一系列CsA与649641P(NC1153)之比对Lewis至ACI受体大鼠心脏异体移植存活的组合指数。
图6A-E的显微照片(放大200倍)表示649641P(NC1153),RAPA和CsA对大鼠肾结构影响。图6A为649641P(NC1153)。图6B为RAPA。图6C为CsA。图6D所示为CsA与RAPA(西罗莫司sirolimus或SRL)的组合影响。图6E所示为CsA与649641P(NC1153)的组合影响。
图7A-D显示649641P(NC1153)特异性抑制含Jak3的T细胞生长。图7A是以IL-2刺激后,PHA激活的人T细胞增殖被所示NCI试剂阻断的柱形图。图7B是未处理(黑线)或以50μM NC1153(浅色线)过夜处理并对IL2R-α,-β,和-γ链染色的PHA激活T母细胞的FACS分析。图7C是未表达Jak3的Jurkat细胞(黑菱形)和含Jak3的PHA激活T细胞(空心框)在NC1153浓度范围内的细胞生长抑制图。图7D是在以利用Jak3和共同γ链的细胞因子刺激的T细胞中,NC1153浓度对细胞生长抑制图。
图8是基于体外分析、Jak3自激酶活性直接被649641P(NC1153)阻断的柱形图。以免疫纯化的Jak3分析Jak3自激酶活性,在存在或不存在100□M ATP和/或药物情况下通过磷酸酪氨酸蛋白质印迹进行测试并与对照比较。649641P(NC1153)显示IC50为约2.5□M,这与图1A和B中的增殖数据相当。
图9A-C验证了649641P(NC1153)的选择性。图9A是以剂量依赖方式,在用浓度增加的649641P(NC1153)处理过的PHA激活T细胞中,649641P(NC1153)对Jak3驱使的转录因子-Stat5a/b抑制作用的电泳迁移率变动分析(EMSA)的放射自显影(上图)。在相同的处理组中,非Jak3介导的TNF-□活化Nf□B则不受影响(下图)。图9B的蛋白质印迹放射自显影证明649641P(NC1153)不能抑制密切相关的Jak2/Stat5a信号传导通道。催乳素[PRL](+)或(-)指代是否以具有Jak2活化作用的催乳素刺激细胞。磷酸酪氨酸蛋白质印迹检测出Jak2-Stat5a的活化,但未检出649641P(NC1153)的抑制作用。图9C的柱形图证明649641P(NC1153)对Jak3之外的多种激酶活性无影响。测试649641P(NC1153)在10μM(空心柱)或50μM(实心柱)处对底物的生长因子酪氨酸激酶(FGFR3和PDGFR□)、Src家族酪氨酸激酶(Src,Fyn,Lck,Yes,Zap70)或丝氨酸苏氨酸激酶(PKC和PKA)磷酸化的阻断。对照的活性图示为虚线。
图10A-D例述了NC1153对异体移植存活的体内作用。图10A所示为对Lewis(LEW)肾异体移植的ACI大鼠受体以649641P(NC1153)治疗7天的移植存活率,所述药物通过每天静脉内(i.v.)注射(左图)或口服管饲(右图)而给药。图10B所示为以649641P(NC1153)治疗14天的类似受体的移植存活率,所述药物通过每天口服管饲而给药。图10C所示为以160mg/kg NC1153治疗7天而后以3次/星期治疗高达90天的类似受体的移植存活率,所述药物通过每天口服管饲而给药。图10D证明了通过每日口服管饲给药的NC1153与CsA在LEW肾异体移植的、已治疗7天的ACI大鼠受体内的协同作用。649641P(NC1153)单独给药(深柱)。CsA单独给药(空心柱)。649641P(NC1153)与CsA一道给药(浅柱)。
图11A-F是证明649641P(NC1153)无肾毒性且不影响脂代谢的分析结果图,所述分析结果通过血清肌酐水平(图11A),血清肌酐清除率(图11B),血清胆固醇(图11C),甘油三酯(图11D),低密度脂蛋白(LDL)-胆固醇(图11E)以及高密度脂蛋白(HDL)-胆固醇(图11F)来评测。结果以mg/dL表示。组织学外观如图6A-E中所示。
图12A-B与图10A-D类似,不同之处在于其所示为测试649641P(NC1153)的内消旋立体异构体WP938(图18B中所示)对LEW肾异体移植的ACI受体的异体移植存活率的结果。图12A所示为未治疗、CsA单独治疗及WP938单独治疗大鼠的平均存活率。图12B所示为一剂量的单独CsA,一剂量的单独WP938与相同剂量的CsA/WP938组合的比较;CI值0.44证明了协同性相互作用。
图13A-F所示为WP938单独或与CsA组合的毒性分析结果。图13A指代血清肌酸水平。图13B指代肌酐清除率。图13C指代胆固醇水平。图13D指代甘油三酯水平。图13E指代高密度脂蛋白水平。图13F指代低密度脂蛋白水平。
图14A,B-39A,B所示为诸多化合物的化学结构式及在体外分析中所述化合物抑制Jak3依赖或Jak3不依赖的T细胞增殖的活性。(A)IL-2刺激(浅圈);PRL刺激(深圈)。(B)对应的每一化合物的化学结构式(所示为盐形式)。
优选实施方案详述
在此处描述的研究中,已证实生物化学中间体—Janus酪氨酸激酶(Jak3)—对于成熟T细胞的活化、功能和异体移植排斥至关重要。此处鉴别出的选择性抑制Jak3的某些化合物,特别是归类为Mannich碱的化合物,可提供优于常规免疫抑制药物如CsA,FK506和RAPA的治疗效果。如上面发明背景部分所述,RAPA抑制mTOR,而CsA和FK506则阻断CaN,这两种靶分子均显示出遍在的表达图谱,从而引起强毒性副作用。相反,Jak3表达则排他性地限定于淋巴区域内,包括T和B淋巴细胞。
首先为了识别Jak3的拮抗剂并对其表征进行一系列测试,从而所述拮抗剂抑制整个TCGF家族依赖性的通道。在一系列浓度下,对一组Mannich碱和其他化合物筛选其选择性的Jak3抑制活性。与催乳素(PRL)刺激(即Jak2依赖性)的T细胞增殖相比,证明对IL-2刺激(即Jak3依赖性)的T细胞增殖具有一定程度的选择性抑制、且具有一定结构类似性的化合物的结构式如图14B-39B中所示。每一化合物的对应抑制活性如图14A-39A中所示。图22A示出了与图21A类似的分析结果,其化合物与图21B相同但制备纯度略微不同。除Mannich碱外,所测试化合物还包括其结构类似物(图25B和26B)。采用了如下的材料和通用方法,除非实施例中另有陈述。对证明在体外具有相同的Jak3选择性抑制的代表性化合物649641P和如图18B中所示的内消旋立体异构体(表示为WP938),进一步测试了其单独或与CsA组合延长异体移植存活率的能力及药物诱导的毒性,所述化合物649641P此处也根据其NCI药物数据库访问号称为NC1153。
通用方法和材料
细胞培养和处理 将最初由Peter Gout博士(Vancouver,加拿大)开发的大鼠T细胞系Nb2-11c在37℃/5%CO2下,生长于带有10%胎牛血清(Intergen,目录号1020-90),2mM L-谷氨酰胺,pH7.3的5mMHEPES以及青霉素-链霉素(各自为50IU/ml和50μg/ml)的RPMI-1640中。将通过isocentrifugation(Ficoll;EM Science,Gibbstown,NJ)纯化的新鲜移植的正常人T淋巴细胞进行72小时的如前面所述23的植物凝集素(PHA)-活化。在与细胞因子接触之前,通过洗涤并在含有1%胎牛血清的RPMI-1640培养基中孵育24小时从而使T淋巴细胞处于静止期。然后,按如下附图描述中所述以不同浓度的649641P(NC1153)处理细胞。Mannich碱649641P(NC1153)由College ofPharmacy,University of Saskatchewan,Saskatoon,Saskatchewan,Canada的Jonathan Dimmock博士馈赠。然后在37℃下,以1nM的重组人IL-2(Hoffman-LaRoche,Basel,Switzerland),IL4或IL7(PeproTech)或者National Hormone and Pituitary Program,National Institute of Diabetes,Digestive,and Kidney Disease(Bethesda,MD)提供的羊催乳素(PRL)刺激所有细胞。细胞沉淀冷冻于-70℃下。
增殖分析。将静止的人原代T细胞、YT或大鼠Nb2-11c T细胞(5.0×104/孔)铺板于平底96孔微滴定板中,每孔带有200μl静止培养基,所述培养基存在有或不存在1nM的IL-2,-4,-7(PeproTech,Rock Hill,NJ)或PRL。然后,以Mannich碱药物对细胞处理16小时,然后以[3H]-胸腺嘧啶核苷(0.5μCi/200μl)脉冲4小时,并收获至玻璃纤维过滤器上。如前所述23,通过液体闪烁计数或者本领域众所已知的标准技术分析[3H]-胸腺嘧啶核苷的掺入。
膜蛋白溶解、免疫沉淀和蛋白质印迹分析
如前所述16,使冷冻的细胞沉淀于冰上融化并溶解于1%TX-100裂解缓冲液(108细胞/ml)中,并通过离心澄清。对于人T细胞,以任一种5μl/ml多克隆兔抗血清与上清液在4℃下首尾叠式(end over end)旋转孵育2小时,所述抗血清抗衍生自Jak3唯一COOH末端(氨基酸[a.a.]1101-1124)、人Stat5a羧基末端(a.a.775-794)或Stat5b羧基末端(a.a.777-787)的肽26。通过以Protein A-Sepharose珠(Pharmacia,Piscataway,NJ)孵育30分钟,使抗体和免疫沉淀蛋白被俘获,沉降纯化,并通过在2×SDS样品缓冲液(20%甘油,10%2-巯基乙醇,4.6%SDS,0.004%溴酚兰的0.125M Tris缓冲液,pH 6.8)中煮沸4分钟而洗脱。对于phosphoMapk分析,在SDS样品缓冲液中解离出约25μg总细胞裂解物,并于还原条件下在10%(所有其他均在7.5%)SDS-PAGE上进行分离。如前所述27,将蛋白质转至聚双氟乙烯(ImmobilonTM;目录号1PVH 00010,Millipore,Bedford,MA)。以多克隆抗体,鼠抗磷酸酪氨酸单克隆抗体(单克隆抗体;UBI;4G10;目录号05-321,UpstateBiotechnology,Inc.,Lake Placid,NY)或phospho p44/42 Mapk(NewEngland Biolabs,Beverly,Massachusetts,分类号9101)进行蛋白质印迹分析。如前所述27或采用本领域众所已知的标准技术,将以上述抗体、兔抗磷酸-Erk1/2和单克隆pan-Erk(Pharmingen,San Diego,CA,分类号E17120)进行的蛋白印迹以1∶1000稀释于封闭缓冲液中并使用。如前所述27,将以兔抗磷酸-酪氨酸(□PY)和单克隆小鼠抗-Fyn或抗-Lck抗体(BD Biosciences,San Diego,CA,分类号610163[Fyn]和610097[Lck])进行的蛋白印迹以1∶1000稀释于封闭缓冲液中。
大鼠肾移植 根据动物福利委员会(Animal Welfare Committee)的指南对获自Harlan Sprague-Dawley(Indianapolis,IN)的成年雄性ACI(RT1a)和Lewis(LEW;RT11)大鼠(160-200g)进行照料。将大鼠安置于对光照和温度进行控制的住处,并随意给予食物和水。采用Ono和Lindsey标准显微手术28将肾从LEW供体异位移植至ACI受体。单独以Mannich碱化合物通过每日静脉内(i.v.)注射或口服管饲(p.o.),或者与CsA或RAPA每日口服管饲相结合,对移植受体进行治疗用以评价免疫抑制药物。受体对照组仍维持未治疗。一些受体单独以CsA或RAPA进行治疗。移植存活时间定义为能耐受肾移植的动物存活时间。对表示为平均存活时间(MST)±标准偏差(SD)的结果,通过Gehan氏存活测试评估其统计学意义。另外,通过中值效应分析29,30评价Mannich碱与CsA或RAPA之间的相互作用。采用计算机软件计算组合指数(CI)值:CI<1表示协同性相互作用,CI>1表示拮抗性相互作用,或者CI=1表示相加性相互作用30
病理组织学评价。如后面实施例中所述,对LEW(RT11)肾异体移植的ACI(RT1a)受体进行治疗处理。移植后第7天,将肾异体移植物置于Bouin’s Fixative(Poly Scientific R&D Corp.,Bay Shore,NY)中。以相同方式对每一肾进行切片,先进行单次水平切割然后是三次连续的切口以产生出载物片。然后,制作另一切片,接着再进行三次连续切口并产生出载物片。如前所述31,以苏木精-曙红(H&E)或采用本领域已知的标准方法,对每一肾的总共12个载物片进行染色。根据心肺移植学会(Society of Heart and Lung Transplantation)所建标准32对排斥程度进行评级。特别地,将肾固定于缓冲的10%福尔马林内并进行过夜处理;以渐进性的苏木精-曙红(H&E)试剂对3-□组织学切片进行染色。由两个独立病理学家采用光学显微镜标准的半定量尺度来评价多个肾切片中的血管病变、肾小球变化和肾小管-间质损伤的程度。肾小管和肾小球变化分别分级为:0=无变化;1+=<5%;2+=5-25%;3+=26-50%;且4+=>50%有病变。类似的血管尺度包括0=无病变;1+=极小;2+=轻度;3+=中度;而4+=严重。
EMSA 电泳迁移率变动分析(EMSA)。通过离心(20,000×g,1分钟,4℃)使以药物或媒介物对照(DMSO)处理的细胞沉积,随后以5个体积的10mM HEPES,pH 7.9,10mM KCl,1.5mM MgCl2,0.5mM DTT,100mM PMSF,5□g/ml抑肽酶,1□g/ml胃蛋白酶抑制剂A和2μg/ml亮抑酶肽洗涤,离心,然后裂解于补充有1%NP-40的相同缓冲液中并在冰上孵育20分钟。将含有核的细胞沉淀重悬浮于相同体积的低盐缓冲液(10mM HEPES,25%甘油,1.5mM MgCl2,20mM KCl,0.5mM DTT,0.2mM EDTA和蛋白酶抑制剂)和高盐缓冲液(含有800mM KCl的低盐缓冲液)中。然后通过4℃下离心10分钟分离该组分,上清液作为核蛋白提取物贮存于-70℃下。采用对应于□-酪蛋白基因启动子(5’-AGATTTCTAGGAATTCAATCC-3’)或NF-kB结合元件(5’-AGTTGAGGGGACTTTCCAGGC-3’)的Stat5 DNA结合序列,进行凝胶迁移率变动分析以检测Stat5a/b DNA的结合活性。两个探针均以[32P]dATP进行末端标记。然后在4℃下,以5g核提取蛋白的15□1结合混合物(cocktail)(50mM Tris-Cl,pH 7.4,25mM MgCl2,5mM DTT,50%甘油)与标记寡核苷酸孵育2小时。对于超迁移率变动分析,则需在4℃下以1μg正常兔血清或对Stat5a,Stat5b,或p50/p65 NF□B特异性的抗血清(Santa Cruz Biotechnology,Inc.,Santa Cruz,CA;分类号各自为sc-1190X和sc-372X)与核提取物预孵育1小时,如图例中所指代,然后在室温下以[32P]-标记的DNA寡核苷酸孵育15分钟。使DNA-蛋白复合物在含0.25×TBE的5%聚丙烯酰胺凝胶上分离,所述凝胶于100V下在0.25×TBE缓冲液中预运行1小时。载入样品并使凝胶在室温及150V下运行约2小时,然后通过真空下加热进行干燥,并于-70℃曝光于X-射线胶片(X-Omat,Kodak)。
Mannich碱和其他化合物 初始研究中采用的化合物649641P(NC1153)由University of Saskatchewan,Saskatoon,Canada的Jonathan R.Dimmock博士提供。649641P(NC1153)和包括图14B-39B中所识别出的其他化合物,则由M.D.Anderson Cancer Center,University of Texas System,Houston,Texas的Waldemar Priebe博士制备。此处描述的化合物可采用可购自诸如Aldrich Chemical Co.,(Milwaukee,Wis.)和Sigma(St.Louis,Mo.)的市售原料和试剂,通过任意合适方法而制备得到。可采用如参考文献中所述的标准化学合成技术和操作步骤,所述参考文献例如Fieser和Fieser′s REAGENTS FORORGANIC SYNTHESIS,1-17卷(John Wiley and Sons,1991);Rodd′sCHEMISTRY OF CARBON COMPOUNDS,1-5卷及增刊(Elsevier SciencePublishers,1989);ORGANIC REACTIONS,1-40卷(John Wiley and Sons,1991),March′s ADVANCED ORGANIC CHEMISTRY,(John Wiley and Sons,第4版)以及Larock′s COMPREHENSIVE ORGANIC TRANSFORMATIONS(VCH Publishers Inc.,1989)。化合物合成的其他指导可见于期刊文献,例如Dimmock的出版物34,35,以及如后面所述。
如下非限制性实例是代表性的Jak3选择性抑制剂化合物的特性及应用的例述,并无以任何方式限制本发明的意图。
实施例1.Mannich碱649641P(NC1153)的体外作用
如上所述,将表示为649641P(C18H38C12N2O;分子量369.41)(也称为NC1153)并具有如下通式的Mannich碱,
以立体异构体的混合物形式加入至正经受Jak3对Jak2依赖性增殖的T细胞中,以测试其选择性抑制Jak3的能力。图1A所示为649641P(NC1153)对γc/Jak3依赖性PHA激活的人T细胞增殖的效应。在存在或不存在1nM人IL-2(■),IL-4(●)或IL-7(▲)情况下,以浓度增加的649641P(NC1153)(纵坐标)于37℃下对静止期的PHA激活人T细胞(5.0×104细胞/孔)培养16小时。然后以[3H]-胸腺嘧啶核苷(0.5μCi/200μl)对细胞脉冲4小时,绘制于横坐标上的掺入放射标记性探针表示为与DMSO处理样品组(n=6)相比的总每分钟计数的抑制百分比。
图1B所示为在Jak2活化子(催乳素;PRL[○])或Jak3活化子(白介素-2;IL-2[■])存在下,649641P(NC1153)对培养于其中的T细胞增殖的效应。选择大鼠T细胞系(Nb2-11c),因为其对PRL/Jak2或IL-2/Jak3刺激均有应答。在Jak2活化子(1nM的PRL[○])或Jak3活化子(1nM的IL-2[■])存在下,于37℃以浓度增加的649641P(NC1153)(纵坐标;0-100μM)对静止期大鼠T细胞(5.0×104细胞/孔)培养16小时。在分析的最后4小时过程里以[3H]-胸腺嘧啶核苷(0.5μCi/200μl)对细胞进行脉冲,然后将掺入DNA的放射标记性探针绘制于横坐标上,并表示为与DMSO处理样品组(n=4)相比的总每分钟计数的抑制百分比。如图1A-B中所示,649641P(NC1153)选择性地抑制了γc/Jak3依赖性的细胞增殖但对PRL/Jak2依赖性的细胞增殖则无抑制。特别地,在IL-2,IL-4和IL-7的反应中,尽管649641P(NC1153)已证明对Nb2-11c细胞增殖具有相同的抑制效应,但该化合物对抑制Jak3依赖性的增殖比抑制Jak2依赖性的增殖效力要高出3倍。
图2A-C中示出了649641P(NC1153)对Jak3/Stat5信号通道的作用。在不存在(a-b)或存在(c-i)浓度递增(1-100μM)的649641P(NC1153)情况下对人YT细胞培养2小时,并以(+)或不以(-)100nM的IL-2重攻击10分钟。以抗-Jak3多克隆抗体对细胞进行免疫沉淀,并以抗磷酸酪氨酸单克隆抗体进行蛋白质印迹,如图2A上图中所示,然后剥离并以抗-Jak3进行重印迹(图2A下图)。这些蛋白质印迹实验结果与图1A中所示相互关联,其中人YT细胞中Jak3的酪氨酸磷酸化以剂量依赖性方式被649641P(NC1153)抑制(1-100μM)。参照图2B,同样在不存在(a和b)或存在(c至i)浓度递增(1-100μM)的649641P(NC1153)情况下对人YT细胞培养2小时,并以(+)或不以(-)100nM的IL-2重攻击10分钟。以抗-Stat5a多克隆抗体对细胞进行免疫沉淀,并以抗磷酸酪氨酸单克隆抗体进行蛋白质印迹(图2B上图),然后剥离并以Stat5a进行重印迹(图2B下图)。在结果示于图2C的第三个测试中,在不存在(a-b)或存在(c-i)浓度递增(1-100μM)的649641P(NC1153)情况下对人YT细胞培养16小时,并以(+)或不以(-)100nM的IL-2重攻击10分钟。以抗-Stat5b多克隆抗体对细胞进行免疫沉淀,并以抗磷酸酪氨酸单克隆抗体进行蛋白质印迹(图2C上图),然后剥离并以抗-Stat5b进行重印迹(图2C下图)。
IL-2还经由接头蛋白Shc而强烈活化Shc/Ras/Raf/Erk通道,所述Shc结合至IL-2Rβ链的Tyr338从而最终驱动T细胞增殖。图3示出了与上述类似实验的结果,其中研究了浓度递增的649641P(NC1153)对IL-2介导的p44/42 Erk1/2磷酸化的效应。以DMSO(对照;a-b道)或浓度增加(c-i道)的649641P(NC1153)对静止期的PHA活化T细胞处理2小时,然后于37℃及1μg存在下对细胞刺激10分钟。将细胞进行溶胞并将全部溶胞物在10%SDS-PAGE上进行分离,转移至PVDF膜以抗磷酸-p44/42 Erk1/2进行蛋白质印迹(上图),然后剥离并以panErk抗体重新进行探针检测(下图)。箭头表示p44/42 Erk1/2的位置。该结果揭示出649641P(NC1153)阻断了人T细胞中IL-2介导的Erk1/2活化。
YT细胞组成型表达活化的Fyn和Lck激酶,所述激酶可通过测试其酪氨酸磷酸化状态而显示出。以不同浓度的649641P(NC1153)(1-100□M)将YT细胞培养2小时。以抗-Fyn或抗-Lck抗体对细胞提取物进行免疫沉淀,并以抗-磷酸酪氨酸抗体(□PY)进行蛋白质印迹,然后剥离并以抗-Fyn或抗-Lck抗体进行重印迹。图4示出了上述实验的结果。以抗-Fyn对YT细胞提取物进行免疫沉淀并以抗-磷酸酪氨酸抗体(□PY)进行蛋白质印迹(第一排),然后剥离并以抗-Fyn进行重印迹(第二排);以抗-Lck抗体对YT细胞提取物进行免疫沉淀(IP)并以抗-磷酸酪氨酸抗体(□PY)进行蛋白质印迹(第三排),然后剥离并以抗-Lck抗体进行重印迹(第四排)。YT细胞仅以媒介物(a和b道)或以浓度增加(1-100□M)的649641P(NC1153)(c-i道)进行培养。该结果显示649641P(NC1153)没有阻断Fyn或Lck激酶的活性。
前述结果显示出,尽管其他抑制剂可抑制Jak3和Jak2应答的细胞生长(IC50约10-25μM),而649641P(NC1153)则以约2.5μM的IC50通过破坏细胞生长而更有效。此外,649641P(NC1153)在相同浓度处(IC50约2.5□□)有效抑制了IL4或IL7驱使的细胞生长。如磷酸-蛋白质印迹所测,该试剂抑制了Jak3及其底物Stat5a/b,接头蛋白Shc和Erk1/2的酪氨酸磷酸化。较之前述显示IC50约10□□的PNU156804 Jak3抑制剂,649641P(NC1153)更有效。此外,尽管Stat5a/b对寡核苷酸探针的DNA结合受到649641P(NC1153)的极大削弱,但由于对TNF-□诱导的NF-kB的DNA结合无作用,因而该化合物对该转录因子具有特异性。该649641P(NC1153)化合物不抑制未表达Jak3的人Jurkat T细胞的DNA合成,也不抑制TCR信号传导中间体Lck或Fyn酪氨酸激酶的活化。
实施例2.Mannich碱649641P(NC1153)对异体移植物存活率的效应
为测试体内效应,对肾异体移植物受体在移植后立即以649641P(NC1153)治疗7天。单独以2.5,5.0,10.0或20.0mg/kg的649641P(NC1153)每日静脉内注射,或者与2.5,5.0,10.0或20.0mg/kg CsA每日口服管饲相结合,对LEW(RT1l)肾异体移植物的ACI(RT1a)受体治疗7天。如表1中所示,通过静脉内注射或口腔管饲单独施用的649641P(NC1153)以剂量依赖方式延长了大鼠肾异体移植物的存活率。由于80mg/kg 649641P(NC1153)口腔管饲所产生的存活率与10mg/kg 649641P(NC1153)静脉内注射类似,因而估测口服的生物可利用率为约12.5%。对每组的5-6个实验计算平均存活时间(MST)和SD。通过中值效应分析计算组合指数(CI)值(CI<1显示协同性相互作用,CI>1为拮抗性相互作用,而CI=1则为相加性相互作用)29,30
                                   表1
               肾异体移植物存活率(649641P(NC1153)静脉内给药)
  649641P(NC1153)(mg/kg/d)静脉内×7天   CsA(mg/kg/d)口服×3天 649641P∶CsA比例 MST±SD P CI
  -   -   -   8.8±0.5   -   -
  2.5   -   -   9.5±1.5   NS   -
  5.0   -   -   12.2±1.5   0.01   -
  10.0   -   -   18.8±1.1   0.01   -
  20.0   -   -   24.8±4.6   0.01   -
  -   2.5   -   12.6±1.67   0.01   -
  -   5.0   -   17.2±4.21   0.01   -
  -   10.0   -   21.7±5.32   0.01   -
  -   20.0   1∶1   24.5±4.58   0.01   -
  2.5   2.5   -   18.8±4.1   0.01   0.56
  2.5   5.0   1∶2   30.0±8.2   0.01   0.21
  2.5   7.5   1∶3   30.4±11.3   0.01   0.27
  2.5   10.0   1∶4   41.4±9.8   0.01   0.11
  5.0   2.5   2∶1   20.0±2.9   0.01   0.53
  5.0   5.0   1∶1   27.6±5.3   0.01   0.38
  5.0   7.5   1∶1.5   33.2±11.8   0.01   0.26
  10.0   2.5   4∶1   25.4±4.0   0.01   0.60
  10.0   5.0   2∶1   29.8±6.5   0.01   0.46
649641P(NC1153)通过口腔管饲单独给药,或者与CsA相结合对肾异体移植物存活率的效应如表2中所示。单独以40,80或160mg/kg/天的649641P(NC1153)口腔管饲或者与2.5,5.0,10.0或20.0mg/kg/天的CsA口腔管饲相结合,对LEW(RT11)肾异体移植物的ACI(RT1a)受体每天一次治疗7天。对每组的5-6个实验计算MST和SD。计算组合指数(CI)值。
                                     表2
                    肾异体移植物存活率(649641P(NC1153)口腔管饲)
  649641P(NC1153)(mg/kg/天)口腔管饲×7天  CsA(mg/kg/天)口腔管饲×3天 649641P∶CsA比例 MST±SD P CI
  -  -   -   8.8±0.5   -   -
  40.0  -   -   12.3±1.26   0.0006   -
  80.0  -   -   18.6±5.32   0.0015   -
  160.0  -   -   31.0±3.9   0.0001   -
  -  2.5   -   12.6±1.67   0.0008   -
  -  5.0   -   17.2±4.21   0.0009   -
  -  10.0   -   21.2±4.96   0.0001   -
  -  20.0   -   24.5±4.28   0.0001   -
  20.0  10.0   2∶1   33.6±10.04   0.0002   0.30
  40.0  5.0   8∶1   28.8±9.87   0.0006   0.49
  40.0  10.0   4∶1   36.0±10.05   0.0001   0.36
  80.0  5.0   16∶1   36.6±4.72   0.0001   0.51
通过Gehan氏的存活率测试,对表2中所示MST±SD结果评测统计学意义。
对表1中的结果计算组合指数(CI)值对CsA/649641P(NC1153)比例,并作图,如图5中所示。考虑到CsA口服生物可利用率为90%,因而相比较于1∶1,1∶2或1∶4(CI=0.38-0.60)的CsA/649641P(NC1153)比例,CsA/649641P(NC1153)比例为4∶1,3∶1,2∶1和1.5∶1时显示出更好的协同性(CI=0.1-0.27)。采用中值效应分析和组合指数(CI)值来计算649641P(NC1153)和CsA之间相互作用的质量。如CI值所证实(0.6-0.1;图5),649641P(NC1153)和CsA的组合是协同性的;649641P(NC1153)/CsA比例为1∶2至1∶4时最有效(CI=0.1-0.27;表1)。
总结该结果,显示出649641P(NC1153)剂量依赖性地延长了肾异体移植物的存活率:20mg/kg/天649641P(NC1153)、持续7天静脉内给药的剂量所产生的MST为24.8±6.6天(p=0.00003vs.未治疗对照;MST=8.8±0.5天),240mg/kg/天649641P(NC1153)、持续7或14天口服给药的剂量所产生的MST为47.8±19.59或>60天(两种情况下均为p<0.00001)。单独以CsA治疗(2.5,5,10或20mg/kg/天,持续3天)产生出剂量依赖性效应,在最高剂量处获得的MST为24.50±4.58天(p<0.0001)。与各试剂单一治疗相比,结合治疗在移植物存活率中显示出强有力的协同性相互作用。例如,虽然7天单独i.v.施用2.5mg/kg/天649641P(NC1153)产生出的MST为9.5±1.4天,3天单独施用10mg/kg/day CsA产生出的MST为21.2±5.3天,但两种药物的组合可将存活延长至41.4±9.8天(p=0.00002)。在649641P∶CsA剂量比例为4∶1和2∶1处观察到最优结果,所获得的CI值各自为0.11和0.27。由此可以作出结论,已识别出在肾异体移植模型中具有体内免疫抑制作用并且与CsA组合可产生显著协同性效应的新型选择性Jak3抑制剂649641P(NC1153)。
实施例3.649641P(NC1153)的肾毒性评价
从已进行如下处理的LEW(RT11)肾异体移植物的ACI(RT1a)受体获取组织供组织学检查:对低盐进食7天的受体以如下药物治疗14天:10mg/kg 649641P(NC1153)静脉内给药;0.16mg/kg RAPA静脉内给药;10mg/kg CsA口服给药;10mg/kg CsA口服给药与0.16mg/kgRAPA静脉给药相结合;或者10mg/kg CsA口服给药与10mg/kg649641P(NC1153)静脉给药相结合。在第14天杀死大鼠,并根据标准方法采用H&E染色对肾进行组织学检查。图6A-E中的显微照片显示出649641P(NC1153)单独或与CsA相结合对肾结构的作用。所有提供的照片均为放大200倍。在每一组5只大鼠中均观察到类似结果。单独的649641P(NC1153)(图6A)或RAPA(图6B)给药在肾中均未显示出明显变化。相反,单独的CsA(图6C)给药则引起肾小管30%受损,可见为空泡形成和萎缩。CsA/RAPA(SRL)组在90%肾小管中显示有广泛的空泡形成并伴有萎缩和致密核(图6D)。与CsA/RAPA组截然不同,以CsA/649641P(NC1153)组合治疗的大鼠的肾显示出与CsA单独组中所观察到相类似的变化(图6E)。简单的说,649641或RAPA单独均不引起肾毒性。而CsA单独则具有肾毒性,RAPA可增强这种肾毒性作用,而649641P(NC1153)则不能增强。
除上述组织学研究外,还对649641P(NC1153)治疗的动物评价通常与SRL相关联的毒性类型。在该研究中,动物治疗包括649641P(NC1153)单独治疗或与CsA组合治疗。对Wistar-Furth大鼠给予649641P(NC1153)(10mg/kg/天静脉内注射或40/mg/kg/天管饲)或SRL(1.6mg/kg/天管饲)单独治疗或与CsA(10mg/kg/天管饲)相结合。通过少盐(0.05%NaCl)来评测慢性肾毒性或者通过补充脂肪(17.7%甘油三酯,5.02%胆固醇),经7天的进食预调理以之后,对各组大鼠进行7,14或28天的治疗过程(n=6/药物/持续时间)。通过Fishers t检验评测肌酐清除率(CrCL);全、低和高密度(HDL)胆固醇(CHOL)组分;甘油三酯(TG);骨髓细胞构成;外周血液计数(PBC);以及血液化学的差别。
该研究结果显示,649641P(NC1153)引起体重增加(p=0.0002),而没有加强CsA或SRL所产生的体重减少。未治疗的CrCL值(2.00.1mL/min)和649641P(NC1153)单独治疗的CrCL值(1.90.1mL/min)类似,而SRL单独治疗时CrCL值则减少(1.70.1mL/min;p<0.02),CsA单独治疗时也减少(1.3 0.1mL/min;p<0.001)。与CsA单独治疗相比,增加648641P并没有进一步减少CrCL值(1.380.2mL/min;p=0.68);而增加SRL则显著减少了CrCL值(0.90.2mL/min;p=0.03)。与低盐进食的未治疗大鼠相比,649641P(NC1153)减少了血清CHOL(82.0 5.0对65.5 9.4mg/dL;p=0.03)而增加了HDL(p=0.004),TG或LDL水平则无改变。648641P没有增加CsA的高胆固醇血症作用(77.5 7.0单独给药对64.1 12.7mg/dL组合给药),这与SRL+CsA形成对照(107.88.4mg/dL;p=0.0005)。对于高脂肪进食大鼠,SRL对未治疗动物中的CHOL(689.567.4;p=0.00001)和其他脂类组分产生出显著作用;CsA作用略小(545.795.7mg/dL;p=0.0002),而649641P(NC1153)仅产生中度变化(323.851.1mg/dL;p=0.01对237.5 31.4mg/dL)。649641P(NC1153)对HDL,LDL,或TG水平均无影响。与未治疗大鼠相比,648641P和CsA均不减少PBC,这与SRL形成对比(p<0.04)。尽管SRL/CsA宿主显示出低细胞髓(30-40%被脂肪组织所取代),649641P/CsA组合则显示与未治疗大鼠无明显变化。鉴于这些结果,可断定649641P(NC1153)无肾毒性和骨髓毒性作用,对高脂肪攻击则具有中度脂毒性。由于649641P(NC1153)不会以掩盖SRL那样的方式加剧CsA的不利作用,因而其对淋巴成分似乎具有选择性作用。
从前述研究可以下结论认为,649641P(NC1153)阻断了Jak3活性,单独延长了异体移植存活率,并且与CsA协同作用。与Jak2依赖性的T细胞增殖相比,优选化合物649641P(NC1153)对Jak3依赖性的T细胞增殖显示出体外选择性抑制,并且体内延长了器官异体移植物的存活率而未引起任何的肾毒性副作用。较有利的是,649641P(NC1153)与环孢菌素显示出强有力的协同性相互作用,从而延长了器官异体移植物的存活率而不会增加环孢菌素诱导的肾毒性。此外,较之之前所述的化合物AG490和PNU156804,649641P(NC1153)对阻断Jak3介导的细胞活性显示出更强的特异性,而对Jak2介导的细胞活性则无特异性。尽管目前还不清楚与施用649641P(NC1153)相关联的上述理想药理学特性是否完全归因于649641P(NC1153)化合物与Jak3的直接相互作用,或者,例如Jak3的抑制在体内是否被649641P(NC1153)的代谢物或衍生物形式介导至任意程度。在后一情况下,如果有医疗指示的话,设想可以任一这种活性代谢物或衍生物直接给药对649641P(NC1153)进行替代治疗。同样地,如果个体显示出特别需求的话,可将在体内作用产生出此处所述的一种选择性Jak3抑制剂化合物的前体化合物进行治疗性给药。
实施例4.治疗应用
649641P(NC1153)化合物被认为是此处所述用于免疫抑制治疗及治疗含有或表达Jak3的淋巴、骨髓或其他细胞的病理学的化合物组的医学用途的代表。这些化合物被认为对人体中T细胞相关的疾病,以及对兽医实践中的应用,对于理想地需抑制Jak-3依赖性的淋巴或骨髓细胞功能而不影响其他蛋白激酶的活性,或者影响此类激酶至较少或治疗可接受程度的应用特别有用。治疗包括施用有效量的化合物,以干扰淋巴细胞或者淋巴或骨髓源的表达Jak3的其他细胞的信号3通道,从而抑制其功能。例如,阻断细胞分裂。所述施用可采用化合物的酸形式或其可药用的盐,或可以是具生物学活性的化合物代谢物形式。或者,可施用能在受试者体内代谢至化合物的一种或多种活性形式的前体化合物,从而破坏Jak-3依赖性的淋巴细胞功能,优选为阻断细胞分裂。施用可以是连续或间歇性的。
在某些医疗情况下,需抑制个体的不期望免疫应答,在这些情况下施用有效量的含649641P(NC1153)或前体或活性代谢物的药物组合物可缓解或预防不期望的免疫应答。通过共同施用治疗有效量的不经由Jak3抑制而显效的不同免疫抑制剂,例如环霉菌素A或FK506,可得到更好结果而对个体产生的毒性则更小。此类应用的实例包括缓解哺乳动物移植或异体移植受体中的器官移植排斥或异体移植物排斥,或者诱导移植耐受性。在其他情况下,治疗目标可以是促进由内源性Jak3依赖性的T细胞介导的自身免疫疾病的缓解,从而减少或阻止对受试者天生组织的自身免疫攻击。其他应用途径包括施用649641P(NC1153)药物制剂,从而通过抑制T细胞介导的超敏反应来缓解哺乳动物受试者中的呼吸道过敏症。类似地,可治疗变态反应性患者,以抑制T细胞介导的变应性应答从而减少或阻止变应性反应。还可预期通过施用含有649641P(NC1153)的药物组合物来抑制Jak3依赖性的白血病或淋巴瘤的增生。以649641P(NC1153)治疗性处理的一个显著的潜在性优点是,其通过选择性抑制仅限于淋巴室细胞(及表达Jak3的骨髓细胞)的Jak3活性,对Jak2及全身许多组织中可见的其他蛋白激酶活性作用极小或无作用,因而预计其副作用更小。
药物组合物。适于治疗应用的药物组合物含有酸形式的649641P(NC1153)化合物或其可药用的盐或水合物,并结合有合适的载体。可药用的盐或水合物指对药物化学家显而易见的化合物的盐或水合形式,即可有利影响化合物的物理或药代动力学特性的形式,所述特性例如溶解度、适口性、吸收性、分散性、新陈代谢和排泄性。在化合物形式的选择中也很重要,且实际上更为实用的其他因素包括原料的成本、所得原料药的结晶容易度、收率、稳定性、溶解性、吸水性和可流动性。当化合物带负电荷时,通过平衡离子例如诸如钠或钾的碱金属阳离子对其进行平衡。其他合适的平衡离子包括钙、镁、锌、铵,或者烷基铵阳离子如四甲铵、四乙铵、胆碱、三乙氢铵、葡甲胺、三乙醇氢铵等。平衡离子的合适数量与维持总电荷中性的分子相关。同样,当化合物带正电荷时,例如质子化,则提供合适数量的负电荷平衡离子以维持总电荷中性。
可药用的盐还包括酸加成盐。因而该化合物可以衍生自无机或有机酸或碱的盐形式使用。其实例包括醋酸盐、己二酸盐、藻酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、硫酸氢盐、丁酸盐、柠檬酸盐、樟脑酸盐、樟脑磺酸盐、环戊烷丙酸盐、二葡萄糖酸盐、十二烷基硫酸盐、乙烷磺酸盐、延胡索酸盐、葡糖庚酸盐、甘油磷酸盐、偏硫酸盐、庚酸盐、己酸盐、盐酸盐、氢溴酸盐、氢碘酸盐、2-羟基乙烷磺酸盐、乳酸盐、马来酸盐、甲烷磺酸盐、2-萘磺酸盐、烟酸盐、草酸盐、双羟萘酸盐、pectinate、过硫酸盐、3-苯基丙酸盐、苦味酸盐、新戊酸盐、丙酸盐、琥珀酸盐、酒石酸盐、硫氰酸盐、甲苯磺酸盐和十一烷酸盐。碱盐包括铵盐,诸如钠和钾盐的碱金属盐,诸如钙盐和镁盐的碱土金属盐,带有有机碱的盐如二环己基胺盐、N-甲基-D-葡糖胺,以及带有氨基酸的盐如精氨酸、赖氨酸等。可以如下试剂对含氮碱性基团进行季铵化:低级烷基卤例如甲基、乙基、丙基和丁基氯、溴和碘;二烷基硫酸酯如二甲基、二乙基、二丁基及二戊基硫酸酯,长链卤化物如癸基、月桂基、豆蔻基和硬脂酰基氯、溴和碘;芳烷基卤如苯甲基和苯乙基溴及其他。其他可药用的盐包括乙醇硫酸盐和硫酸盐。
此处描述的Jak3抑制剂化合物,可通过将该化合物与可药用的载体相结合而配制于药物组合物中,正如本领域所已知。化合物的采用形式可以为粉末或结晶形式,溶液或悬浮体形式。可通过口服、肠胃外(静脉内或肌内)、局部、经皮或通过吸入而给药。所采用的载体可视情况而为固体或液体。固相载体的实例包括乳糖、白土、蔗糖、滑石、明胶、琼脂、果胶、阿拉伯胶、硬脂酸镁、硬脂酸等。液相载体的实例包括糖浆、花生油、橄榄油、水等。口服使用的载体包括本领域众所已知的延时材料,如单独的一硬脂酸甘油酯或二硬脂酸甘油酯,或者带有石蜡。局部施用可在诸如疏水或亲水性碱的载体中配制以形成软膏、乳油、洗剂,在水性、油性或醇类液体中配制以形成涂剂,或者在无水稀释剂中配制以形成粉末。口服固体剂型的实例包括片剂、胶囊、片剂(troches)、锭剂(lozenges)等。剂型尺寸可广泛改变,但优选为从约25mg至约500mg。口服液体剂型的实例包括溶液、悬浮体、糖浆、乳液、软明胶胶囊等。可注射剂型的实例包括无菌注射液体,例如溶液、乳液和悬浮体。可注射固体的实例包括注射前在液体中复溶、溶解或悬浮的粉剂。在可注射组合物中,载体典型地含有供肌内注射的无菌水、盐水或诸如花生油的其他可注射液体。还可包括各种可药用的缓冲剂,防腐剂等。
剂量 用于实施此处所述Jak3选择性抑制剂化合物的治疗应用的药物组合物包括含有有效量活性成分的组合物,以实现预期目的,即Jak3活性的选择性破坏或抑制,或者Jak3相关病症的治疗或预防。起初可从此处描述的细胞增殖分析估测治疗有效的用量或剂量。然后可对剂量进行配制供动物模型中使用,以得到循环浓度范围,包括细胞培养中所确定的IC50(即达到对IL2依赖性增殖最大抑制的一半,而对PRL依赖性增殖抑制极小或无抑制时的化合物浓度),同样如此处所例证。然后利用这些信息,根据标准药理学实验,更精确地确定人体和其他哺乳动物中的有用剂量范围。剂量可依赖于所采用的剂型和所采用的给药途径而改变。例如,可按个体而调整剂量和间隔时间,以得到足以启动和/或维持所期望的Jak3抑制效应的活性成分的血浆水平。该血浆水平通常称为最小有效浓度(MECs)。不同化合物的MEC可有所变化,但可从如上指出的体外数据而估测出。例如,可采用此处所述的分析法确定必需达到T细胞群体中Jak3自激酶活性的50-90%抑制时的浓度。可采用HPLC分析或生物分析以确定血浆浓度。剂量的间隔时间也可由MEC值而确定出。优选地,采用使血浆水平在MEC之上维持期望时间段的方案,而施用化合物。在包括局部施用或选择性摄入的治疗中,化合物或其活性代谢物或衍生物的有效局部浓度可能不被血浆浓度充分反映出来。在此情况下,可采用本领域已知的其他操作流程以确定适当的剂量和间隔时间。成人口服的合适剂量范围的实例为每天约0.1至约80mg/kg,以单次或分开给药。肠胃外给药的合适剂量范围的实例为每天约0.1至约80mg/kg,以单次或分开给药,通过静脉内或肌内注射而施用。局部施用的剂量范围的实例为约0.1mg至约150mg,外部施用每天大约1至4次。吸入的剂量范围的实例为每天约0.01mg/kg至约1mg/kg。确切的配方、给药途径和剂量可由各个医生根据患者状况、待治疗疾病的性质和其他因素而选择。
实施例5.另外的Jak3选择性抑制剂化合物
在前面的实施例中,已证明649641P(NC1153)能选择性或特异性抑制含Jak3的T细胞的增殖和功能,延长了异体移植存活率,并证明具有低毒性。鉴于这些评价,很明显649641P(NC1153)对于治疗具有免疫相关病症的个体很可能具有治疗价值。在体外分析或体内研究中评价其他候选药物化合物抑制或破坏Jak3的选择性方面,该化合物也可用作比较的标准而成为有价值的试剂。
如上指出,在本研究过程中,检索了NCI药物发现数据库(DrugDiscovery Database),以查找可用作Janus激酶3(Jak3)选择性抑制剂的其他候选化合物。评测了对“种子”化合物AG490显示类似相关系数的化合物,所述“种子”化合物是具有Jak3抑制潜力的酪氨酸抑制激酶。
比较(COMPARE)算法 NCI药物数据库含有成千上万个从世界各地收集来的化合物。其包括从大型药物公司至小型私人实验室的馈赠物。许多情况下化合物的加入是为了测试及提升该数据库。然而,许多化合物由于对其初始提出的功能无效而被制造者放弃,并且有些情况下提交化合物的公司已经不再经营。不管药物的状态如何,其结构和所产生的活性仍被加入每周更新的数据库。
数据库是通过测试特定药物对60种不同人细胞系(例如上皮、肺、结肠、单核/巨噬细胞、T-B细胞、乳腺细胞-前列腺细胞(prostrate)等)的剂量应答而产生的。测量三个参数,包括细胞生长的抑制(IC50),细胞毒性(LC50),及静胞效应(TGI)。三个参数合在一起构成对每一化合物的平均图表“标志”。显示正值的药物(向右突出)反映超出平均的细胞敏感度。负值(向左突出)表示细胞系对测试试剂的敏感度低于平均值。COMPARE是基于每一化合物的体外活性进行排序以预先确定“种子”的算法,如本情况中为AG-490。采用Pearson氏相关系数(PCC),对每一药物将平均图表转换成标量指数等级。最后,具有最类似效应的药物将显示出高等级相关性(接近1),并可能具有类似于种子化合物的作用机制。
COMPARE已成功用于具有类似作用机制的化合物的鉴别。这是一个假想模型,其基于的前提是例如阻断细胞生长的类似药物将靶向类似细胞类型中的相同关键性靶通道。极大依赖于特定通道的细胞(例如表达JAK3/Stat5的细胞)将对该通道的抑制具有敏感性,而对不能表达此类分子或对该通道依赖性较小的细胞,则相同的药物仅具有极小或不具有作用。这就使COMPARE能将对一组细胞具有类似作用机制的药物集合到一起。
迄今完成的许多不同研究已显示,该方法已成功用于鉴别对相同分子靶标起选择性作用的新试剂,从而得到独特的平均图表模式(meangraph pattern)。COMPARE算法可鉴别出与种子相比具有不同结构,但具有相同作用机制的化合物的相似平均模式。实验室研究需证实特定读出之中的匹配(JAK3 Stat5磷酸化)。COMPARE依赖于相似的药物作用机制而无需依赖于化学结构。这就可鉴别出之前从未识别到的新颖结构类别的化合物,作为给定靶标的特定抑制剂。该方法的有效性已通过鉴别p53、Raf、拓扑异构酶及微管蛋白结合蛋白的抑制剂而得以证实。一旦发现已知作用机制的某一结构类别,则可采用可用类似物的另外筛选及新型类似物的合成,以明确并优化相关药物。
在上面提及的NCI药物数据库筛选中鉴别出的化合物是649641P(NC1153)及数个649641P的同类物或结构类似物。评测了化合物637712,640674,643423,655906,673137,683332和693812(根据其NCI数据库访问号表示)对T细胞增殖的效应并与AG490,PNU 156804和649641P(NC1153)的效应比较。这些对比分析的结果以条形图方式示于图7A中。可以看出PHA活化的人T细胞以IL-2刺激后,其增殖被这些NCI试剂阻断。NC1153的结构式示于插图中。NC1153对IL2受体表达不起作用。
同样还示有(图7B)未以(粗线)或以50μM NC1153(浅线)过夜处理并对IL2R-α,-β,和-γ链染色的PHA活化T母细胞的FACS分析。虚线表示以NC1153预处理的细胞。这些结果表明,所存在的IL-2受体未受NC1153的影响。该发现证明IL2信号的丧失并非由于受体表达的改变,由此发生于IL2受体的远侧,因而是Jak3。如图7C中所示,NC1153化合物并未阻断不表达Jak3的细胞的细胞生长。与含Jak3的PHA活化T细胞(空心框)相反,不能表达Jak3的Jurkat细胞(黑菱形)在以NC1153处理之后并未显示细胞生长的显著变化。将数据归一为媒介物对照的百分比。NC1153通过利用Jak3和共同γ链的细胞因子抑制了细胞生长(图7D)。同样如图1中所示,将649641P(NC1153)处理的T细胞的T细胞增殖抑制IL2、IL4或IL7驱使的生长,以剂量依赖方式归一化至未处理对照。由此,NC1153的抑制效应并不限于仅受IL-2刺激的细胞。相反,采用Jak3的整个细胞因子家族均被NC1153所阻断。
参照图8,提供了649641P(NC1153)抑制Jak3信号传导通道的直接证据。基于体外分析,Jak3自激酶活性被NC1153直接阻断。标识为“PY-Jak3”的条带仅表示在指示剂量的NC1153处的活性Jak3,带有或不带有IL-2和ATP。标识为“Jak3”的条带表示存在的总(活性加无活性)Jak3蛋白。为了显示出Jak3的抑制阻断了下游通道,对免疫纯化的Jak3分析其自激酶活性,并在存在或不存在100μM ATP和/或药物情况下通过磷酸酪氨酸蛋白质印迹进行测试并与对照比较,如图2A-C中所示。还观察到649641P(NC1153)显示的IC50约为2.5μM,与增殖数据相当,如图7A和7D中所示。
图9A-C显示出NC1153未抑制非Jak3信号传导通道。在图9A中,可以看到在以浓度增加的NC1153处理的PHA活化T细胞中,NC1153以剂量依赖方式抑制了Jak3驱使的转录因子—Stat5a/b,如EMSA分析所检测(上图)。标识为“冷竞争”的泳道含有未标记的探针。然而,在相同的处理组中,非Jak3介导的TNF-□活化Nf□B(下图)则未受影响。图9B中所示结果证实NC1153不能抑制密切相关的Jak2/Stat5a信号传导通道。以浓度增加的NC1153处理大鼠Nb2细胞,然后以催乳素刺激细胞。磷酸酪氨酸蛋白质印迹检测出活化但未检测出受NC1153抑制。基于体外分析,在Stat5a/b活化中,Jak3介导的Jak3自激酶活性被NC1153直接阻断。NC1153对多种激酶的活性不起作用。在图9B和图8所示的激酶分析中,Jak3的抑制比Jak2的抑制高出至少50倍。如图9C中所示,在10或50μM处测试NC1153以阻断底物的生长因子酪氨酸激酶(FGFR3及PDGFR□),Src家族酪氨酸激酶(Src,Fyn,Lck,Yes,Zap70)或丝氨酸苏氨酸激酶(PKC和PKA)磷酸化。对照的活性以虚线作于图中。
图10A-D总结了649641P(NC1153)对异体移植存活率(表1中所示)的体内效应。对Lewis(LEW)肾异体移植物的ACI大鼠受体连续7天通过每日静脉内注射或口腔管饲而施以NC1153。不同药物剂量时的异体移植物存活时间(天数)如图10A中所示,个体存活如表1中所示。对LEW肾异体移植物的ACI大鼠受体连续14天通过每日口腔管饲而施以NC1153。不同剂量时移植物的存活比率(天数)如图10B中所示。以160mg/kg NC1153通过每日口服管饲,对LEW肾异体移植物的ACI大鼠受体治疗7天,然后以3×/星期治疗高达90天。如图10C中所示,75%的治疗受体均存活至90天的治疗之后,存活时间超出200天。通过由长期存活受体接受LEW供体(>100天;n=3)而非第三方BUF(7.0±1.0天;n=3)的心脏异体移植物,证实诱导出了移植耐受性。将30×106纯化的T细胞从耐受性受体过继性地转移至辐射(400rads)后的LEW心脏异体移植物的ACI受体,以检测耐受机制。转移有耐受性T细胞的受体显示出明显迟缓的对LEW心脏异体移植物的排斥(40.0±15.0天;n=6对15±1.0天;n=5辐射对照),两个心脏均持续>100天起搏良好,但排斥第三方的心脏异体移植物(12±1.0天;n=2)。该结果表明移植耐受性至少部分是由T细胞调节的细胞所介导的(未示出)。图10D示出了上述表2中所提供结果的总结,所述表2是关于单独以NC1153、单独以CsA及以两种药物结合,通过每日口腔管饲给药治疗7天的LEW肾异体移植物的ACI大鼠受体。示出了每一剂量水平下每一治疗组的MST,下图显示低CI值,表明NC1153-CsA组合是协同性的。
如图11A-F中所示,649641P(NC1153)无肾毒性,不影响脂代谢。通过以160mg/kg NC1153单独口腔管饲或与5mg/kg CsA组合,对低盐进食的大鼠(治疗前7天及治疗过程中的14天)进行治疗;对一些动物通过单独以0.8mg/kg雷帕霉素(RAPA)口腔管饲或与5mg/kg CsA相结合而治疗。通过血清肌酐水平和血清肌酐清除率评价肾功能,结果各自如图11A和11B中所示。脂代谢由检测血清胆固醇(图11C),甘油三酯(图11D),低密度脂蛋白-胆固醇(图11E)以及高密度脂蛋白-胆固醇(图11F)来评价。确定NC1153单独或与CsA相结合对肾结构的作用。对连续7天低盐进食的大鼠按如下持续治疗14天:10mg/kgNC1153静脉内给药;0.16mg/kg RAPA静脉内给药;10mg/kg CsA口服给药;10mg/kg CsA口服给药与0.16mg/kg RAPA静脉内给药相结合;或者10mg/kg CsA口服给药与10mg/kg 641P静脉内给药相结合。在第14天杀死大鼠,并采用H&E染色对肾进行组织学检查。在每一组的5只大鼠中均观察到类似结果。如图6A-E中所示,649641P(NC1153)单独或RAPA单独给药在肾之中均未显示明显变化。相反,单独的CsA给药则引起肾小管30%受损,带有空泡形成和萎缩。CsA/RAPA组在90%肾小管中显示有广泛的空泡形成并伴有萎缩和致密核。与CsA/RAPA组截然不同,以CsA/NC1153组合治疗的大鼠的肾显示出与CsA单独组中所观察到相类似的变化。
采用包括如下步骤的操作流程,合成命名为WP938(图18B中所示)的649641P(NC1153)的内消旋立体异构体:向溶解于400mL乙腈的0.1mmol cycloalkanoneone和0.21M N,N,N′,N′-四甲基二氨基甲烷中,40分钟内滴加入16.5g(0.21mol)乙酰氯。反应完成后,使粗产物沉淀,过滤,以醚洗涤并干燥。随后结晶得到纯产物。
测试所得WP938单独给药或与CsA组合给药时,对异体移植物存活率的效应及其毒性。结果示于图12A,B和13A-F中。结果发现以20-160mg/kg剂量通过口腔管饲持续7天单独给药的WP938以剂量依赖方式延长了LEW肾异体移植物的ACI受体的存活(图12A)。1.25mg/kg CsA与160mg/kg WP938相结合持续7天口服给药则对肾异体移植物的存活产生协同性相互作用,如CI值0.44所证明(图12B)。如图13A-F所示,以160mg/kg WP938口服治疗14天对化学和血液成分计数不产生变化,从而证明其无毒性。血清肌酐和肌酐清除率显示WP938不具有肾毒性且对CsA诱导的肾毒性无作用(图13A,B)。图13C表示胆固醇水平。图13D表示甘油三酯水平。图13E表示高密度脂蛋白水平。图13F表示低密度脂蛋白水平。
图14B至图39B所示为各种Mannich碱化合物和其他(显示为盐形式)筛选出具有抑制催乳素或IL2刺激的T细胞的增殖能力的化合物的化学结构式。图14A至39A所示为指定浓度范围的分析结果。基本上如上面通用方法中所述实施筛选分析。对于在足以抑制由IL2激活(浅色方形)的Jak3和Stat5a/b浓度处,明显具有不阻断催乳素(PRL)活化Jak2和Stat5a/b(深色方形)的特性的化合物,将其识别出供进一步评测。优选的649641P(NC1153)化合物及其选择性抑制活性如实施例1和图1A,B中所示。对于已证明在指定浓度处对PRL或IL2刺激的T细胞至少具有一定量的选择性抑制活性的其他候选药物,即图14B-17B和19B-39B中所示化合物,则是与采用代表性化合物649641P(NC1153)的前述实施例中所述相同的方式正在研究的主旨。为了此处所公开的目的,如果合适的话,这些化合物可具有非对称中心体且可以消旋体、消旋体混合物形式存在,及以单个非对映异构体形式存在,或者作为包括所有同分异构形式的对映异构体。例如,对于通式(I),C-2和C-12处的构型可以为(R)或(S)。经确定完全无毒性且能显著延长如此处649641P(NC1153)所证明的异体移植物存活率的这些化合物,包括所有立体异构体,对于人体及对于免疫抑制治疗中的兽医应用也很可能具有治疗价值。预期这些化合物对于与表达Jak3的淋巴或骨髓源细胞相关病症的治疗也具有治疗价值。如649641P(NC1153)和WP938所证明,可以相信这些候选药物化合物的一些与CsA或通过Jak3相关通道之外的其他通道施加免疫抑制作用的其他免疫抑制剂一同给药时,还证明具有协同活性。
定义
除具有习惯和通常的意义之外,如下定义适用于本说明书和权利要求所允许的情况下:
“选择性抑制”是指某种化学类化合物优先阻断一种蛋白的功能而对一种或多种已知蛋白质的功能阻断程度较低。
“特异性抑制”是指某种化学类化合物仅阻断给定蛋白质的功能,而对其他蛋白质不起作用。
“免疫抑制潜力”是指某种化学类化合物可能会减少或缓解免疫应答(例如,阻断移植的器官异体移植物的排斥的药物)。
“药物组合物”是指一种或多种化学物或其可药用的盐与与合适载体的混合物,供作为药物施用于哺乳动物。
“淋巴细胞”是指免疫源细胞,或者更特别地,是指源自淋巴谱系干细胞的细胞,包括大小淋巴细胞及浆细胞。淋巴细胞的实例有T细胞、B细胞和自然杀伤(NK)细胞。
“骨髓细胞”是指骨髓源细胞,即源自骨髓谱系干细胞的细胞,包括单核细胞、巨噬细胞和树突细胞。
“药物”是指适于医疗用途的化学类化合物。
“同类物”是指在组成上与另一化合物密切相关、并产生类似或拮抗性作用的化学类化合物(例如结构类似物)。
“治疗有效量“是指化合物施用的用量至少某种程度上能缓解待治病症的一种或多种症状。例如,能有效预防、缓解或改善疾病症状或延长待治疗受试者的存活率的化合物用量。
对于疾病或病症,术语“治疗“是指预防、制止疾病或病症的发生,阻止、消退或提供疾病或病症的症状或副作用的缓解,和/或延长待治疗受试者的存活率。
参考文献
1.Kane LP,Lin J,Weiss A.抗原通过TCR的信号转导(Signaltransduction by the TCR for antigen).Curr Opin Immunol.(2000)12L2420249.
2.Denton,MD,Magee CC,Sayegh MH.移植中的免疫抑制策略(Immunosuppressive strategies in transplantation).Lancet(1999)353:1083-1091.
3.Mihatsch MJ,Kyo M,Morozumi K,et al.环孢菌素A和他克莫司的副作用(The side effects of Cyclosporin-A and Tacrolimus).(1998)Clin.Nephrol 49:356-363.
4.Kahan BD,Camardo JS.雷帕霉素:临床结果和未来机会(Rapamycin:clinical results and future opportunities).Transplantation(2001)72:1181-1193.
5.Kirken RA,Stepkowski SM.T细胞信号转导和移植耐受中的新方向(New directions in T-cell signal transduction and transplantationtolerance).Transplant(2002)7:18-25.
6.Weiss A,Littman DR.淋巴细胞抗原受体的信号转导(Signaltransduction by lymphocyte antigen receptors).Cell.(1994)76:263-274.
7.Irving BA,Chan AC,Weiss A.26能性表征存在于T细胞抗原受体zeta链中的信号转导基元(Functional characterization of a signaltransducing motif present in the T cell antigen receptor zeta chain).J ExpMed.(1993)177:1093-1103.
8.Chan AC,Kadlecek TA,Elder ME,et al.ZAP-70在严重组合免疫缺陷的常染色体隐性形式中的缺陷(ZAP-70 deficiency in anautosomal recessive form of severe combined immunodeficiency).Science.(1994)264:1599-1601.
9.Appleby MW,Gross JA,Cooke MP,Levin SD,Qian X,Perlmutter RM.缺损T细胞受体在缺乏p59fyn的胸腺同工型的小鼠中的信号传导(Defective T cell receptor signaling in mice lacking the thymicisoform of p59fyn).Cell.(1992)70:751-763.
10.Kuo CT,Leiden JM.T淋巴细胞发育和功能的转录调节(Transcriptional regulation of T lymphocyte development and function).Annu Rev Immunol.(1999)17:149-187.
11.Leonard WJ,O′Shea JJ.JAKs和STATs:生物参与(JAKs andSTATs:biological implications).Annu Rev Immunol.(1998);16:293-322.
12.Kondo M,Takeshita T,Ishii N,et al.IL-2和IL-4受体间共享白介素2受体γ链(Sharing of the interleukin-2(IL-2)receptor gammachain between receptors for IL-2and IL-4).Science.(1993)262:1874-1877.
13.Noguchi M,Nakamura Y,Russell SM,et al.白介素-2受体γ链:白介素-7受体的功能性组分(Interleukin-2receptor gamma chain:afunctional component of the interleukin-7 receptor).Science.(1993);262:1877-1880.
14.Russell SM,Keegan AD,Harada N,et al.白介素-2受体γ链:白介素-4受体的功能性组分(Interleukin-2receptor gamma chain:afunctional component of the interleukin-4receptor).Science.(1993)262:1880-1883.
15.Russell SM,Johnston JA,Noguchi M,et al.IL-2Rβ和γC链与Jak1和Jak3的相互作用:XSCID和XCID的参与(Interaction of IL-2Rbeta and gamma c chains with Jak1 and Jak3:implications for XSCID andXCID).Science.(1994)266:1042-1045.
16.Kirken RA,Rui H,Malabarba MG,et al.JAK3而非JAK1的活化对IL-2诱导的增殖和STAT5通过IC-2受体β链的COOH末端区的补充至关重要(Activation of JAK3,but not JAK1,is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal regionof the IL-2 receptor beta-chain).Cytokine.(1995)7:689-700.
17.Malabarba MG,Rui H,Deutsch HH,et al.白介素-13在表达白介素-2受体-γ和介白素-4受体-α的细胞中是JAK3和STAT6的有力激活子(Interleukin-13 is a potent activator of JAK3 and STAT6 in cellsexpressing interleukin-2 receptor-gamma and interleukin-4receptor-alpha).Biochem J.(1996)319:865-872.
18.Szabo SJ,Glimcher LH,Ho IC.调节白介素-4在T细胞中表达的基因(Genes that regulate interleukin-4 expression in T cells).CurrOpin Immunol.(1997)9:776-781.
19.Kirken RA,Rui H,Malabarba MG et al.J Biol Chem(1994)269:19136.
20.Johnston JA,Kawamura M,Kirken RA,et al.Nature(1994)370:151.
21.Kirken RA.Transplantation Proceedings(2001)33:3268-3270.
22.Thomis TC,Berg LJ.Curr Opin Immunol(1997)9:541.
23.Kirken RA,Erwin RA,Taub D,et al.酪氨酸磷酸化抑制剂AG-490抑制细胞因子介导的Jak3/Stat5a/b信号转导和抗原激活的T细胞的细胞增殖(Tyrphostin AG-490 inhibits cytokine-mediatedJak3/Stat5a/b signal transduction and cellular proliferation of antigen-activated human T-cells).J Leukoc Biol(1999)65:891-899.
24.Behbod F,Erwin-Cohen RA,Wang M-E,et al.同时抑制Janus激酶3和钙调磷酸酶依赖的信号传导通道协同性地延长大鼠心脏异体移植物的存活率(Concomitant inhibition of Janus kinase 3 andcalcineurin-dependent signaling pathways synergistically prolongs thesurvival of rat heart allografts).J Immunol(2001)166:3724-3732.
25.Stepkowski SM,Erwin-Cohen RA,Behbod F et al.Janus酪氨酸激酶3的选择性抑制剂PNU156804延长异体移植存活率,并与环孢菌素有协同性作用但与雷帕霉素有加成性作用(Selective inhibitor ofJanus tyrosine kinase 3,PNU156804,prolongs allograft survival and actssynergistically with cyclosporine but additively with rapamycin).Blood(2002)99:680-689.
26.Yamashita H,Xu J,Erwin RA,Farrar WL,Kirken RA,Rui H.在催乳素敏感的细胞中差异控制脯氨酸毗连的丝氨酸残基Stata 5a的Ser725和Stat5b的Ser730的磷酸化状态(Differential control of thephosphorylation state of proline-juxtaposed serine residues Ser725 ofStat5a and Ser730 of Stat5b in prolactin-sensitive cells).J Biol Chem.(1998)273:30218-30224.
27.Kirken RA,Rui H,Malabarba MG,et al.JAK3而非JAK1的活化对IL-2诱导的增殖和STAT5通过IC-2受体β链的COOH末端区的补充至关重要(Activation of JAK3,but not JAK1,is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal regionof the IL-2 receptor beta-chain).Cytokine.(1995)7:689-700.
28.Ono K,Lindsey ES.大鼠心脏移植技术的改进(Improvedtechnique of heart transplantation in rats).J Thorac Cardiovasc Surg.(1969)57:225-229.
29.Chou T-C.用于定量测定协同性和拮抗性的中值效应原理和组合指数(The median effect principle and the combination index forquantitation of synergism and antagonism).In:Chou T-C,Rideout D,Eds.化疗中的协同性和拮抗性(Synergism and antagonism in chemotherapy).San Diego,CA:Academic Press,Inc,1991:61-102.
30.Chou J,Chou T-C.用微机分析剂量效应:定量测定ED50,LD50,协同性,拮抗性,低剂量风险,受体-配体结合和酶动力学(Dose-effect analysis with microcomputers:quantitation of ED50,LD50,synergism,antagonism,low-dose risk,receptor-ligand binding and enzymekinetics).Biosoft,Cambridge,UK.1987.
31.Schrader B,Steinhoff G.附着分子诱导炎性级联反应的模型(Models of inflammatory cascade reactions by adhesion molecules).In:Steinhoff G,Ed.在人器官移植中的细胞附着分子(Cell adhesionmolecules in human organ transplants).Austin:R G Lands Company,1993:71-86.
32.Winters GL,Marboe CC,Billingham ME.国际协会对心肺移植等级系统的心脏移植活检样本:说明和注释(The international societyfor heart and lung transplantation grading system for heart transplantbiopsy specimens:Clarification and commentary).J Heart Lung Transplant.1998;17:754-760.
33.Thomis DC,Berg LJ.外周表达Jak3对维持T淋巴细胞功能是必需的(Peripheral expression of Jak3 is required to maintain Tlymphocyte function).J Exp Med(1997)185:197-206.
34.Dimmock JR,Kumar P.Mannich碱的抗癌和胞毒特性(Anticancer and Cytotoxic Properties of Mannich Bases).CurrentMedicinal Chemistry(1997)4:1-22.
35.Dimmock JR,Chamankhah M,Seniuk A et al.一些脂环酮的Mannich碱的合成和胞毒评价(Synthesis and Cytotoxic Evaluation ofSome Mannich Bases of Alicyclic Ketones).Pharmazie(1995)50:668-671.
尽管已示出并描述了本发明的优选实施方案,但本领域人员可对优选实施方案作修正而不会偏离本发明的主旨和教导。此处描述的实施方案是例述性和代表性的,不应认为是限制性的。可对此处所述的本发明作许多改变和修正,并且仍处于本发明范围之内。虽然前面的讨论着重于源自T细胞的移植物对宿主的疾病,但可容易理解此处所述的方法、化合物和组合物也可在其他T细胞依赖性疾病或病症中具有用途。例如,这些方法、化合物和组合物可用于治疗诸如狼疮、关节炎和多发性硬化的自身免疫疾病,或用于治疗变态反应、哮喘、牛皮癣、溃疡性结膜炎、淋巴瘤和白血病。选择性靶向Jak3的抑制作用在其他许多免疫源性病症、或者在表达Jak3的骨髓细胞源病症中预计也具有用途,包括源自超敏反应或不期望的树突细胞、B细胞、单核细胞、巨噬细胞或自然杀伤细胞的超敏反应系统应答状况。因而,本发明的范围并不由上面的陈述所限制,而仅由后面的权利要求所限定,其范围包括权利要求主旨的所有同等物。因而此处引述的所有专利、专利申请和出版物均以其提供的材料、方法和解释性细节能补充此处所述内容的参考程度于此处引作参考。上述相关技术说明书中某些参考文献的讨论并非等于承认其就是本发明的现有技术。

Claims (33)

1.表达Janus酪氨酸激酶3的细胞的功能和/或增殖的抑制方法,包含将有效浓度的至少一种通式(I)的化合物或其盐与细胞接触,以选择性抑制Janus酪氨酸激酶3活性,
Figure A2003801054680002C1
其中
R1是H,=CH2,CH2N(CH3)2,CH2SC(O)CH3,CH2SC6H5,CH2SCH2-(4-C6H4OCH3),CH2SC(O)C6H5,或CH2N(CH2CH3)2
R2是O;
R3是CH2N(CH3)2,CH2N(CH2CH3)2或CH2-(N-morphyl)。
2.权利要求1的方法,其中R1是CH2N(CH3)2且R3是CH2N(CH3)2
3.权利要求2的方法,其中所述化合物是内消旋立体异构体。
4.权利要求1的方法,其中细胞为淋巴源或骨髓源。
5.权利要求1的方法,包含干扰所述细胞中的信号3通道从而使细胞分裂被阻断。
6.权利要求1的方法,其中在选择性抑制所述Janus酪氨酸激酶3的有效浓度处,所述至少一种化合物基本不抑制除Janus酪氨酸激酶3活性之外的蛋白质酪氨酸激酶活性。
7.权利要求1的方法,其中所述细胞是T细胞,该方法包含对所述T细胞内Jak3活性的抑制比Jak2活性的抑制高出至少3倍。
8.权利要求1的方法,包含选择至少一种在足以抑制IL2激活的Jak3和Stat5a/b的浓度处,对催乳素(PRL)活化Jak2和Stat5a/b的抑制能力较弱的所述化合物。
9.辅助识别能用作治疗性免疫抑制剂的物质的体外测试方法,所述方法包含:
(a)从细胞培养基中获取Jak3依赖性的静止T淋巴细胞群体;
(b)任选地,以细胞因子对静止T淋巴细胞预处理,以刺激所述淋巴细胞增殖;
(c)以权利要求1中定义的化合物或其盐对步骤(a)或(b)的静止或刺激淋巴细胞进行处理;
(d)在促进细胞生长条件下培养步骤(c)的淋巴细胞;
(e)评测步骤(d)之后的细胞增殖程度;
(f)任选地,评测所述化合物对Jak2依赖性的T淋巴细胞增殖的抑制效应;
(g)任选地,评测所述化合物的细胞毒性;
(h)从步骤(e),以及从如果存在的步骤(f)和(g)的评测中确定Jak3依赖性淋巴细胞增殖的显著抑制,所述抑制不归因于化合物的细胞毒性,从而暗示该化合物具有作为T细胞介导的免疫抑制剂和/或作为T细胞增殖抑制剂的体内治疗用候选药物的潜力;以及
(i)任选地,比较步骤(e)和(f)的评测,如果步骤(f)评测的抑制效果明显低于步骤(e)中评测的抑制效果,则从所述比较中确定与抑制Jak2活性相比,所述化合物至少某种程度上对抑制Jak3活性具有选择性。
10.在需要的哺乳动物受试者中对表达Janus酪氨酸激酶3的细胞的不期望功能的体内抑制方法,包含:
将所述细胞与有效量的至少一种如权利要求1中定义的化合物或其代谢物或衍生物接触,以干扰细胞内的信号3通道从而抑制细胞功能,
所述接触包含将治疗有效量的药物组合物施用至所述受试者以抑制Jak3依赖性的细胞功能,所述药物组合物含有可药用的载体以及如权利要求1中定义的至少一种所述化合物或其可药用的盐或所述化合物的代谢物,或者能够在受试者体内转化成所述化合物的所述化合物前体。
11.权利要求10的方法,其中所述细胞是T细胞,所述药物组合物的所述用量能有效阻断所述T细胞的细胞分裂。
12.权利要求10的方法,包含连续性或间歇性施用所述药物组合物至受试者。
13.对哺乳动物受试者的治疗性处理以抑制不期望的免疫应答的方法,包含实施权利要求10的方法,其中所述受试者正经受不期望的免疫应答或处于其危险之中,并且所述治疗有效量的所述药物组合物减轻或预防了所述不期望的免疫应答。
14.权利要求13的方法,进一步包含将治疗有效量的除Jak3抑制剂之外的免疫抑制剂施用至所述受试者。
15.权利要求14的方法,其中所述其他免疫抑制剂是环孢菌素A或FK506。
16.哺乳动物移植受体中器官移植排斥的减轻方法,包含实施权利要求10的方法以抑制T细胞介导的对移植器官的免疫应答,从而减轻或阻止器官的排斥。
17.哺乳动物异体移植受体中急性异体移植排斥的减轻方法,包含实施权利要求10的方法以抑制T细胞介导的对所述异体移植物的抗异体移植物免疫应答,从而减轻或预防异体移植的急性排斥。
18.哺乳动物移植受体中移植耐受性的诱导方法,包含实施权利要求10的方法以抑制T细胞介导的移植排斥应答。
19.遭受自身免疫疾病的哺乳动物受试者中促进所述疾病减轻的方法,包含实施权利要求10的方法以抑制所述受试者中T细胞介导的自身免疫应答,从而减少或阻止由内源性Jak3依赖性T细胞介导的对受试者天生组织的自身免疫攻击。
20.遭受呼吸道过敏症的哺乳动物受试者中减轻所述过敏症的方法,包含实施权利要求10的方法以抑制所述受试者中T细胞介导的过敏性应答,从而减少或阻止所述受试者中呼吸道组织的过敏症。
21.患有变态反应的哺乳动物受试者中减轻所述变态反应的方法,包含实施权利要求10的方法,以抑制所述受试者中T细胞介导的变态反应应答,从而减少或阻止所述受试者中的变应性反应。
22.Jak3依赖性白血病或淋巴瘤增生的抑制方法,包含实施权利要求10的方法,其中所述受试者患有白血病或淋巴瘤,其中与其他激酶活性相比,所述化合物或所述代谢物能选择性抑制Jak3活性,从而抑制或阻断白血病或淋巴瘤细胞的增生。
23.权利要求10的方法,其中所述化合物的肾毒性低于环孢菌素A的肾毒性。
24.权利要求10的方法,进一步包含施用另一种免疫抑制剂。
25.辅助识别新免疫抑制药物的体外方法,包含:
通过将含Jak3的T细胞与某一范围浓度的目的化合物接触,并确定所述化合物在所述范围内的一个或多个浓度处能否抑制Jak3活性,从而测试目的化合物对破坏T细胞功能的活性;
将所述目的化合物的Jak3抑制活性与权利要求2中定义的已知具有Jak3抑制活性的化合物进行比较;以及
采用所述测试和比较结果以确定所述目的化合物是否为体内用作治疗性免疫抑制剂的候选药物。
26.权利要求25的方法,进一步包含:
测试所述目的化合物的Jak2抑制活性;
如有Jak2抑制活性,则将所述目的化合物的Jak3抑制活性与其Jak2抑制活性进行比较;以及
采用所述比较以鉴别出作为选择性Jak3抑制剂的所述目的化合物。
27.候选免疫抑制药物对异体移植物存活率的效应的体内测试方法,包含:
(a)将取自合适供体动物的异体移植物植入合适的受体动物;
(b)对动物维持基本的营养和健康促进条件;
(c)将候选药物施用至至少一个动物中的每一个,以得到治疗的受体或组;
(d)将权利要求1中定义的化合物施用至至少一个动物,以作为阳性对照组,所述化合物中R1和R3各自为CN(CH3)2且R2是O;
(e)任选地,保留至少一个受体动物不受治疗,以作为未治疗的对照受体或组;
(f)确定每一异体移植物在每一受体内的异体移植存活时间;
(g)在可适用范围内,对每一异体移植物进行组织学检查,并对每一异体移植物评测与候选药物相关的结构损伤;
(h)将每一异体移植物内异体移植物存活时间与候选药物诱导的组织学结构变化进行比较;以及
(i)采用(h)的比较结果,与未治疗对照受体的异体移植物或阳性对照受体的异体移植物对比,当确定移植物存活时间增加且对药物治疗的异体移植物没有药物诱导的结构损伤时,则表示该候选药物作为免疫抑制剂在体内治疗使用时可能有效。
28.权利要求27的方法,包含确定所述候选药物能在体外选择性抑制Jak3依赖性的T细胞增殖。
29.表达Janus酪氨酸激酶3的细胞的功能和/或增殖的抑制方法,包含将有效浓度的至少一种通式(II)的化合物或其盐与细胞接触,以选择性抑制所述Janus酪氨酸激酶3的活性,
其中
n是1,2,3,4或6;
R1是H,CH2,或CH2N(CH3)2
R3是CH2N(CH3)2
30.表达Janus酪氨酸激酶3的细胞的功能和/或增殖的抑制方法,包含将有效浓度的至少一种通式(III)的化合物或其盐与细胞接触,以选择性抑制所述Janus酪氨酸激酶3的活性,
其中
n是1或2;
R1是H或CH2N(CH3)2
R3是CH2N(CH3)2
31.表达Janus酪氨酸激酶3的细胞的功能和/或增殖的抑制方法,包含将有效浓度的至少一种如下通式的化合物或其盐与细胞接触,
以选择性抑制所述Janus酪氨酸激酶3的活性。
32.一种具有如下通式的分离或纯化的化学类化合物
Figure A2003801054680008C3
或者其盐。
33.载体中含有权利要求32的化合物或其可药用的盐的药物组合物。
CNA2003801054687A 2002-12-09 2003-12-09 Janus酪氨酸激酶3(JAK3)的选择性抑制方法 Pending CN1747729A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43185102P 2002-12-09 2002-12-09
US60/431,851 2002-12-09

Publications (1)

Publication Number Publication Date
CN1747729A true CN1747729A (zh) 2006-03-15

Family

ID=32507812

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2003801054687A Pending CN1747729A (zh) 2002-12-09 2003-12-09 Janus酪氨酸激酶3(JAK3)的选择性抑制方法

Country Status (17)

Country Link
US (2) US7365096B2 (zh)
EP (1) EP1578411A4 (zh)
JP (1) JP2006514021A (zh)
KR (1) KR20050084224A (zh)
CN (1) CN1747729A (zh)
AU (1) AU2003297740B2 (zh)
BR (1) BR0317099A (zh)
CA (1) CA2506432A1 (zh)
EC (1) ECSP055843A (zh)
HU (1) HUP0500844A2 (zh)
MX (1) MXPA05006133A (zh)
NO (1) NO20052497L (zh)
NZ (1) NZ540427A (zh)
PL (1) PL376844A1 (zh)
RU (1) RU2005121672A (zh)
WO (1) WO2004052359A1 (zh)
ZA (1) ZA200504163B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090115A (zh) * 2014-07-10 2014-10-08 上海益诺思生物技术有限公司 次级t细胞依赖抗体反应检测外源性化合物免疫抑制方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928937B2 (ja) 2003-03-28 2012-05-09 スローン−ケッタリング・インスティテュート・フォー・キャンサー・リサーチ ミグラスタチンアナログおよびその使用
JP2007536310A (ja) * 2004-05-03 2007-12-13 ノバルティス アクチエンゲゼルシャフト S1p受容体アゴニストおよびjak3キナーゼ阻害剤を含む、組合せ剤
US8957056B2 (en) 2004-05-25 2015-02-17 Sloan-Kettering Instiute For Cancer Research Migrastatin analogs in the treatment of cancer
US8188141B2 (en) 2004-09-23 2012-05-29 Sloan-Kettering Institute For Cancer Research Isomigrastatin analogs in the treatment of cancer
GB0507918D0 (en) 2005-04-19 2005-05-25 Novartis Ag Organic compounds
CA2604551A1 (en) * 2005-05-03 2007-03-08 Rigel Pharmaceuticals, Inc. Jak kinase inhibitors and their uses
EP3332807B1 (en) 2005-10-26 2023-02-22 Novartis AG Use of anti il-1beta antibodies
ES2481671T3 (es) 2005-11-21 2014-07-31 Novartis Ag Inhibidores de mTOR en el tratamiento de tumores endocrinos
GB0601744D0 (en) 2006-01-27 2006-03-08 Novartis Ag Organic compounds
KR102606597B1 (ko) 2007-05-29 2023-11-29 노파르티스 아게 항-il-1-베타 치료법에 대한 신규 적응증
EP2209916B1 (en) 2007-11-08 2011-12-21 Novartis AG Gene expression signatures for chronic/sclerosing allograft nephropathy
US8268834B2 (en) 2008-03-19 2012-09-18 Novartis Ag Pyrazine derivatives that inhibit phosphatidylinositol 3-kinase enzyme
WO2011006119A2 (en) 2009-07-09 2011-01-13 The Scripps Research Institute Gene expression profiles associated with chronic allograft nephropathy
US8791100B2 (en) 2010-02-02 2014-07-29 Novartis Ag Aryl benzylamine compounds
UA112517C2 (uk) 2010-07-06 2016-09-26 Новартіс Аг Тетрагідропіридопіримідинові похідні
US9018006B2 (en) 2010-07-23 2015-04-28 The University Of Toledo Stable Tregs and related materials and methods
WO2013001445A1 (en) 2011-06-27 2013-01-03 Novartis Ag Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives
BR112014000314A2 (pt) 2011-07-08 2017-01-10 Novartis Ag derivados de pirrolo pirimidina
JP2014530851A (ja) 2011-10-21 2014-11-20 ノバルティスアーゲー Pi3kモジュレータとしてのキナゾリン誘導体
US20140348848A1 (en) 2011-12-02 2014-11-27 Dhananjay Kaul Anti-il-1beta (interleukin-1beta) antibody-based prophylactic therapy to prevent complications leading to vaso-occlusion in sickle cell disease
BR112014014327A2 (pt) 2011-12-15 2017-06-13 Novartis Ag uso de inibidores da atividade ou função de pi3k
EP2794594A1 (en) 2011-12-22 2014-10-29 Novartis AG Quinoline derivatives
PL2794600T3 (pl) 2011-12-22 2018-06-29 Novartis Ag Pochodne 2,3-dihydro-benzo[1,4]oksazyny i powiązane związki jako inhibitory kinazy fosfoinozytydu-3 (PI3K) do leczenia np. reumatoidalnego zapalenia stawów
WO2013148638A2 (en) * 2012-03-26 2013-10-03 Ep Pharma, Inc. Compositions and methods related to inhibitors of jak kinase
TW201422625A (zh) 2012-11-26 2014-06-16 Novartis Ag 二氫-吡啶并-□衍生物之固體形式
WO2014128612A1 (en) 2013-02-20 2014-08-28 Novartis Ag Quinazolin-4-one derivatives
UY35675A (es) 2013-07-24 2015-02-27 Novartis Ag Derivados sustituidos de quinazolin-4-ona
WO2015179773A1 (en) 2014-05-22 2015-11-26 The Scripps Research Institute Tissue molecular signatures of kidney transplant rejections
BR112016003229A8 (pt) 2013-09-22 2020-02-04 Calitor Sciences Llc composto, composição farmacêutica, e, uso de um composto ou de uma composição farmacêutica
US9512084B2 (en) 2013-11-29 2016-12-06 Novartis Ag Amino pyrimidine derivatives
PL3134395T3 (pl) 2014-04-24 2018-07-31 Novartis Ag Pochodne pirazyny jako inhibitory 3-kinazy fosfatydyloinozytolu
KR20160141855A (ko) 2014-04-24 2016-12-09 노파르티스 아게 포스파티딜이노시톨 3-키나제 억제제로서의 아미노 피라진 유도체
PT3134396T (pt) 2014-04-24 2019-12-16 Novartis Ag Derivados de amino piridina como inibidores da fosfatidilinositol 3-quinase
US11104951B2 (en) 2014-05-22 2021-08-31 The Scripps Research Institute Molecular signatures for distinguishing liver transplant rejections or injuries
US10443100B2 (en) 2014-05-22 2019-10-15 The Scripps Research Institute Gene expression profiles associated with sub-clinical kidney transplant rejection
WO2019143874A1 (en) 2018-01-20 2019-07-25 Sunshine Lake Pharma Co., Ltd. Substituted aminopyrimidine compounds and methods of use
WO2020067887A1 (en) 2018-09-24 2020-04-02 Erasmus University Medical Center Rotterdam Specific inhibition of janus kinase 3 (jak3) for modulating anti-tumor immune responses
MX2021014157A (es) 2019-05-23 2022-01-04 Novartis Ag Formas cristalinas de un inhibidor btk.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA712187A (en) * 1965-06-22 J. C. Buisson Paul 2-(2'-oxo-1'-cyclododecyl) acetic acid, the salts thereof, and process of preparing same
FR1466205A (fr) * 1960-04-01 1967-01-20 Chimie Atomistique Acide 1-cétocyclododécyl-2-acétique, ses sels et leur procédé de préparation
AU566673B2 (en) 1983-09-15 1987-10-29 F. Hoffmann-La Roche Ag Phenethylamine derivatives
US6136595A (en) * 1993-07-29 2000-10-24 St. Jude Children's Research Hospital Jak kinases and regulations of cytokine signal transduction
AU5682799A (en) 1998-08-21 2000-03-14 Parker Hughes Institute Quinazoline derivatives
US6080747A (en) * 1999-03-05 2000-06-27 Hughes Institute JAK-3 inhibitors for treating allergic disorders
CA2392554A1 (en) * 1999-11-30 2001-06-28 Parker Hughes Institute Inhibitors of thrombin induced platelet aggregation
MY128450A (en) 2000-05-24 2007-02-28 Upjohn Co 1-(pyrrolidin-1-ylmethyl)-3-(pyrrol-2-ylmethylidene)-2-indolinone derivatives
CA2326952A1 (en) 2000-11-27 2002-05-27 The Hospital For Sick Children T cell protein tyrosine phosphatase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090115A (zh) * 2014-07-10 2014-10-08 上海益诺思生物技术有限公司 次级t细胞依赖抗体反应检测外源性化合物免疫抑制方法
CN104090115B (zh) * 2014-07-10 2016-01-13 上海益诺思生物技术有限公司 次级t细胞依赖抗体反应检测外源性化合物免疫抑制方法

Also Published As

Publication number Publication date
BR0317099A (pt) 2005-10-25
NO20052497L (no) 2005-09-02
NO20052497D0 (no) 2005-05-24
HUP0500844A2 (en) 2007-08-28
CA2506432A1 (en) 2004-06-24
US7365096B2 (en) 2008-04-29
MXPA05006133A (es) 2006-03-09
AU2003297740A1 (en) 2004-06-30
ECSP055843A (es) 2005-11-22
EP1578411A4 (en) 2007-05-02
JP2006514021A (ja) 2006-04-27
US7928062B2 (en) 2011-04-19
RU2005121672A (ru) 2005-11-20
KR20050084224A (ko) 2005-08-26
ZA200504163B (en) 2007-03-28
AU2003297740B2 (en) 2008-09-11
US20050203177A1 (en) 2005-09-15
US20080167220A1 (en) 2008-07-10
EP1578411A1 (en) 2005-09-28
WO2004052359A1 (en) 2004-06-24
AU2003297740A2 (en) 2004-06-30
NZ540427A (en) 2008-04-30
PL376844A1 (pl) 2006-01-09

Similar Documents

Publication Publication Date Title
CN1747729A (zh) Janus酪氨酸激酶3(JAK3)的选择性抑制方法
Karbach et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease
CN1155571C (zh) 含有γ-谷氨酰基和β-天冬氨酰基的免疫调制剂化合物及其制备方法
US8673913B2 (en) SHP-2 phosphatase inhibitor
CN105073110B (zh) 通过诱导分化成调节性t细胞和促进调节性t细胞增殖来抑制免疫应答的药物组合物
CN1414971A (zh) 用作免疫抑制剂的缩肽及其同类物
CN1224761A (zh) 用于抑制肿瘤性损伤的化合物的鉴定方法
CN102548986A (zh) 氨基吡咯烷酮衍生物及其用途
CN105980408A (zh) 治疗性方法和组合物
CN1303425A (zh) Pns细胞系及其使用方法
CN1662551A (zh) 前列腺素e2受体亚型ep4的拮抗肽
CN1065768C (zh) 应用bdnf/nt-3/ngf分子族成员治疗运动神经元疾病的方法
CN1259958A (zh) 用于调节免疫系统活性和抑制炎症的细胞调节性亲脂肽
EP2270505A1 (en) A method of screening a cell death inhibitor using macrophage migration inhibitory factor (MIF)
CN1422252A (zh) 受体拮抗剂趋化因子
CN1531429A (zh) 包含谷胱甘肽代谢之效应子及α-硫辛酸的肾替代疗法用药物
CN109475549A (zh) 药物组合物及其治疗自身免疫疾病的用途
CN1304011C (zh) 保护性寡聚脱氧核糖核苷酸的制药用途
JPWO2020080275A1 (ja) 網膜および/または光受容に関連する症状の改善または予防用医薬ならびに網膜および/または光受容に関連する症状を改善または予防する物質のスクリーニング方法
US20100137391A1 (en) Histamine H3 Agonist for use as Therapeutic Agent for a Lipid/Glucose Metabolic Disorder
JPH11246435A (ja) 免疫調整剤
Shahid et al. Biomedical aspects of histamine
Zhou et al. Targeting the p97-Npl4 Interaction Inhibits Tumor-infiltrated Regulatory T but Promotes Th17 Cell Development to Selectively Trigger Antitumor Immunity
WO2008016118A1 (fr) Agent ciblant le récepteur dopaminergique et procédé de criblage pour le rechercher
Whitesell Characterizing Transient Periods of Immune Regulation Within Pancreatic Islets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20060315