CN1674988A - 用于烷烃芳构化的催化剂、其制备方法及其应用 - Google Patents

用于烷烃芳构化的催化剂、其制备方法及其应用 Download PDF

Info

Publication number
CN1674988A
CN1674988A CNA038189828A CN03818982A CN1674988A CN 1674988 A CN1674988 A CN 1674988A CN A038189828 A CNA038189828 A CN A038189828A CN 03818982 A CN03818982 A CN 03818982A CN 1674988 A CN1674988 A CN 1674988A
Authority
CN
China
Prior art keywords
catalyst
zeolite
germanium
platinum
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038189828A
Other languages
English (en)
Other versions
CN100422122C (zh
Inventor
G·G·朱特图
R·S·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of CN1674988A publication Critical patent/CN1674988A/zh
Application granted granted Critical
Publication of CN100422122C publication Critical patent/CN100422122C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/74Noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种催化剂、一种制备该催化剂的方法以及一种用该催化剂将烷烃芳构化为芳族化合物的方法,具体地说是将每分子具有2-6个碳原子的烷烃如丙烷芳构化为芳族化合物如苯、甲苯和二甲苯。该催化剂是其上沉积铂的铝-硅-锗沸石。锗存在于结晶沸石的骨架中。铂沉积在该沸石上。该催化剂可以由氧化镁、氧化铝、氧化钛、氧化锆、氧化钍、二氧化硅、氧化硼或它们的混合物作为载体。在该催化剂的表面上可含有硫化合物。该硫化合物可以在预处理工艺中加入到催化剂中或可以与烃进料一起引入以在芳构化工艺过程中与催化剂接触。通常,该催化剂的化学式为M[(SiO2)(XO2) X (YO2) Y] Z+ y/n,其中M是如铂、金之类的贵金属,X是钛、锗或其它一种四价元素,Y是硼、铝、镓、铟、碲或其它一种三价元素,Z是n价阳离子,如H+、Na+、K+、Rb+、Cs+、Ca2+、Mg2+、Sr2+或Ba2+,x为0-0.15,y0-0.125。一个催化剂的例子表示为|H+Pt| [Si91Ge4Al1O192]-MFI。

Description

用于烷烃芳构化的催化剂、其制备方法及其应用
                     发明背景
技术领域:
本发明涉及一种用于将烷烃芳构化为芳族化合物的催化剂,具体地说涉及一种用于把每分子具有2-6个碳原子的烷烃芳构化为芳族化合物如苯、甲苯和二甲苯的沸石催化剂,优选MFI-型结构、最优选ZSM-5MFI沸石。
现有技术描述
沸石是一种结晶水合硅铝酸盐,其还可以含其它金属如钠、钙、钡和钾,并具有离子交换性能(Encarta World English Dictionary[North American Edition]&(P)2001 Microsoft Corporation)。制备沸石的方法包括(a)制备氧化硅(Silicon Oxide)和氧化铝源的含水混合物;和(b)使所述的含水混合物保持在结晶条件下直到所述沸石晶体形成。许多关于沸石的研究集中在含除硅和铝之外的元素的沸石骨架的合成上。
美国专利US 6160191公开了术语“沸石”不仅包括硅铝酸盐,而且包括其中铝被镓、钛、铁或硼所替代的物质以及其中硅被锗、锡和磷所替代的物质。授权给D.A.Young的美国专利US 3329480和US3329481报导了结晶硅酸锆沸石和硅酸钛沸石的存在。由Yermolenko等人在the Second Oil Union Conference on Zeolites,Leningrad,1964,第171-8页(1965出版)公开了在四面体位置具有铬的沸石。然而,在Zeolite Molecular Sieves,第322页,John Wiley & Sons(1974)中,D.W.Breck认为存在的铬并非存在于沸石A结构中,而是以不溶性杂质的形式存在。据说该杂质是硅酸铬的形式,正如水蒸汽吸附等温线性质所确认的。
已经用除骨架中铝以外的许多元素,包括铁合成了沸石ZSM-5。1984年7月13日公开的日本昭JP 59121115报导了含铁的沸石结构的合成,其公开了具有八面沸石结构并包含配位铁原子的硅铝酸盐。据说化学成分具有通式aM2/nO:bFe2O3:Al2O3:cSiO2,其中M可以是氢、碱金属或者碱土金属;符号n是M的化合价;a=1+/-0.3;c为4.6-100;a小于b,并且两者都小于7。晶格参数a0为24.3-24.7埃。相似地,美国专利US 4208305公开了结晶硅酸盐,其在结构上是SiO4 2-、FeO4 2-和任选的AlO4 -、GaO4 -和GeO4 -四面体的三维网络结构,其是通过共用氧原子相互连接的,并具有脱水形式的总组成:(1.0+/-0.3)(R)2/nO[aFe2O3 bAl2O3 cGa2O3]y(dSiO2 eGeO2),其中R是阳离子;a≥0.1;b≥0;c≥0;a+b+c=1;y≥10;d≥0.1;e≥0;d+e=1;且n是R的化合价。不含镓、锗和铝的硅酸盐是优选的。具有特定X射线粉末衍射图的硅酸盐也是优选的。
美国专利US 4713227公开了具有微孔、催化活性和离子交换性能的结晶杂原子磷酸分子筛(metalloalumino-phosphates),其在骨架内含诸如砷、铋、钴、铁、锗、锰、钒和锑这样的金属。
美国专利US 5179054阐明了尽管可以用与硅类似的锗形成基质,但其价格昂贵,且对于用于催化裂解重质烃油以制备沸点在汽油和馏出物之间的烃的催化剂的分子筛组分来说,通常不如硅酸金属盐即硅铝酸盐、gallosilicate、硅酸铁和硅酸硼好。
在T.Komatsu等人在Applied Catalysis A:General,第194-195卷,第333-339页(2000)发表的“Aromatization of butaneon Pt-Ge intermetallic compounds supported on HZSM-5”中,将铂-锗金属间化合物、铂类和锗类沉积在HZSM-5上作为把丁烷转化为芳族化合物的催化剂。据报道,对于转化率和选择性而言,Pt-Ge金属间催化剂有比Pt催化剂稳定的生产时间。据报道,相对铂而言,具有大量锗的催化剂具有较低丁烷转化率和对芳族化合物较低的选择性。
美国专利US 4704494公开了使用Pt-或Ge-改性的杂原子分子筛(metallosilicate)(Si/Me)催化剂将低分子量的烷烃转化为芳族化合物的方法,其中Me是铝、镓、钛、锆、锗、镧、锰、铬、钪、钒、铁、钨、钼、镍或它们的混合物。实施例是用Me为铝、锗制备的。没有制备具有锗的例子。没有任何要优于其它元素及它们的混合物而选择锗的暗示。
美国专利US 5456822公开了一种用催化剂芳构化每分子含有2-9个碳原子的烃的方法,该催化剂含:在骨架里含有硅、铝和/或镓MFI沸石、基质和在沸石上沉积的镓、铂族贵金属以及选自锡、锗、铟、铜、铁、钼、镓、铊、金、银、钌、铬、钨和铅中的一种金属。没有制备具有锗的例子。没有任何要优于其它元素和它们的混合物而选择锗的暗示。
美国专利US 4910357和US 5124497公开了使用非酸含铂催化剂由C8+石蜡制备单取代单烷基芳族化合物的方法,催化剂中结晶材料含锡、铟、铊或者铅。这些催化剂比其它向结晶物质里引入包括锗在内的其它元素的铂催化剂提供高得多的对芳族化合物的选择性。
美国专利US 6315892公开了一种制备具有载体、铂和锗的催化剂的方法,其中锗以在反应区中与预催化剂接触的有机化合物的形式引入。
美国专利US 5227557公开了一种使用含有铂和选自锡、锗、铅和铟中的一种金属的MFI沸石催化剂将每分子含有2-4个碳原子的烃芳构化的方法。可以通过注入、交换或者其它已知方法将铂和另外的金属引入到MFI沸石上。实施例使用了注入铂和其它的金属。实施例E包含0.3%铂和0.2%锗。
美国专利US 4036741公开了一种用具有多孔载体材料的酸性催化剂转化烃(包括石蜡脱氢环转化为芳族化合物)的方法,该催化剂含有卤素和均匀分散于全部载体材料中的铂、钴和锗,该载体材料可以是结晶沸石硅铝酸盐。对照含铂和锗但不含钴的催化剂,以在基本无硫的条件下用作用于相对低辛烷汽油馏分的重整催化剂的形式测试该催化剂。结果表明钴对更好的活性和活性稳定性是必要的。
一些含VIII族金属的沸石催化剂容易发生硫中毒。对于一些铂催化剂,尽管对硫有一些敏感性,但适量的硫如10-100ppm是可以接受的,有时是优选的。本领域众所周知的标准硫化方法是在硫化氢或硫化氢和氢气或氮气的混合物存在下加热至150-800℃,优选250-600℃。
美国专利US 4836336公开了一种方法,用于把C6-C12的烷烃进料,通过贵金属酸性中等孔径的沸石催化剂,转化为芳族化合物。该贵金属优选为铂族金属(铂、钯、铱、锇、铑或钌)并且沸石优选为ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-38、ZSM-48或沸石β。通过用硫化氢、二氧化硫或有机硫化合物预硫化该催化剂而将贵金属改变为其硫化物形式,以提高催化剂的芳族化合物选择性。没有公开锗作为催化剂的组分。
有利的是有这样一种沸石型催化剂,其在投入生产一段时间后,对于低级烷烃转化为芳族化合物如苯、甲苯和二甲苯的的选择性保持相对恒定。
                    发明目的
因此,本发明的一个目的是提供一种其上沉积铂的铝-硅-锗沸石,所述的催化剂对低级烷烃转化为芳族化合物具有相对恒定的选择性。
本发明另一个目的是提供一种合成其上沉积铂的铝-硅-锗沸石催化剂的方法。
本发明又一个目的是提供一种使用其上沉积铂的铝-硅-锗沸石催化剂芳构化烃的方法。
还有,本发明一个目的是提供一种预处理用于烃芳构化的、其上沉积铂的铝-硅-锗沸石催化剂的方法。
                    发明概述
通过其上沉积铂的微孔铝-硅-锗沸石实现这些和其它目的。通过以下步骤合成该催化剂,制备在骨架中含有铝、硅和锗的沸石,在沸石上沉积铂并煅烧该沸石。该沸石结构可以是MFI、FAU、TON、MFL、VPI、MEL、AEL、AFI、MWW或MOR,但优选,沸石具有MFI结构,更优选是ZSM-5MFI沸石。在烷烃的芳构化工艺中使用该催化剂:在芳构化条件下,使其上沉积铂的微孔铝-硅-锗沸石与至少一种烷烃接触,并收集芳族化合物产物。
                    附图简述
结合附图考虑时,通过参考以下详细描述将容易更全面理解本发明并理解其许多附带的优点:
图1是说明本发明催化剂转化率(%)或选择性相对生产时间(分钟)的图。
                    发明详述
已经发现,将铂沉积在其中已将锗引入沸石的硅铝酸盐结构中的MFI沸石催化剂前体上来制备这样一种催化剂,该催化剂相对生产时间具有提高的稳定性,即对于低级烷烃转化为芳族化合物(例如每分子具有2-6个碳原子的烷烃转化为苯、甲苯和二甲苯)保持相对恒定的选择性。
可以由任何已知的制备铝、硅和锗的MFI结构的方法制备该沸石。已知沸石是结晶化硅酸盐,包括TO4的四面体结构,该结构通过共享氧原子形成三维网络,其中T表示四价硅和三价铝。三价元素如镓和更稀少的硼或铍可以替代铝。
沸石通常从水溶液结晶。合成沸石的典型工艺包括利用溶解/再结晶机理,通过水热法把非晶形凝胶转化为沸石催化剂。反应介质还包含结构化试剂,其在结晶化过程中被引入沸石的网络的微孔空间中,由此控制网络的构造并通过与沸石组分的相互作用而有助于稳定该结构。
正如作为参考引入本文的美国专利US 5246688中公开的,通过以下步骤制造基于氧化硅和任选的钛、锗、锆和/或锡的氧化物的MFI沸石:(1)加热含水的均匀反应混合物,由此形成沸石沉淀物,该反应混合物包含(a)一种M2/nSiF5络合物和任选的至少一种M2/nT’F6络合物,其中M是n价阳离子,其中T’是钛、锆、锗和/或锡,(b)通过水热分解提供OH离子的试剂和结构化试剂;(c)如叔胺或季铵化合物,和(2)分离和煅烧这种沉淀物以从所得到的沸石中的微孔和孔道中去除结构化试剂。
在美国专利3702886和J.Phys.Chem,第97卷,第5678-5684页(1993)中也可以发现制备MFI沸石的方法,引入本文作为参考。
MFI沸石中硅/锗与铝的原子比(Si-Ge∶Al)优选大于25∶1,更优选45∶1-250∶1,并且最优选50∶1-100∶1。硅相对锗的比率优选100∶1-8∶1,更优选50∶1-10∶1,最优选25∶1-11∶1。
通过任何已知的将金属沉积在沸石上的方法把铂沉积在MFI沸石上。典型的将金属沉积在沸石上的方法是离子交换和浸渍(impregnation)。存在的铂优选0.05-3%,更优选0.2%-2%,最优选0.2-1.5%。
该催化剂可以与镁、铝、钛、锆、钍、硅、硼的氧化物和它们的混合物结合。载体优选是无定型的,优选铝的氧化物(氧化铝)。
催化剂的平均孔径优选为5-100埃,更优选为5-50埃,最优选5-20埃。
催化剂可以含通过沉积在催化剂的表面上的元素或化合物与硫化物接触形成的反应产物,如硫化铂。
硫化物的非限制性实例是H2S,CnH2n+2S,其中n=1-20;CnH2n+1S2,其中n=2-22和CnH2n+1S,其中n=2-22。可以在轻质烷烃芳构化反应之前或过程中加入该硫化物,即可以用该硫化物预先处理该催化剂,或在芳构化工艺过程中,当烃进料与催化剂接触时,该硫化物与烃进料一起引入。
该催化剂的化学式可以表示为
             M[(SiO2)(XO2)X(YO2)Y]Z+ y/n
其中M是贵金属,如铂或金,X是钛、锗、锡或其它一种四价元素,Y是硼、铝、镓、铟、碲或其它一种三价元素,Z是n价阳离子,如H+、Na+、K+、Rb+、Cs+、Ca2+、Mg2+、Sr2+或Ba2+,x为0-0.15,y为0-0.125。按照IUPAC的推荐,催化剂的例子为:
             |H+Pt|[Si91Ge4Al1O192]-MFI
已经概括描述了本发明,给出以下实施例作为本发明的特定实施方案并证明本发明实践和优点。应该理解,给出实施例只是通过举例说明而不是把说明书或权利要求书限制为遵循任何方式。
                    实施例1
合成沸石:
40.6克硅胶(40%二氧化硅),2.251克硝酸铝[Al(NO3)3·9H2O],19.575克TPAB,14.7克氟化氢(40%水溶液),91.3克甲胺(40%水溶液)和39.54克水混合20分钟。在搅拌的同时,将3.93克的四氯化锗逐滴加入到混合物中。通过加入氟化氢(40%浓度)把PH值调节到约为10。搅拌该混合物5分钟。把175克该混合物转移到高压釜反应器中并在170℃下加热18小时。洗涤得到的固体并在90℃下干燥一夜,然后通过以每分钟1℃的速率从室温加热到550℃并在550℃下保持5小时以进行煅烧。产物的最终重量是13.6克。
形成:
10.4克上述合成沸石与14.9克水合氧化铝混合。用0.05N硝酸润湿该混合物,捏合15分钟以形成捏塑体。该捏塑体在90℃下干燥一夜,然后在550℃煅烧5小时。粉碎得到的固体并筛分以形成20/40(美国筛)粉末。
将由上面筛分的粉末与约125毫升的1.0M硝酸铵混合。用0.05N硝酸将PH值调节至6。将得到的混合物放置在60℃的烘箱中1小时,偶尔振荡。倾析该混合物,并用5等分的60毫升蒸馏水在60℃下洗涤得到的固体30分钟。
任选地,在90℃下干燥该固体1夜。
铂离子交换:
将1.94克(NH3)4Pt(NO3)2溶解在100毫升蒸馏水中。将33毫升该溶液与3克上述沸石混合。用0.05N硝酸将PH值调节至6。将该混合物在60℃烘箱中放置24小时,最初四个小时期间每个小时振荡。倾析该混合物,并重复前述的过程两次。在室温下洗涤该固体5次,每次用60毫升蒸馏水。在90℃下干燥该固体一夜,然后通过以1℃/分钟的速率从室温加热到300℃,并在300℃的温度下保持4小时而进行煅烧。
硫化氢预处理:
将4.003克上述形成的催化剂加入反应器中,加热至400℃并用存在于氮气中的50%的氢气吹扫4小时。在400℃下,用1%硫化氢(20毫升/分钟)代替50%氢气流直到检测到硫化氢穿透。用存在于氮气中的50%的氢气(40毫升/分钟)代替硫化氢气流并在400℃继续处理一小时。
                    对比例A
与上面实施例1的沸石合成、形成和离子交换一样形成、离子交换、煅烧并预处理仅含二氧化硅和铝骨架元素、且二氧化硅/氧化铝比为150/1(ZEOLYST CBV 15014G)的沸石。
                    对比例B
将15克仅含有二氧化硅和氧化铝(150∶1)骨架元素的ZSM-5沸石与细分散的氧化锗粉末(0.30克)混合。然后与上面实施例1的沸石合成、形成和离子交换一样形成、离子交换、煅烧和预处理该混合物。
                    对比例C
将15克仅含有二氧化硅和氧化铝(150∶1)骨架元素的ZSM-5沸石与细分散的氧化锗粉末(0.9克)混合。然后与上面实施例1的沸石合成、形成和离子交换一样形成、离子交换、煅烧和预处理该混合物。
催化剂测试:
在不锈钢管中,使用用氮气稀释至总共25psia的15psia丙烷测试该催化剂。取决于所用催化剂的活性,重量时空速度(WHSV)为0.35-1.7h-1。通过在线取样至气相色谱来分析产物,其中定量检测所有碳原子数为1-12的烃组分。选择性用丙烷转化的量表示;A9+=C9-C11芳族化合物;BTX=苯+甲苯+二甲苯。
测试实施例1的催化剂用于丙烷芳构化,并给出表1中显示的结果。在100多小时的测试中BTX选择性保持恒定。
                表1(实施例1的催化剂)
            WHSV=0.35h-1;反应T=475℃
   时间(小时)   转化率(%)   CH4(wt%)   C2H6(wt%)   C4H10(wt%)   A9+(wt%)   BTX(wt%)
    3.5     37     2     24     11     6     56
    12.5     34     2     24     13     5     56
    24.5     33     2     24     13     4     56
    36.5     32     2     24     14     4     55
    48.5     33     2     24     14     4     56
    60.5     33     2     24     14     3     56
    72.5     32     2     24     14     3     56
    84.5     31     2     24     14     3     56
    96.5     31     2     24     14     3     56
    112     30     2     24     14     3     56
    137     32     2     23     14     3     57
    146     31     2     23     15     3     56
测试对比实施例A所述的催化剂用于丙烷芳构化,并给出表2中显示的结果。在最初100小时的测试中BTX选择性未能保持恒定。
                     表2(对比实施例A的催化剂)
                   WHSV=0.35h-1;反应T=465℃
   时间(小时)   转化率(%)   CH4(wt%)   C2H6(wt%)   C4H10(wt%)   A9+(wt%)   BTX(wt%)
    3.5     39     2     23     12     8     54
    12.5     35     2     26     15     6     50
    23     37     2     30     15     6     46
    35     38     2     32     16     5     43
    47     37     2     33     17     6     41
    59     35     2     34     17     5     40
    71     37     2     35     18     5     38
    83     37     2     36     18     5     38
    95     36     2     36     18     5     37
    107     35     2     36     19     5     36
    119     34     2     36     19     5     36
    131     33     2     36     19     5     36
    146     33     2     37     19     5     36
测试对比实施例B所述的催化剂用于丙烷芳构化,并给出表3中显示的结果。选择性不能保持恒定。
                          表3(对比实施例B的催化剂)
                         WHSV=0.6h-1;反应T=450℃
    时间(小时)   转化率(%)   CH4(wt%)   C2H6(wt%)   C4H10(wt%)   A9+(wt%)   BTX(wt%)
    2     37     2     30     12     6     49
    2.75     39     2     31     12     6     49
    3.5     38     2     31     12     6     48
    4.25.     39     23     32     12     5     47
    5     38     2     32     12     5     47
    9.5     40     2     34     12     5     45
    15.5     39     2     35     13     5     44
    20     38     2     35     13     5     43
    24.5     38     2     36     13     5     43
    30.5     37     2     36     13     5     42
    35     38     2     36     13     5     42
    39.5     37     2     36     13     5     42
    45.5     37     2     37     13     5     42
    47     37     2     36     13     5     42
测试对比实施例C所述的催化剂用于丙烷芳构化,并给出表4中显示的结果。选择性未能保持恒定。
                             表4(对比实施例C的催化剂)
                            WHSV=0.3h-1;反应T=450℃
    时间(小时)   转化率(%)   CH4(wt%)   C2H6(wt%)   C4H10(wt%)   A9+(wt%)   BTX(wt%)
    3.2     46     4     42     9     0     45
    5.2     46     4     43     10     0     43
9.8 45 4 44 10 0 42
    15.2     35     3     41     15     0     41
    19.8     35     3     41     15     0     41
    25.2     34     3     41     15     0     40
    30.5     34     3     42     15     0     40
    39.8     34     3     41     15     0     40
49.2 34 3 42 15 0 40
    75.2     33     3     42     15     0     40
    99.2     33     3     42     15     0     40
    125.8     32     3     42     15     0     39
    149.2     31     3     42     15     0     39
    175.8     31     3     42     15     0     40
    199.2     31     3     42     15     0     39
    249.2     29     3     41     16     0     39
    292.5     28     3     41     16     0     39
正如可以从以上数据可看出的,虽然各种催化剂的转化率可以相比较,但具有其上沉积铂的铝-硅-锗沸石的催化剂(实施例1)对于苯-甲苯-二甲苯(BTX)具有更高的选择性,该选择性在100多小时的操作时间内基本保持恒定。在沸石骨架中没有锗的催化剂对BTX的选择性随时间而丧失。
本发明所述的催化剂具有如下所示的X射线衍射图,其中已经按照标准方法确定了给出的值(射线:Cu-K-α),波长:1.54埃)。
表5:Ge-ZSM-5主要粉末XRD强度
     d-间距[埃]     强度
     11.15     40
     10.04     33
     9.77     12
     6.38     13
     4.27     19
     3.85     100
     3.77     22
     3.72     42
     3.66     35
强度以任意单位衡量,因此最强峰值为100。与Al-ZSM-5相比,Ge-ZSM-5峰值向更高的d-间距值移动。
根据以上教导,本发明可进行许多改进和变化。可理解在本发明可以在所附的权利要求的范围内实施而并非按所具体描述的实施。

Claims (47)

1.一种芳构化烃的方法,其包括:
a)使每分子含有2-6个碳原子的烷烃与至少一种含其上沉积铂的铝-硅-锗沸石的催化剂接触,和
b)回收芳族化合物产物。
2.如权利要求1所述的方法,其中硅-锗与铝的原子比大于25∶1。
3.如权利要求1所述的方法,其中硅-锗与铝的原子比为45∶1-250∶1。
4.如权利要求1所述的方法,其中硅-锗与铝的原子比为50∶1-100∶1。
5.如权利要求1所述的方法,其中二氧化硅与锗的比为100∶1-8∶1。
6.如权利要求1所述的方法,其中二氧化硅与锗的比为50∶1-10∶1。
7.如权利要求1所述的方法,其中二氧化硅与锗的比为25∶-11∶1。
8.如权利要求1所述的方法,其中铂以0.05-3%的量存在。
9.如权利要求1所述的方法,其中铂以0.2-2%的量存在。
10.如权利要求1所述的方法,其中铂以0.2-1.5%的量存在。
11.如权利要求1所述的方法,其中烷烃与催化剂之间的接触在0.1-100h-1的时空速度下进行。
12.如权利要求1所述的方法,其中烷烃与催化剂之间的接触在200-600℃的温度下进行。
13.如权利要求1所述的方法,其中烷烃与催化剂之间的接触在5-215psia的压力下进行。
14.如权利要求1所述的方法,其中所述沸石具有MFI、FAU、TON、MFL、VPI、MEL、AEL、AFI、MWW或MOR结构。
15.如权利要求1所述的方法,其中所述催化剂还含硫。
16.如权利要求1所述的方法,其中所述烷烃还含硫。
17.一种合成铝-硅-锗-铂沸石催化剂的方法,其包括:
a)制备一种含有铝、硅和锗的沸石;
b)将铂沉积在沸石上;和
c)煅烧该沸石。
18.如权利要求17所述的方法,其中所述铂通过阳离子交换沉积。
19.如权利要求17所述的方法,其中所述铂通过浸渍沉积。
20.如权利要求17所述的方法,其中该沸石具有MFI、FAU、TON、MFL、VPI、MEL、AEL、AFI、MWW或MOR结构。
21.如权利要求17所述的方法,其中所述催化剂依次先用氢处理、再用硫化合物、然后再用氢处理。
22.一种用于芳构化烃的铝-硅-锗-铂沸石催化剂,其包含:
a)微孔铝-硅-锗沸石;和
b)沉积在微孔铝-硅-锗-铂上的铂。
23.如权利要求22所述的催化剂,其中硅-锗与铝的原子比大于25∶1。
24.如权利要求22所述的催化剂,其中硅-锗与铝的原子比为45∶1-250∶1。
25.如权利要求22所述的催化剂,其中硅-锗与铝的原子比为50∶1-100∶1。
26.如权利要求22所述的催化剂,其中二氧化硅与锗的比为100∶1-9∶1。
27.如权利要求22所述的催化剂,其中二氧化硅与锗的比为50∶1-10∶1。
28.如权利要求22所述的催化剂,其中二氧化硅与锗的比为25∶1-11∶1。
29.如权利要求22所述的催化剂,其中铂以0.05-3%的量存在。
30.如权利要求22所述的催化剂,其中铂以0.2-2%的量存在。
31.如权利要求22所述的催化剂,其中铂0.2-1.5%的量存在。
32.如权利要求22所述的催化剂,其中该沸石的孔隙尺寸为5-100埃。
33.如权利要求32所述的催化剂,其中该沸石的孔隙尺寸为5-50埃。
34.如权利要求33所述的催化剂,其中该沸石的孔隙尺寸为5-20埃。
35.如权利要求22所述的催化剂,其中该沸石具有MFI、FAU、TON、MFL、VPI、MEL、AEL、AFI、MWW或MOR结构。
36.如权利要求22所述的催化剂,其中该催化剂还含硫化合物。
37.如权利要求36所述的催化剂,其中该硫化合物为H2S;CnH2n+2S,其中n=1-20;CnH2n+1S2,其中n=2-22或CnH2n+1S,其中n=2-22.。
38.如权利要求22所述的催化剂,其中该催化剂用式M[(SiO2)(XO2)X(YO2)Y]Z+ y/n表示,其中M是贵金属,X是四价元素,Y是三价元素,Z是n价阳离子,x为0-0.15,y为0-0.125。
39.如权利要求38所述的催化剂,其中M是铂或金。
40.如权利要求38所述的催化剂,其中X是钛、锗或锡。
41.如权利要求38所述的催化剂,其中Y是硼、铝、镓、铟或碲。
42.如权利要求3 8所述的催化剂,其中Z是H+、Na+、K+、Rb+、Cs+、Ca2+、Mg2+、Sr2+或Ba2+
43.如权利要求22所述的催化剂,其中该催化剂具有化学式|H+Pt|[Si91Ge4Al1O192]-MFI。
44.如权利要求22所述的催化剂,其中其X射线衍射图包括本说明书表5中给出的值。
45.一种预处理用于芳构化烃催化剂的方法,其包括:
a)选择一种其上沉积铂的铝-硅-锗沸石;
b)用氢处理该沸石;
d)用硫化合物处理该沸石;
e)再次用氢处理该沸石。
46.如权利要求45所述的方法,其中在第一步处理步骤之前,该沸石与无定型氧化铝结合。
47.如权利要求45所述的方法,其中该硫化合物为H2S;CnH2n+2S,其中n=1-20;CnH2n+1S2,其中n=2-22或CnH2n+1S,其中n=2-22。
CNB038189828A 2002-08-06 2003-08-05 用于烷烃芳构化的催化剂、其制备方法及其应用 Expired - Fee Related CN100422122C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/213,313 2002-08-06
US10/213,313 US6784333B2 (en) 2002-08-06 2002-08-06 Catalyst for aromatization of alkanes, process of making and using thereof

Publications (2)

Publication Number Publication Date
CN1674988A true CN1674988A (zh) 2005-09-28
CN100422122C CN100422122C (zh) 2008-10-01

Family

ID=31494438

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038189828A Expired - Fee Related CN100422122C (zh) 2002-08-06 2003-08-05 用于烷烃芳构化的催化剂、其制备方法及其应用

Country Status (6)

Country Link
US (2) US6784333B2 (zh)
EP (1) EP1531931B1 (zh)
CN (1) CN100422122C (zh)
AU (1) AU2003258030A1 (zh)
RU (1) RU2307117C2 (zh)
WO (1) WO2004013095A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687184A (zh) * 2007-05-24 2010-03-31 沙特基础工业公司 用于烃转化的催化剂及其制造方法和使用方法-结合-1
CN101090865B (zh) * 2004-12-27 2010-09-01 沙特基础工业公司 制造锗-沸石的方法
CN101588866B (zh) * 2007-01-22 2012-07-25 沙特基础工业公司 使用沸石催化剂以转化烃的方法
CN103313959A (zh) * 2010-12-06 2013-09-18 国际壳牌研究有限公司 混合低级烷烃转化成芳烃的方法
CN101945840B (zh) * 2008-02-18 2014-07-16 国际壳牌研究有限公司 用于乙烷转化成芳烃的方法
US8835706B2 (en) 2009-11-02 2014-09-16 Shell Oil Company Process for the conversion of mixed lower alkanes to aromatic hydrocarbons
CN104321139A (zh) * 2012-06-29 2015-01-28 沙特基础工业公司 锗硅沸石催化剂及制备方法和用途
US8946107B2 (en) 2008-02-20 2015-02-03 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
US9144790B2 (en) 2008-02-18 2015-09-29 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
CN106140267A (zh) * 2015-03-27 2016-11-23 中国石油化工股份有限公司 轻烃芳构化催化剂及其制备方法与应用
CN105142786B (zh) * 2013-04-23 2017-06-27 沙特基础工业公司 制备烃芳构化催化剂的方法、该催化剂以及该催化剂的用途
CN112691698A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 一种烷烃芳构化催化剂及其制备方法和应用
CN115518679A (zh) * 2021-06-24 2022-12-27 中国石油化工股份有限公司 一种芳构化催化剂及其制备方法和应用和丁烷芳构化方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19949211A1 (de) * 1999-10-13 2001-05-31 Veba Oel Ag Verfahren zur Herstellung von n-Alkanen aus Mineralölfraktionen und Katalysator zur Durchführung des Verfahrens
US7029650B1 (en) * 2004-12-27 2006-04-18 Saudi Basic Industries Corporation Process for making a germanium-zeolite
EA008933B1 (ru) * 2006-02-07 2007-10-26 Генрих Семёнович Фалькевич Способ повышения стабильности работы катализатора получения ароматических углеводородов из сырья, содержащего пропан и/или бутан
US7745675B2 (en) * 2006-12-20 2010-06-29 Saudi Basic Industries Corporation Regeneration of platinum-germanium zeolite catalyst
US7902413B2 (en) 2007-04-12 2011-03-08 Saudi Basic Industries Corporation Aromatization of alkanes using a germanium-zeolite catalyst
US8969232B2 (en) 2007-05-24 2015-03-03 Saudi Basic Industries Corporation Catalyst for conversion of hydrocarbons, process of making and process of using thereof—incorporation 2
US8993468B2 (en) 2007-05-24 2015-03-31 Saudi Basic Industries Corporation Catalyst for conversion of hydrocarbons, process of making and process of using thereof—Ge zeolites
WO2008153759A2 (en) 2007-05-24 2008-12-18 Saudi Basic Industries Corporation Catalyst for conversion of hydrocarbons, process of making and process of using thereof-bimetallic deposition
US20090156870A1 (en) * 2007-12-12 2009-06-18 Ann Marie Lauritzen Process for the conversion of ethane to mixed lower alkanes to aromatic hydrocarbons
US8809608B2 (en) * 2008-02-18 2014-08-19 Shell Oil Company Process for the conversion of lower alkanes to aromatic hydrocarbons
WO2010009744A1 (de) * 2008-07-24 2010-01-28 Siemens Aktiengesellschaft Parallele navigation in mehreren cad-modellen
CN102112417A (zh) * 2008-07-29 2011-06-29 株式会社明电舍 芳香族化合物的制备方法
US8202815B2 (en) * 2008-12-26 2012-06-19 General Electric Company Catalyst composition for the hydro-treatment of alkanes and methods of use thereof
US8153852B2 (en) * 2009-04-29 2012-04-10 Saudi Basic Industries Corporation Process of using germanium zeolite catalyst for alkane aromatization
CN102548657B (zh) * 2009-09-30 2015-01-21 埃克森美孚化学专利公司 由甲烷制备芳族化合物
US20110132804A1 (en) * 2009-12-04 2011-06-09 Saudi Basic Industries Corporation Increasing octane number of light naphtha using a germanium-zeolite catalyst
WO2011143306A2 (en) 2010-05-12 2011-11-17 Shell Oil Company Process for the conversion of lower alkanes to aromatic hydrocarbons
US10987661B2 (en) 2011-02-17 2021-04-27 AMG Chemistry and Catalysis Consulting, LLC Alloyed zeolite catalyst component, method for making and catalytic application thereof
US9404045B2 (en) 2011-02-17 2016-08-02 AMG Chemistry and Catalysis Consulting, LLC Alloyed zeolite catalyst component, method for making and catalytic application thereof
US9242233B2 (en) 2012-05-02 2016-01-26 Saudi Basic Industries Corporation Catalyst for light naphtha aromatization
US9352306B2 (en) * 2012-07-03 2016-05-31 Basf Se Catalyst and process for removing oxygen from hydrocarbon streams
US9180441B2 (en) 2012-09-20 2015-11-10 Saudi Basic Industries Corporation Method of forming zeolite shaped body with silica binder
CN103934016B (zh) * 2013-01-23 2016-08-17 中国石油化工股份有限公司 Mo/分子筛负载型催化剂制备方法
RU2529680C1 (ru) * 2013-03-28 2014-09-27 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор циклизации нормальных углеводородов и способ его получения (варианты)
WO2015077034A1 (en) 2013-11-22 2015-05-28 Saudi Basic Industries Corporation Catalyst with improved activity/selectivity for light naphtha aromatization
US9446389B2 (en) 2013-12-13 2016-09-20 Saudi Basic Industries Corporation Hydrocarbon aromatization catalyst composition and method of formation
RU2544017C1 (ru) 2014-01-28 2015-03-10 Ольга Васильевна Малова Катализатор и способ ароматизации с3-с4 газов, легких углеводородных фракций алифатических спиртов, а также их смесей
EA031282B1 (ru) 2014-02-25 2018-12-28 Сауди Бейсик Индастриз Корпорейшн Способ получения продукта бтк из смешанного источника углеводородов при использовании коксования
EP3110921B1 (en) 2014-02-25 2018-05-23 Saudi Basic Industries Corporation Process for producing btx from a mixed hydrocarbon source using catalytic cracking
EP3110922B1 (en) 2014-02-25 2018-09-26 Saudi Basic Industries Corporation A method of controlling the supply and allocation of hydrogen gas in a hydrogen system of a refinery integrated with olefins and aromatics plants
WO2015128016A1 (en) 2014-02-25 2015-09-03 Saudi Basic Industries Corporation Process for producing btx from a mixed hydrocarbon source using pyrolysis
US10407629B2 (en) 2014-02-25 2019-09-10 Saudi Basic Industries Corporation Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene and BTX yield
CN106660896A (zh) 2014-06-26 2017-05-10 Sabic环球技术有限责任公司 用于从混合的烃进料物流生产纯化的芳族烃的方法
US10654767B2 (en) 2014-06-26 2020-05-19 Sabic Global Technologies B.V. Process for producing alkylated aromatic hydrocarbons from a mixed hydrocarbon feedstream
WO2017001284A1 (en) 2015-06-29 2017-01-05 Sabic Global Technologies B.V. Process for producing cumene and/or ethylbenzene from a mixed hydrocarbon feedstream
WO2017085050A1 (en) 2015-11-19 2017-05-26 Sabic Global Technologies B.V. Process for heat transfer between reactor feed and effluent
WO2017102411A1 (en) * 2015-12-14 2017-06-22 Sabic Global Technologies B.V. Process for converting lpg to higher hydrocarbon(s)
CN112714670A (zh) 2018-08-30 2021-04-27 沙特基础工业全球技术公司 具有改良异构化的芳构化催化剂、其制造和使用方法
EP3689843A1 (en) 2019-02-01 2020-08-05 Basf Se A method for producing an aromatic hydrocarbon or a mixture of aromatic hydrocarbons from a low molecular hydrocarbon or a mixture of low molecular hydrocarbons

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329480A (en) * 1963-10-18 1967-07-04 Union Oil Co Crystalline zircono-silicate zeolites
US3329481A (en) * 1963-10-18 1967-07-04 Union Oil Co Crystalline titano-silicate zeolites
US4036741A (en) * 1975-01-02 1977-07-19 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
NL175162C (nl) * 1976-12-16 1984-10-01 Shell Int Research Werkwijze voor het bereiden van kristallijne silicaten en toepassing van de verkregen silicaten als katalysator of katalysatordrager.
DK155176C (da) * 1978-06-22 1989-07-17 Snam Progetti Fremgangsmaade til fremstilling af aluminiumoxidmodificeret siliciumdioxid
JPS6035284B2 (ja) * 1981-01-27 1985-08-14 東レ株式会社 ペンタシル型ゼオライトの製造法
JPS5912115A (ja) 1982-07-13 1984-01-21 Samukomu Electron Kk 自動車排ガス浄化用触媒
JPS59121115A (ja) 1982-12-28 1984-07-13 Idemitsu Kosan Co Ltd 新規なホ−ジヤサイト型鉄含有結晶質アルミノシリケ−ト
US4713227A (en) * 1983-12-19 1987-12-15 Mobil Oil Corporation Method for the synthesis of metallophosphoaluminates
US4992250A (en) * 1984-04-13 1991-02-12 Uop Germanium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
JP2617291B2 (ja) * 1984-08-15 1997-06-04 智行 乾 低級パラフイン系炭化水素の芳香族炭化水素への変換方法
US4705907A (en) * 1985-05-29 1987-11-10 Showa Shell Sekiyu Kabushiki Kaisha Production of liquid hydrocarbon from gas containing lower hydrocarbon
US4590323A (en) * 1985-06-12 1986-05-20 Mobil Oil Corporation Conversion of paraffins to aromatics over zeolites modified with oxides of group IIIA, IVA and VA elements
US4590322A (en) * 1985-06-12 1986-05-20 Mobil Oil Corporation Use of hydrogen sulfide to improve benzene production over zeolites
ATE64727T1 (de) * 1987-07-13 1991-07-15 Inventio Ag Steuereinrichtung fuer eine aufzugsanlage.
US5179054A (en) * 1987-12-28 1993-01-12 Mobil Oil Corporation Layered cracking catalyst and method of manufacture and use thereof
FR2629444B1 (fr) * 1988-04-01 1990-12-07 Rhone Poulenc Chimie Zeolites a base de silice et d'oxyde de germanium et procede de synthese de celles-ci
US4910357A (en) * 1988-06-24 1990-03-20 Mobil Oil Corporation Alkylate upgrading
US5124497A (en) * 1989-10-11 1992-06-23 Mobil Oil Corporation Production of mono-substituted alkylaromatics from C8 +N-paraffins
FR2666249B1 (fr) * 1990-09-03 1994-07-22 Inst Francais Du Petrole Catalyseur et procede d'aromatisation des hydrocarbures contenant 2 a 4 atomes de carbone par molecule.
FR2674769B1 (fr) * 1991-04-04 1994-04-29 Inst Francais Du Petrole Catalyseur du type galloaluminosilicate contenant du gallium, un metal noble de la famille du platine et au moins un metal additionnel, et son utilisation en aromatisation des hydrocarbures.
US5672796A (en) * 1992-02-13 1997-09-30 Amoco Corporation Catalyst and process for hydrocarbon aromatization
ATE207036T1 (de) * 1992-12-16 2001-11-15 Chevron Usa Inc Herstellung von aluminosilikatzeolithen
US5362695A (en) * 1993-04-13 1994-11-08 Mobil Oil Corp. Inorganic molecular sieves encapsulating chelates
FR2704864B1 (fr) * 1993-05-06 1995-11-17 Inst Francais Du Petrole Procede d'hydroreformage catalytique.
CN1044571C (zh) * 1993-05-24 1999-08-11 中国石油化工总公司上海石油化工研究院 环氧化合物连续加氢脱醛催化剂
JP3191489B2 (ja) * 1993-05-27 2001-07-23 三菱化学株式会社 ハロゲン化無水フタル酸の製造法
CA2268144C (en) * 1996-10-17 2008-08-26 Exxon Chemical Patents, Inc. Hydrocarbon conversion using large crystal zeolite catalyst
US5977009A (en) * 1997-04-02 1999-11-02 Arco Chemical Technology, Lp Catalyst compositions derived from titanium-containing molecule sieves
US6261534B1 (en) * 1999-11-24 2001-07-17 Chevron U.S.A. Inc. Method for making ZSM-5 zeolites

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090865B (zh) * 2004-12-27 2010-09-01 沙特基础工业公司 制造锗-沸石的方法
CN101588866B (zh) * 2007-01-22 2012-07-25 沙特基础工业公司 使用沸石催化剂以转化烃的方法
CN101687184A (zh) * 2007-05-24 2010-03-31 沙特基础工业公司 用于烃转化的催化剂及其制造方法和使用方法-结合-1
US9144790B2 (en) 2008-02-18 2015-09-29 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
CN101945840B (zh) * 2008-02-18 2014-07-16 国际壳牌研究有限公司 用于乙烷转化成芳烃的方法
US8946107B2 (en) 2008-02-20 2015-02-03 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
US8835706B2 (en) 2009-11-02 2014-09-16 Shell Oil Company Process for the conversion of mixed lower alkanes to aromatic hydrocarbons
CN103313959A (zh) * 2010-12-06 2013-09-18 国际壳牌研究有限公司 混合低级烷烃转化成芳烃的方法
CN103313959B (zh) * 2010-12-06 2016-01-13 国际壳牌研究有限公司 混合低级烷烃转化成芳烃的方法
CN104321139A (zh) * 2012-06-29 2015-01-28 沙特基础工业公司 锗硅沸石催化剂及制备方法和用途
CN105142786B (zh) * 2013-04-23 2017-06-27 沙特基础工业公司 制备烃芳构化催化剂的方法、该催化剂以及该催化剂的用途
CN106140267A (zh) * 2015-03-27 2016-11-23 中国石油化工股份有限公司 轻烃芳构化催化剂及其制备方法与应用
CN106140267B (zh) * 2015-03-27 2019-02-01 中国石油化工股份有限公司 轻烃芳构化催化剂及其制备方法与应用
CN112691698A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 一种烷烃芳构化催化剂及其制备方法和应用
CN115518679A (zh) * 2021-06-24 2022-12-27 中国石油化工股份有限公司 一种芳构化催化剂及其制备方法和应用和丁烷芳构化方法
CN115518679B (zh) * 2021-06-24 2024-03-26 中国石油化工股份有限公司 一种芳构化催化剂及其制备方法和应用和丁烷芳构化方法

Also Published As

Publication number Publication date
RU2005102841A (ru) 2005-07-10
RU2307117C2 (ru) 2007-09-27
US7247593B2 (en) 2007-07-24
CN100422122C (zh) 2008-10-01
AU2003258030A8 (en) 2004-02-23
US20040028584A1 (en) 2004-02-12
EP1531931A2 (en) 2005-05-25
WO2004013095A3 (en) 2004-07-08
EP1531931B1 (en) 2019-01-16
US20040192539A1 (en) 2004-09-30
US6784333B2 (en) 2004-08-31
EP1531931A4 (en) 2012-03-21
AU2003258030A1 (en) 2004-02-23
WO2004013095A2 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
CN1674988A (zh) 用于烷烃芳构化的催化剂、其制备方法及其应用
JP5508717B2 (ja) 第viii族金属および第iiia族金属を含む二ゼオライト触媒および芳香族c8化合物の異性化におけるその使用
KR101539613B1 (ko) 촉매와, 이 촉매를 이용하여 탄화수소 공급원료로부터경방향족 탄화수소 및 경알칸의 제조방법
EP0057049B1 (en) Crystalline alumino silicates and their use as catalysts
US8772563B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
US7186872B2 (en) Catalyst for aromatization of alkanes, process of making and process of using thereof
JP5576266B2 (ja) ゲルマニウム−ゼオライト触媒を用いたアルカンの芳香族化
US8871990B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
RU2488442C2 (ru) Катализатор, содержащий цеолит izm-2 и, по меньшей мере, один металл, и его применение в способах превращения углеводородов
JP5528619B2 (ja) Uzm−35を用いるキシレン及びエチルベンゼンの異性化方法
DE69320195T3 (de) Synthese von zeolithfilmen, die an substraten gebunden sind, strukturen sowie ihre verwendungen
US8809608B2 (en) Process for the conversion of lower alkanes to aromatic hydrocarbons
JP5672426B2 (ja) キシレン異性化用触媒及びその製造方法
JP4261180B2 (ja) 結晶性アルミノ珪酸塩ゼオライト:uzm−5、uzm−5p及びuzm−6、及びそれを用いる方法
JPH10509720A (ja) 二段床式キシレン異性化
KR20000016112A (ko) 금속-함유 제올라이트 촉매, 그의 제조방법 및탄화수소 전환을위한 그의 용도
JPS62169736A (ja) キシレン異性化法
JP2000143236A (ja) ゼオライト材料種を用いるeuo型構造を有するゼオライトの調製方法およびac8異性化触媒としてのその使用
RU2570427C1 (ru) Катализатор и способ конверсии углеводородов
GB2023562A (en) Modified silica and germania
JPH0576453B2 (zh)
CN1769249A (zh) 芳香族化合物的催化异构化方法
JP2598127B2 (ja) キシレンの異性化方法
KR20010103640A (ko) Euo 구조 유형의 제올라이트를 제조하는 방법, 이방법에 따라 제조된 제올라이트 및 c8 방향족 화합물을이성질화시키는 촉매로서 상기 제올라이트의 용도
EP2934746A1 (en) A dehydroaromatization catalyst, method of making and use thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081001

Termination date: 20210805

CF01 Termination of patent right due to non-payment of annual fee