CN1668661A - 硅烷可交联的聚乙烯 - Google Patents

硅烷可交联的聚乙烯 Download PDF

Info

Publication number
CN1668661A
CN1668661A CNA038173069A CN03817306A CN1668661A CN 1668661 A CN1668661 A CN 1668661A CN A038173069 A CNA038173069 A CN A038173069A CN 03817306 A CN03817306 A CN 03817306A CN 1668661 A CN1668661 A CN 1668661A
Authority
CN
China
Prior art keywords
polymer composition
melt index
silane compound
composition
electrical part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038173069A
Other languages
English (en)
Other versions
CN100484975C (zh
Inventor
G·A·埃勒曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1668661A publication Critical patent/CN1668661A/zh
Application granted granted Critical
Publication of CN100484975C publication Critical patent/CN100484975C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Removal Of Specific Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

提供可交联或交联的聚合物组合物,所述组合物包括:乙烯和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;和包括硅烷化合物和自由基引发剂的硅烷接枝组合物;或其反应产物。所述可交联或交联的组合物特别适用于电应用,如电力电缆、电信电缆和组合的电力/电信电缆的绝缘、半导体或护套层中。

Description

硅烷可交联的聚乙烯
1. 相关申请的交叉参考
本申请要求US临时申请号60/400 242(2002-07-31)和60/400160(2002-08-01)的权益,均引入本文供参考。
2. 发明领域
本发明一般涉及可交联的或交联的聚合物。更具体地,本发明提供包括硅烷可交联的或交联的茂金属催化的聚乙烯共聚物的组合物,和包括该组合物的电器件,尤其是作为电力电缆、电信电缆或组合的电力/电信电缆中的一或多个电绝缘层、半导层或护套层。
3. 背景
电器件的绝缘、半导和护套层中使用多种聚合物材料。特别地,广泛使用通过高压自由基聚合生产的低密度聚乙烯(LDPE)和通过齐格勒-纳塔催化聚合生产的线型低密度聚乙烯(LLDPE)。通常使这些材料交联以改善机械强度、加工性能、和耐高温降解性等各种性能。
交联的LDPE有许多优于交联LLDPE的优点。具体地,LDPE的加工性能更好,如熔体破裂更低、熔体强度更高、和挤出中所需扭矩减少。LDPE绝缘体的电性能也优于LLDPE基绝缘体,因为LDPE树脂不包括残余的有导电性的催化剂。尽管齐格勒-纳塔型LLDPE的加工性能不利,但电应用中也广泛使用LLDPE,因其在老化前后的机械强度、交联速度、和性价比总体改进方面优势明显。
该领域仍需要兼备LDPE的加工性优点和齐格勒-纳塔型LLDPE的机械强度和交联速度的可交联和交联的聚合物组合物。
4. 发明概述
一实施方案中,本发明提供一种聚合物组合物,所述组合物包括:乙烯和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;和硅烷接枝组合物;或其反应产物。所述硅烷接枝组合物包括自由基引发剂和有能接枝至所述乙烯共聚物之上的不饱和基团和一或多个能经历缩合交联反应的可水解基团的硅烷化合物。该聚合物组合物特别适用于电器件。
另一实施方案中,本发明提供一种硅烷交联的聚合物组合物,所述组合物包括以下物质的反应产物:(a)乙烯和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;(b)硅烷接枝组合物,包括自由基引发剂和有能接枝至所述乙烯共聚物之上的不饱和基团和一或多个能经历缩合交联反应的可水解基团的硅烷化合物;和(c)硅烷醇缩合催化剂。该聚合物组合物特别适用于电器件。
其它实施方案中,本发明提供包括本文所述可交联或交联的聚合物组合物之任一的电器件。所述可交联或交联的聚合物组合物可构成或为所述器件的绝缘层、半导体层、护套层、或多于一个此层的组分。该实施方案的特殊方面中,所述电器件为低、中或高压电力电缆、电信电缆、或组合的电力/电信电缆。
5. 附图简述
图1为本发明一实施方案的电器件的透视图。
图2为本发明一实施方案的电器件的横截面图。
图3为本发明一实施方案的电器件的横截面图。
图4为本发明一实施方案的电器件的横截面图。
图5A和5B分别示出未接枝和接枝树脂的熔体温度随挤出机rpm的变化。
图6A和6B分别示出未接枝和接枝树脂的压力随挤出机rpm的变化。
图7示出60rpm下硅烷交联的聚乙烯树脂的热变定(hot set,%伸长率)。
6. 详述
6.1 聚乙烯树脂
适用于本文所述组合物的聚乙烯树脂是乙烯与至少一种共聚单体的共聚物。本文所用术语“共聚物”也包括有多于两种单体的聚合物如三元共聚物。本文所用术语“乙烯共聚物”表示由多于50mol%聚合的乙烯单元形成的聚合物,剩余的少于50mol%的聚合单元是聚合的α-烯烃单体,如C3-C20α-烯烃或C3-C12α-烯烃。所述α-烯烃共聚单体可以是直链或支链的,需要时可使用两或多种共聚单体。适合的共聚单体的例子包括直链C3-C12α-烯烃、和有一或多个C1-C3烷基支链或芳基的α-烯烃。具体实例包括丙烯;1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;有一或多个甲基、乙基或丙基取代基的1-戊烯;有一或多个甲基、乙基或丙基取代基的1-己烯;有一或多个甲基、乙基或丙基取代基的1-庚烯;有一或多个甲基、乙基或丙基取代基的1-辛烯;有一或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二碳烯;和苯乙烯。应理解以上所列共聚单体仅仅是举例说明而不是要限制。优选的共聚单体包括丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-辛烯和苯乙烯。
其它适合的共聚单体可包括极性的乙烯基、共轭和非共轭二烯、乙炔和醛类单体,可以少量包含在三元共聚物组合物中。适用作共聚单体的非共轭二烯优选为有6至15个碳原子的直链烃二烯或环烯基取代的链烯烃。适合的非共轭二烯包括例如:(a)直链无环二烯,如1,4-己二烯和1,6-辛二烯;(b)支链无环二烯,如5-甲基-1,4-己二烯、3,7-二甲基-1,6-辛二烯和3,7-二甲基-1,7-辛二烯;(c)单环脂环族二烯,如1,4-环己二烯、1,5-环辛二烯和1,7-环十二碳二烯;(d)多环脂环族稠环和桥环二烯,如四氢化茚、降冰片二烯、甲基-四氢化茚、二环戊二烯(DCPD)、双环-(2.2.1)-庚-2,5-二烯;链烯基、亚烷基、环烯基和亚环烷基降冰片烯,如5-亚甲基-2-降冰片烯(MNB)、5-丙烯基-2-降冰片烯、5-异亚丙基-2-降冰片烯、5-(4-环戊烯基)-2-降冰片烯、5-亚环己基-2-降冰片烯、和5-乙烯基-2-降冰片烯(VNB);和(e)环烯基取代的烯烃,如乙烯基环己烯、烯丙基环己烯、乙烯基环辛烯、4-乙烯基环己烯、烯丙基环癸烯和乙烯基环十二碳烯。常用的非共轭二烯中,优选的二烯是二环戊二烯、1,4-己二烯、5-亚甲基-2-降冰片烯、5-亚乙基-2-降冰片烯、和四环-(Δ-11,12)-5,8-十二碳烯。特别优选的二烯烃是5-亚乙基-2-降冰片烯(ENB)、1,4-己二烯、二环戊二烯(DCPD)、降冰片二烯、和5-乙烯基-2-降冰片烯(VNB)。注意本说明书中术语“非共轭二烯”和“二烯”可互换使用。
应理解共聚单体的用量取决于所要聚乙烯聚合物的密度和所选共聚单体。对于给定的共聚单体,随着共聚单体含量增加,由其生产的聚乙烯聚合物的密度下降。本领域技术人员可很容易地确定适合生产有所要密度的共聚物的共聚单体含量。
一般在流化床反应器内用气相茂金属催化的聚合法生产适合的聚乙烯树脂。以下对所述催化剂和方法进行进一步详细的描述。
适用于本发明组合物的聚乙烯树脂更详细地描述在US6 255 426中。
适合的聚乙烯树脂可有以下性质之一或多项(包括任何下限至任何上限的范围):
(a)组成分布宽度指数(“CDBI”)为至少70%或至少75%或至少80%;
(b)熔体指数I2.16从下限0.1或0.3至上限10或15g/10min;
(c)密度从下限0.910或0.916或0.918至上限0.940或0.935或0.930或0.927g/cm3
(d)熔体指数比I21.6/I2.16从下限30或35至上限80或60;和
(e)Mw/Mn从下限2.5或2.8或3.0或3.2至5.5或上限4.5或4.0或3.8。
优选实施方案有所有特征(a)-(e),所列举的下限和/或上限的任何组合。因此,例如,一实施方案中,所述聚乙烯树脂的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5。
另一实施方案中,所述聚乙烯树脂的CDBI为至少75%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5。
另一实施方案中,所述聚乙烯树脂的CDBI为至少80%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数I2.16为0.1至10g/10min。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数I2.16为0.3至15g/10min。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数I2.16为0.3至10g/10min。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.910至0.935g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.910至0.930g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.910至0.927g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.916至0.940g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.916至0.935g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.916至0.930g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.916至0.927g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.918至0.940g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.918至0.935g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.918至0.930g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但密度为0.918至0.927g/cm3
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数比I21.6/I2.16为30至60。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数比I21.6/I2.16为35至80。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但熔体指数比I21.6/I2.16为35至60。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.5至4.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.5至4.0。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.5至3.8。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.8至5.0。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.8至4.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.8至4.0。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为2.8至3.8。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.0至5.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.0至4.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.0至4.0。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.0至3.8。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.2至5.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.2至4.5。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.2至4.0。
另一实施方案中,所述聚乙烯树脂有上述实施方案之任一的性能,但Mw/Mn之比为3.2至3.8。
除上述性能之外,还可根据其在单层膜中的性能表征所述聚乙烯树脂。此性能不使所述聚乙烯树脂限于单层膜应用,但提供使所述树脂与可能有类似的整体树脂性能但在由所述树脂形成的单层膜中有更微妙和明显区别的其它树脂区分开的另一手段。
因此,另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于按ASTM D-1003-95测量,由所述树脂形成的单层膜的雾度值小于20%。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于按ASTM D-1003-95测量,由所述树脂形成的单层膜的雾度值小于15%。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的平均模量M为20000psi(14000N/cm2)至60000psi(41000N/cm2),其中M是按ASTMD-882-97测定的纵向和横向1%正割模量的算术平均值。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的落镖冲击强度为120至1000g/mil(4.7至40g/μm)。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的落镖冲击强度为120至800g/mil(4.7至32g/μm)。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的落镖冲击强度为150至1000g/mil(5.9至40g/μm)。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的落镖冲击强度为150至800g/mil(5.9至32g/μm)。
另一实施方案中,根据上述实施方案之任一的聚乙烯树脂的进一步特征在于由所述树脂形成的单层膜的平均模量M和落镖冲击强度(D)之间的关系符合式(1a)
D ≥ 0.8 [ 100 + e ( 11.71 - 0.000268 M + 2.183 × 10 - 9 M 2 ) ] - - - - ( 1 a )
其中M以psi为单位,D以g/mil为单位,或等值地符合式(1b)
D ≥ 0.0315 [ 100 + e ( 11.71 - 0.003887 M + 4.592 × 10 - 5 M 2 ) ] - - - - ( 1 b )
其中M以MPa为单位,D以g/μm为单位。式中,“e”为自然对数基数2.718。
6.1.1 生产聚乙烯树脂用催化剂
本文所用术语“茂金属”和“茂金属催化剂前体”意指有一或多个环戊二烯基(Cp)配体(可以是取代的)、至少一个非环戊二烯基衍生的配体(X)、和零或一个含杂原子的配体(Y)的第4、5或6族过渡金属(M)化合物,这些配体与M配位而且数量与其化合价相应。所述茂金属催化剂前体一般需要用适合的助催化剂(称为“活化剂”)活化以获得“活性茂金属催化剂”,即有可配位、插入和使烯烃聚合的空配位部位的有机金属配合物。一般地,茂金属催化剂前体可以是以下类型之一或之二的茂金属化合物之一或混合物:
(1)有两个用于配体的Cp环系的环戊二烯基(Cp)配合物。所述Cp配体与金属形成夹心配合物而且可自由旋转(未桥连的)或者通过桥连基固定在刚性构型中。所述Cp环配体可以是相同或不同的、未取代的、取代的或其衍生物,如杂环环系(可以是取代的),取代基可稠合形成其它饱和或不饱和的环系如四氢茚基、茚基或芴基环系。这些环戊二烯基配合物有以下通式:
          (Cp1R1 m)R3 n(Cp2R2 p)MXq
其中:Cp1和Cp2为相同或不同的环戊二烯基环;R1和R2各自独立地为卤素或含有最多约20个碳原子的烃基、卤碳基(halocarbyl)、烃基取代的有机准金属或卤碳基取代的有机准金属基;m为0至5;p为0至5;与之相伴的环戊二烯基环的相邻碳原子上的两个R1和/或R2取代基可连接在一起形成含4至约20个碳原子的环;R3为桥连基;n为两配体之间直链中的原子数,为0至8、优选0至3;M为3至6价的过渡金属,优选选自元素周期表第4、5或6族而且优选处于其最高氧化态;每个X均为非环戊二烯基配体,且独立地为氢、卤素或含有最多约20个碳原子的烃基、氧烃基、卤碳基、烃基取代的有机准金属、氧烃基取代的有机准金属或卤碳基取代的有机准金属基;和q等于M的化合价减2。
(2)只有一个Cp环系作为配体的单环戊二烯基配合物。所述Cp配体与金属形成半夹心配合物而且可自由旋转(未桥连的)或通过与含杂原子配体的桥连基固定在刚性构型中。所述Cp环配体可以是未取代的、取代的或其衍生物如杂环环系(可以是取代的),且取代基可稠合形成其它饱和或不饱和的环系如四氢茚基、茚基或芴基环系。含杂原子的配体与金属键合而且可选地通过桥连基与所述Cp配体键合。所述杂原子本身是元素周期表第15族的配位数为3的原子或元素周期表第16族的配位数为2的原子。这些单环戊二烯基配合物有以下通式:
        (Cp1R1 m)R3 n(YrR2)MXs
其中:每个R1独立地为卤素或含有最多约20个碳原子的烃基、卤碳基、烃基取代的有机准金属或卤碳基取代的有机准金属基,“m”为0至5,与之相伴的环戊二烯基环的相邻碳原子上的两个R1取代基可连接在一起形成含4至约20个碳原子的环;R3为桥连基;“n”为0至3;M为3至6价的过渡金属,优选选自元素周期表第4、5或6族而且优选处于其最高氧化态;Y为含有杂原子的基团,其中所述杂原子是第15族的配位数为3的元素或第16族的配位数为2的元素,优选氮、磷、氧或硫;R2为选自C1-C20烃基和其中一或多个氢原子被卤原子取代的取代的C1-C20烃基的基团,和当Y为三配位而且未桥连时,Y上的两个R2基可各自独立地为选自C1-C20烃基和其中一或多个氢原子被卤原子取代的取代的C1-C20烃基的基团,每个X均为非环戊二烯基配体,且独立地为氢、卤素或含有最多约20个碳原子的烃基、氧烃基、卤碳基、烃基取代的有机准金属、氧烃基取代的有机准金属或卤碳基取代的有机准金属基;“s”等于M的化合价减2。
优选的茂金属是双环戊二烯基化合物,优选通过包含一个碳、锗或硅原子的桥连基桥连。
适合的上面(1)中所述类型的双环戊二烯基茂金属的说明性而非限制性的例子是以下的外消旋异构体:
μ-(CH3)2Si(茚基)2M(Cl)2
μ-(CH3)2Si(茚基)2M(CH3)2
μ-(CH3)2Si(四氢茚基)2M(Cl)2
μ-(CH3)2Si(四氢茚基)2M(CH3)2
μ-(CH3)2Si(茚基)2M(CH2CH3)2;和
μ-(C6H5)2C(茚基)2M(CH3)2
其中M为Zr或Hf。
适合的上面(1)中所述类型的非对称环戊二烯基茂金属的例子公开在US 4 892 851;5 334 677;5 416 228;和5 449 651;和J.Am.Chem.Soc.,1988,110,6255中。
优选的上面(1)中所述类型的非对称环戊二烯基茂金属的说明性而非限制性的例子是:
μ-(C6H5)2C(环戊二烯基)(芴基)M(R)2
μ-(C6H5)2C(3-甲基环戊二烯基)(芴基)M(R)2
μ-(CH3)2C(环戊二烯基)(芴基)M(R)2
μ-(C6H5)2C(环戊二烯基)(2-甲基茚基)M(CH3)2
μ-(C6H5)2C(3-甲基环戊二烯基)(2-甲基茚基)M(Cl)2
μ-(C6H5)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2;和
μ-(CH3)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2
其中M为Zr或Hf,R为Cl或CH3
上面(2)中所述类型的单环戊二烯基茂金属的例子公开在US 5 026798;5 057 475;5 350 723;5 264 405;5 055 438;和WO96/002244中。
所述茂金属化合物与活化剂接触产生活性催化剂。一类活化剂是非配位阴离子,其中术语“非配位阴离子”(NCA)意指不与所述过渡金属阳离子配位或仅与所述过渡金属阳离子弱配位从而保持足以被中性路易斯碱置换的不稳定状态的阴离子。“相容的”非配位阴离子是最初生成的配合物分解时不降解至中性的阴离子。此外,所述阴离子不将阴离子取代基或片段转移给阳离子使之生成中性四配位茂金属化合物和由所述阴离子生成的中性副产物。适用于本发明的非配位阴离子是相容的非配位阴离子,在以+1态平衡其离子电荷的意义上稳定所述茂金属阳离子,还保留足够的不稳定性允许在聚合过程中被烯属或炔属不饱和单体置换。此外,在分子尺寸足够大以抑制或防止所述茂金属阳离子被聚合过程中可能存在的除可聚合单体以外的路易斯碱中和的意义上适用于本发明的阴离子将很大或庞大。典型地所述阴离子的分子尺寸大于或等于约4埃。非配位阴离子的例子可参见EP277 004。
茂金属催化剂的另一种制备方法利用最初为中性路易斯酸但在与茂金属化合物发生电离反应时生成所述阳离子和阴离子的阴离子前体的电离作用。例如,三(五氟苯基)硼从所述茂金属化合物中夺取烷基、氢根或甲硅烷基配体产生茂金属阳离子和稳定的非配位阴离子;参见EP-A-0 427 697和EP-A-0 520 732。还可通过用包含金属氧化基团及阴离子基的阴离子前体使过渡金属化合物的金属中心氧化制备加成聚合用茂金属催化剂;参见EP-A-0 495 375。
适合的能使本发明茂金属化合物阳离子化随后用所得非配位阴离子稳定的活化剂的例子包括:
三烷基取代的铵盐如:
四苯基硼酸三乙铵;
四苯基硼酸三丙铵;
四苯基硼酸三正丁铵;
四(p-甲苯基)硼酸三甲铵;
四(o-甲苯基)硼酸三甲铵;
四(五氟苯基)硼酸三丁铵;
四(o,p-二甲基苯基)硼酸三丙铵;
四(m,m-二甲基苯基)硼酸三丁铵;
四(p-三氟甲基苯基)硼酸三丁铵;
四(五氟苯基)硼酸三丁铵;和
四(o-甲苯基)硼酸三正丁铵;
N,N-二烷基苯铵盐如:
四(五氟苯基)硼酸N,N-二甲基苯铵;
四(七氟萘基)硼酸N,N-二甲基苯铵;
四(全氟-4-联苯基)硼酸N,N-二甲基苯铵;
四苯基硼酸N,N-二甲基苯铵;
四苯基硼酸N,N-二乙基苯铵;和
四苯基硼酸N,N-2,4,6-五甲基苯铵;
二烷基铵盐如:
四(五氟苯基)硼酸二异丙铵;和
四苯基硼酸二环己铵;和
三芳基鏻盐如:
四苯基硼酸三苯基鏻;
四苯基硼酸三(甲基苯基)鏻;和
四苯基硼酸三(二甲基苯基)鏻。
适合的阴离子前体的其它例子包括含有稳定的碳鎓离子和相容的非配位阴离子的那些阴离子前体。包括:
四(五氟苯基)硼酸鎓;
四(五氟苯基)硼酸三苯基甲鎓;
四(五氟苯基)硼酸重氮苯;
苯基三(五氟苯基)硼酸鎓;
苯基三(五氟苯基)硼酸三苯基甲鎓;
苯基三(五氟苯基)硼酸重氮苯;
四(2,3,5,6-四氟苯基)硼酸鎓;
四(2,3,5,6-四氟苯基)硼酸三苯基甲鎓;
四(3,4,5-三氟苯基)硼酸重氮苯;
四(3,4,5-三氟苯基)硼酸鎓;
四(3,4,5-三氟苯基)硼酸重氮苯;
四(3,4,5-三氟苯基)铝酸鎓;
四(3,4,5-三氟苯基)铝酸三苯基甲鎓;
四(3,4,5-三氟苯基)铝酸重氮苯;
四(1,2,2-三氟乙烯基)硼酸鎓;
四(1,2,2-三氟乙烯基)硼酸三苯基甲鎓;
四(1,2,2-三氟乙烯基)硼酸重氮苯;
四(2,3,4,5-四氟苯基)硼酸鎓;
四(2,3,4,5-四氟苯基)硼酸三苯基甲鎓;和
四(2,3,4,5-四氟苯基)硼酸重氮苯。
所述金属配体包括在标准条件下不能电离夺取的卤根部分例如二氯·(甲基苯基)亚甲硅烷基(四甲基-环戊二烯基)·(叔丁氨基)合锆的情况下,可通过已知的与有机金属化合物如氢化或烷基锂或铝、烷基铝氧烷、格利雅试剂等的烷基化反应使之转化。参见EP-A-0 500 944、EP-A1-0 570 982和EP-A1-0 612 768描述在加入活化阴离子化合物之前或之时烷基铝化合物与二卤代茂金属化合物反应的方法。例如,可在进入反应容器之前使烷基铝化合物与茂金属混合。由于烷基铝还适合作清除剂(如后面所述),其用量超过使茂金属烷基化所需化学计量将允许其与茂金属化合物一起加入反应溶剂中。通常,铝氧烷不与茂金属一起加入,以避免过早活化,但既用作清除剂又用作烷基化活化剂时可在可聚合单体存在下直接加入反应容器中。
烷基铝氧烷也适合作为催化剂活化剂,特别是用于有卤根配体的那些茂金属。适合作催化剂活化剂的铝氧烷通常是通式(R-Al-O)n(为环状化合物)或R(R-Al-O)nAlR2(为线性化合物)所示低聚铝化合物。式中,R或R2均为C1-C5烷基,例如甲基、乙基、丙基、丁基或戊基,“n”为1至约50的整数。最优选R为甲基,“n”为至少4,即甲基铝氧烷(MAO)。铝氧烷可通过本领域已知的各种方法制备。例如,可用溶于惰性有机溶剂的水处理烷基铝,或者可使之与水合盐如悬浮于惰性有机溶剂中的水合硫酸铜接触,产生铝氧烷。无论如何制备,烷基铝与有限量的水反应一般产生线性和环状铝氧烷的混合物。
可选地,还使用清除化合物。本文所用术语“清除化合物”意指能从反应溶剂中除去极性杂质的化合物。此杂质可能是无意中随任何聚合反应组分特别是溶剂、单体和共聚单体进料引入的,通过降低或甚至消除催化活性不利地影响催化剂的活性和稳定性,尤其是在茂金属阳离子-非配位阴离子对为催化剂体系时。所述极性杂质或催化剂毒物包括水、氧、氧化的烃、金属杂质等。优选在供入反应容器之前采取措施,例如在各组分的合成或制备之后或期间进行化学处理或精细分离技术,但在聚合过程自身中通常仍需要少量的清除化合物。典型地,所述清除化合物是有机金属化合物如US 5 153 157和5 241 025;EP-A-0 426 638;WO-A-91/09882;WO-A-94/03506;和WO-A-93/14132的第13族有机金属化合物。典型的化合物包括三乙基铝、三乙基硼烷、三异丁基铝、异丁基铝氧烷,有与金属或准金属中心共价键合的庞大取代基的那些是优选的以使与活性催化剂的不利相互作用减到最小。
优选不使用清除化合物,而在基本上没有清除剂的条件下进行反应。本文所用术语“基本上没有清除剂”和“基本上无或无路易斯酸清除剂”表示供入反应器的原料气体中存在少于100ppm(重)的此类清除剂,或优选除载体上可能存在的之外不故意添加清除剂例如烷基铝清除剂。
优选所述催化剂基本上无非桥连的茂金属化合物;即所述催化剂中不有意地添加此类茂金属或优选此催化剂中不能识别出此类茂金属。优选的催化剂是包括一对π-键合配体(如环戊二烯基配体)的化合物,所述配体至少之一有至少两个环状稠环如茚基环结构。一特定实施方案中,所述茂金属是包括连接与过渡金属原子π-键合的两个多核配体的单原子硅桥的基本上单(single)茂金属物质。此桥连茂金属化合物的一个特例是二氯·二甲基甲硅烷基-双(四氢茚基)合锆,也表示为(CH3)2Si(H4Ind)2ZrCl2,其中术语“H4Ind”表示四氢茚基。
所述催化剂优选负载于氧化硅之上,所述催化剂均匀地分布在氧化硅的孔中。优选使用相当少量的甲基铝氧烷,如使Al与过渡金属之摩尔比为400至30或200至50。
6.1.2 聚乙烯树脂的生产方法
生产聚乙烯树脂的适合方法为本领域公知。一种优选的方法是稳态聚合法,如在气相流化床反应器中。
用于使单体尤其是烯烃单体均聚和共聚的气相法为本领域公知。此方法可通过例如向树脂颗粒和催化剂的搅拌和/或流化床中输入气态单体进行。
烯烃的流化床聚合中,在流化床反应器内进行聚合,其中利用包括气态反应单体的上升气流使聚合物颗粒床保持流化状态。在搅拌床反应器内的烯烃聚合与气体流化床反应器内聚合的区别在于反应区内机械搅拌器的作用,其促使所述床流化。本文所用术语“流化床”还包括搅拌床法和反应器。
流化床反应器的启动一般利用预制聚合物颗粒床。聚合过程中,通过单体的催化聚合产生新聚合物,取出聚合物产品使床体积保持恒定。一种工业上有利的方法利用流化格栅使流化气体分布在床中,还在停止供气时起支承床的作用。一般通过设置在反应器下部邻近流化格栅的一或多个排出管从反应器中取出生产的聚合物。所述流化床包括生长聚合物颗粒、聚合物产品颗粒和催化剂颗粒床。通过流化气(包括来自反应器顶部的循环气)与所加补充单体一起不断地从反应器底部向上流动使反应混合物保持流化状态。
流化气进入反应器底部,优选通过流化格栅,向上通过流化床。
烯烃聚合是放热反应,因而需要使床冷却以除去聚合热。无此冷却的情况下,床温将升高直至例如所述催化剂钝化或聚合物颗粒熔化并开始熔合。
烯烃的流化床聚合中,除去聚合热的典型方法是使冷却气如温度低于所要聚合温度的流化气通过流化床除去聚合热。所述气体从反应器中排出,通过外部换热器冷却,然后循环回所述床。
循环气的温度可在换热器中调节以使流化床保持在所要聚合温度。在此α-烯烃聚合方法中,所述循环气一般包括一或多种单体烯烃,以及可选的例如惰性稀释气或气态链转移剂如氢气。因此所述循环气的作用是向床中供应单体以使床流化并使床保持在所要求的温度范围内。通常向循环气流中加入补充单体代替因聚合反应过程中转化成聚合物所消耗的单体。
离开反应器的物料包括聚烯烃和含未反应单体气体的循环气流。聚合后,回收所述聚合物。需要时可将所述循环气流压缩和冷却,并与进料组分混合,然后使气相和液相返回反应器。
已知多种气相聚合法。例如,可使循环气流冷却至低于露点的温度,从而使部分循环气流冷凝,如US4 543 399和4 588 790中所述。此工艺过程中有意在循环气流或反应器中引入液体一般称为“冷凝方式”操作。
流化床反应器及其操作的详情公开在例如US4 243 619、4 543 399、5 352 749、5 436 304、5 405 922、5 462 999和6 218 484中,均引入本文供参考。本领域技术人员可确定适合的工艺条件,描述在WO96/08520和US5 763 543和6 255 426中。
一具体实施方案中,通过以下方法生产聚乙烯树脂:连续地循环包含单体和惰性气体的进料气流从而流化和搅动聚合物颗粒床,向床中加入茂金属催化剂并取出聚合物颗粒,其中所述催化剂包括负载于共同或分开的多孔载体之上的至少一种桥连的双-环戊二烯基过渡金属和铝氧烷活化剂;所述进料气基本上无路易斯酸清除剂而且其中任何路易斯酸清除剂的存在量都低于所述进料气的100wt.ppm;流化床内温度比在超过60psi绝对(410kPaa)的乙烯分压下通过DSC测定的聚合物熔化温度低不多于20℃;和取出的聚合物颗粒中过渡金属灰分含量低于500wt.ppm,聚合物熔体指数I2.16小于10,MIR为至少35,通过质子核磁共振(1HNMR)测定所述聚合物基本上没有可检测的链端不饱和。
“基本上没有可检测的链端不饱和”意指所述聚合物中的乙烯基不饱和少于0.1个乙烯基/1000个碳原子、或少于0.05个乙烯基/1000个碳原子、或少于0.01个乙烯基/1000个碳原子。
6.1.3 硅烷交联
所述聚乙烯共聚物能通过反应性的不饱和硅烷化合物交联。本领域公知的硅烷交联法包括Maillefer和BICC开发的MONOSILTM法和DowCorning开发的SIOPLASTM法。SIOPLASTM法或“两步”法中,先在配混机或挤出机内用反应性硅烷化合物和自由基引发剂使聚乙烯接枝改性产生硅烷接枝聚乙烯,可将其造粒并载运或储存用于后续加工。然后使硅烷接枝聚乙烯与硅烷醇缩合催化剂配混并以所要形式如管或电缆涂层形式熔体挤出,然后通过热和湿如在水浴或蒸汽浴中固化(交联)。在温湿气候中,可在环境条件下发生固化。在MONOSILTM或“一步”法中,将聚乙烯、反应性硅烷化合物、自由基引发剂和硅烷醇缩合催化剂都供入挤出机并以所要形式如管或电缆涂层形式熔体挤出,然后与两步法一样通过热和湿固化。
所述反应性硅烷化合物可以是有一或多个可水解基团的不饱和硅烷化合物。典型的反应性硅烷化合物包括链烯基如乙烯基、烯丙基、异丙烯基、丁烯基、环己烯基或γ-(甲基)丙烯酰氧基烯丙基,和可水解基团如烃氧基、碳酰氧基(hydrocarbonyloxy)或烃基氨基。可水解基团的具体实例包括甲氧基、乙氧基、甲酰氧基、乙酰氧基、丙酰氧基和烷基氨基或丙烯酰氨基。适合的反应性硅烷是乙烯基三甲氧基硅烷,以SILQUESTTM购自OSi Specialties。本领域技术人员基于工艺条件、所使用的具体硅烷和其它公知因素很容易确定硅烷的用量。硅烷化合物的典型用量为约0.5至约5phr,其中单位“phr”代表每一百重量份聚乙烯树脂的重量份数。
所述自由基引发剂可以是在适用于聚乙烯造粒的温度下分解生成过氧化氢或氨基(azyl)或者可电离辐射的过氧化物或偶氮化合物。典型的过氧化物包括例如过氧化二枯基、过氧化二叔丁基、过苯甲酸叔丁酯、过氧化苯甲酰、氢过氧化枯烯、过辛酸叔丁酯、过氧化丁酮、2,5-二甲基-2,5-二(叔丁基过氧)己烷、过氧化月桂基和过乙酸叔丁酯。适合的偶氮化合物是偶氮二异丁腈。一种特定的过氧化物是过氧化二枯基,以DICUPTMR购自Hercules。本领域技术人员很容易确定自由基引发剂的用量,典型地为约0.04至约0.15phr。
硅烷醇缩合催化剂可以是促进缩合交联反应的任何化合物,如有机碱、羧酸、和有机金属化合物,包括有机钛酸酯和铅、钴、铁、镍、锌或锡的配合物或羧酸酯。具体的催化剂包括例如二月桂酸二丁基锡、马来酸二辛基锡、二乙酸二丁基锡、二辛酸二丁基锡、双十二烷酸二丁基锡、乙酸亚锡、辛酸亚锡、环烷酸铅、辛酸锌和环烷酸钴。一种特定的羧酸锡是双十二烷酸二丁基锡,以STANCLERETMTL购自AkzoChemie。所述催化剂以催化有效量使用,本领域技术人员很容易确定。典型的催化剂量为约0.01至约0.1phr。
过氧化物引发的乙烯基三甲氧基硅烷与聚乙烯的反应产生有聚乙烯主链结构和侧乙基三甲氧基甲硅烷基部分的接枝聚合物。该交联反应中,甲氧基水解生成甲醇和侧乙基二甲氧基硅烷醇基,与其它乙基二甲氧基硅烷醇基发生缩合反应消去水而在侧甲硅烷基部分之间形成Si-O-Si键合。
6.2 电器件
一方面,本发明提供包括由本文所述硅烷可交联或硅烷交联的聚乙烯组合物之任一形成的或包含其的一或多层的电器件。此类器件包括例如电力电缆、电信电缆或数据传输电缆、和组合的电力/电信电缆。本文所用术语“电信电缆”和“数据电缆”可互换使用。所述电器件为电力电缆时,可以是低压电缆,即适合在小于或等于1kV或者小于或等于6kV的电压下输电的器件;中压电缆,即适合在从大于1kV或大于6kV的下限至小于或等于35kV或者小于或等于66kV的上限的电压下输电的器件;或高压电缆,即适合在大于35kV或大于66kV的电压下输电的器件。应理解名称“低压”、“中压”和“高压”(如本领域常用的)有时重叠;例如4kV电缆有时称为“低压”,有时称为“中压”。也可用适合的电压范围特别是电压上限表征电力电缆而不用低/中/高表示。
虽然本发明不限于此,但图中以典型电力电缆举例说明本发明的具体实施方案。参见图1,示出电力电缆10。电缆10包括导线12,表示为多股导线但也可以是实心导线。导线12依次被半导体内层14、绝缘层16、半导体外层18、金属屏蔽层20和外护套22包围。该实施方案中,所述层14、16、18和22之任一层或多层即任何半导体层、绝缘层或外护套层可由本文所述硅烷可交联或硅烷交联的组合物形成或包括本文所述硅烷可交联或硅烷交联的组合物。电缆10特别适用于在大于1kV或大于6kV至35kV或66kV的电压下输电。
参见图2,以横截面示出一实施方案,特别适用于在小于6kV或小于1kV的电压下输电。电缆30包括导线32,可以是实心导线或多股导线;和外层34,由本文所述硅烷可交联或硅烷交联的组合物形成或包括本文所述硅烷可交联或硅烷交联的组合物。
参见图3,以横截面示出一实施方案,特别适用于在小于6kV或小于1kV的电压下输电。电缆40包括导线42,可以是实心导线或多股导线;绝缘层44,和外层46。所述层44和46之一或之二可由本文所述硅烷可交联或硅烷交联的组合物形成或包括本文所述硅烷可交联或硅烷交联的组合物。
参见图4,以横截面示出一实施方案,为低压(即小于6kV或小于1kV)三极电力传输电缆。电缆50包括三根导线52,可以是实心导线或多股导线。每根导线52都被绝缘层54包围,这些绝缘导线被外护套56包围。一般用填料58填充空隙体积。适合的填料为本领域公知。所述层54和56之任一层或多层可由本文所述硅烷可交联或硅烷交联的组合物形成或包括本文所述硅烷可交联或硅烷交联的组合物。
应理解图1-4仅示出包括本发明硅烷可交联或硅烷交联组合物的电器件的几种可行实施方案。所述组合物还适用于其它电力电缆构型、电信电缆、和组合的电力/电信电缆。
所述导线可以是任何适合的导电材料,典型的是金属如铜或铝。
本文所述任何实施方案中,所述硅烷可交联或硅烷交联的组合物可以基本上为纯树脂,也可还包括常规添加剂如抗氧化剂、填料、加工助剂、润滑剂、颜料、水树延缓(water-tree retardant)添加剂。此外,还考虑聚合物共混物,如可交联或交联的乙烯共聚物与聚烯烃均聚物或共聚物、烯烃-酯共聚物、聚酯、聚醚、聚醚-聚酯共聚物及其混合物的共混物。此聚合物混合物中可包含的聚合物的具体实例包括聚乙烯、聚丙烯、丙烯-乙烯热塑性共聚物、乙烯-丙烯橡胶、乙烯-丙烯-二烯橡胶、天然橡胶、丁基橡胶、乙烯-乙酸乙烯酯(EVA)共聚物、乙烯-丙烯酸甲酯(EMA)共聚物、乙烯-丙烯酸乙酯(EEA)共聚物、乙烯-丙烯酸丁酯(EBA)共聚物、和乙烯-α-烯烃共聚物。
适合的填料包括无机氧化物、或水合物或氢氧化物形式的无机氧化物。例子包括铝、铋、钴、铁、镁、钛和锌的氧化物或氢氧化物、及相应的水合物形式。氢氧化物一般以涂布颗粒形式使用,其中所述涂层通常为饱和或不饱和的C8-C24脂肪酸或其盐,例如油酸、棕榈酸、硬脂酸、异硬脂酸、月桂酸、硬脂酸镁、油酸镁、硬脂酸锌或油酸锌。其它适合的填料包括玻璃粒、玻璃纤维、煅烧高岭土和滑石。
典型的抗氧化剂包括例如聚合的三甲基二氢喹啉、4,4’-硫代双(3-甲基-6-叔丁基)苯酚、季戊四醇四[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]、和2,2’-硫代二乙烯-双[3-(3,5-二叔丁基-4-羟苯基)丙酸酯]。
典型的加工助剂包括例如硬脂酸钙、硬脂酸锌、硬脂酸、和石蜡。
本文所述电器件可通过本领域公知方法制成,如在配有电缆模头的反应器/挤出机中进行一或多个挤出涂覆步骤,然后湿固化。此电缆挤出设备和方法是公知的。典型的挤出法中,使可选地加热的导电芯通过加热的挤出模头(通常为十字头模头)拉伸,其中涂布一层熔融的聚合物组合物。可通过增加附加层的连续挤出步骤涂布多层,或者可用适当类型的模头同时加多层。可将所述电缆置于湿固化环境中,或者使之在环境条件下固化。
7. 实施例
原料和方法
拉伸强度值(拉伸屈服、极限拉伸强度、断裂伸长和屈服伸长)按ASTM D882-97测量(纵向(“MD”)和横向(“TD”))。膜厚用ASTM D5947-96方法C测量,但每年用商购的量块(Starret Webber 9,JCV1&2)进行测微计校准。
1%正割(MD和TD)按ASTM D882-97测量。膜厚用ASTM D5947-96方法C测量,但每年用商购的量块(Starret Webber 9,JCV1&2)进行测微计校准。
熔体指数(I2.16)即在2.16kg的载荷下190℃下的熔体流动速率按ASTM D-1238-95条件E测定。熔体指数I2.16以g/10min为单位或等值的单位dg/min报告。
流动指数(I21.6)即在21.6kg的载荷下190℃下的熔体流动速率(有时也称为“高载荷熔体指数”或“HLMI”)按ASTM D-1238-95条件F测定。熔体指数I21.6以g/10min为单位或等值的单位dg/min报告。
两熔体流动速率之比为“熔体流动比”或MFR,最常用的是I21.6/I2.16比。一般可用“MFR”表示在高载荷(分子)与低载荷(分母)下测量的熔体流动速率之比。本文所用术语“熔体指数比”或“MIR”特指I21.6/I2.16比。熔体流动比无量纲。
密度(g/cm3)用按ASTM D-1928-96方法C压塑、按ASTM D618方法A老化并按ASTM D1505-96测量的板中切出的小片测定。
埃尔曼多夫撕裂按ASTM D1922-94a测定。膜厚用ASTM D374-94方法C测量,但每年用商购的量块(Starret Webber 9,JCV1&2)进行测微计校准。
落镖冲击强度(有时称为“落镖冲击”)按ASTM D1709方法A在26英寸(66cm)处测量。
膜厚用ASTM D374-94方法C测量,但每年用商购的量块(StarretWebber 9,JCV1&2)进行测微计校准。
热变定(%伸长率)按IEC 540测量。
组成分布的度量是“组成分布宽度指数”(“CDBI”)。组成分布宽度指数(CDBI)的定义和CDBI的测定方法可参见US5 206 075和WO93/03093。由重量分数随组成分布的变化曲线,通过确定中值两侧共聚单体含量在中值共聚单体含量的50%以内的试样的重量百分率测定CDBI。利用分离各部分共聚物试样的公知技术很容易测定共聚物的CDBI。此技术之一是温升洗脱分级(TREF),如Wild等人,J.Poly.Sci.,Poly.Phys.Ed.,vol.20,p.441(1982)中所述。为测定CDBI,先形成所述共聚物的溶解度分布曲线。可用TREF技术获得的数据完成。此溶解度分布曲线是被溶解共聚物的重量分数随温度变化的曲线图。将其换算成重量分数对组成分布的曲线。为简化组成与洗脱温度的相关性,假设所有部分都有Mn≥15,000,其中Mn为所述部分的数均分子量。所存在的任何低重量部分一般在所述聚合物中所占比例很小。本说明书的其余部分和所附权利要求书都保持在CDBI的测量中假设所有部分都有Mn≥15,000的约定。
本文所用“分子量”表示所述分子量分布的任何因素如数均、重均或Z-平均分子量,“分子量分布”表示两种此分子量之比。一般地,分子量M可由下式计算:
M = Σ i N i M i n + 1 Σ i N i M i n
其中Ni是分子量为Mi的分子的数量。n=0时,M为数均分子量Mn。n=1时,M为重均分子量Mw。n=2时,M为Z-平均分子量Mz。这些和更高级的因素都包含在术语“分子量”内。所要分子量分布(MWD)函数(例如Mw/Mn或Mz/Mw)是相应M值之比。通过常规方法如凝胶渗透色谱法测量M和MWD为本领域公知,更详细地论述在例如Slade,P.E.编辑,Polymer Molecular Weights Part II,Marcel Dekker,Inc.,NY,(1975)287-368;Rodriguez,F.,Principles of Polymer Systems3rd ed.,Hemisphere Pub.Corp.,NY,(1989)155-160;US 4 540753;Verstrate等人,Macromolecules,vol.21,(1988)3360;和本文所引参考文献中。
GPC测量在配有示差折光指数(“DRI”)检测仪的Waters 150C GPC仪器上进行。用一系列聚苯乙烯标样校准GPC柱。用所测聚合物的MarkHouwink系数通过常规方法计算除聚苯乙烯以外的聚合物的分子量。
短链支化(SCB)通过1HNMR(质子核磁共振)测定,在500MHz下收集数据。将聚合物主链信号设定至1.347ppm来核对光谱。由1HNMR光谱用下式计算乙烯-1-烯烃共聚物中甲基含量:
甲基/1000C=(ICH3*0.33*1000)/(I0.5-2.1ppm*0.5)
其中ICH3是归一化甲基信号在0.88和1.05ppm之间区域内的面积,I0.5-2.1ppm是在0.50和2.10ppm之间的面积。假设所述短支链包含一个甲基(-CH3)而且所有甲基都是短链支化的结果,则甲基的数量将相当于聚合物中短支链的数量。可用同样的NMR方法确定乙烯基末端不饱和。
颗粒堆积密度如下测定。将粒状聚合物粒通过7/8”(2.2cm)直径的漏斗倒入400ml的定容圆筒中。堆积密度计量为树脂重量除以400ml得到g/ml的值。
粒度通过测定一系列U.S.标准筛网上收集物料的重量并基于所用筛网确定重均粒度(μm)进行测量。
可萃取性按FDA条例21 CFR 177.1520(d)(3)(ii)测定。
为测量薄膜性能,试验前在140°F(60℃)加热48小时使薄膜试样退火。
实施例1-3
实施例1A和1B示出按本发明制备适用于生产聚乙烯共聚物的催化剂的两个实施例。实施例2A和2B中,分别用实施例1A和1B的催化剂生产两种乙烯/己烯共聚物树脂,表示为A和B。实施例3A和3B中,示出聚乙烯树脂和所述树脂的未掺混单层膜的性能。US6 255 426中也示出这些实施例。
实施例1A
将1300ml 30wt%铝氧烷(MAO)的甲苯溶液(参考总Al含量确定,可能包括未水解的TMA)装入两加仑(7.57L)的配有螺条混合器和螺旋钻型轴的有夹套的玻璃壁反应器内。加入2080ml甲苯并搅拌。将购自Albermarle Labs的31.5g二氯·二甲基甲硅烷基-双(四氢茚基)合锆(Me2Si(H4Ind)2ZrCl2)在320ml甲苯中的悬浮液用插管装入反应器内。用另一瓶无水甲苯(250ml)在氮气压力下通过插管将固体茂金属晶体冲洗至反应器中。所述茂金属加入MAO溶液时颜色由无色变成黄/橙色。将该混合物在69°F(20.6℃)下搅拌1小时,然后在氮气下移至四升Erlenmeyer烧瓶中。将氧化硅(1040g,Davison MS 948,1.65ml/g孔体积)装入反应器内。然后将所述溶液的一半从所述4L Erlenmeyer烧瓶移回该两加仑(7.57L)搅拌式玻璃反应器中。反应温度在5分钟放热量内从70°F(21.1℃)升至100°F(37.8℃)。然后将所述4LErlenmeyer烧瓶中剩余的溶液加回所述玻璃反应器中,搅拌20分钟。然后加入甲苯(273ml,238g)以稀释所述活性催化剂浆液,再搅拌25分钟。将Antistat AS-990(Witco Chemical Corp.出售的由乙氧基化硬脂胺制成的表面改性剂)(7g,在73ml甲苯中)用插管装入反应器内,使该浆液混合30分钟。减压至小于18英寸汞柱(457mmHg)同时向反应器底部供入一小股氮气流并使温度在1小时内从74°F(23.3℃)升至142°F(61.1℃)除去溶剂。然后在142°F(61.1℃)至152°F(66.7℃)的温度和5至22英寸Hg(127至559mmHg)的真空下干燥另外5小时使载体干燥,得到1709.0g自由流动的活性负载型催化剂物料。顶空气相色谱(HSGC)测量显示有13000ppm重(1.3wt%)残留甲苯。在更强的真空条件下进行的二次干燥步骤导致HSGC分析测量残留甲苯为0.18%。元素分析显示0.40%Zr,10.75%Al,30.89%Si,0.27%Cl,9.26%C,2.05%H(本文所示百分率均为重量百分率)。
实施例1B
将1125ml 30wt%铝氧烷(MAO)的甲苯溶液(参考总Al含量确定,可能包括未水解的TMA)装入两加仑(7.57L)的配有螺条混合器和螺旋钻型轴的有夹套的玻璃壁反应器内。加入1800ml甲苯并搅拌。将购自Albermarle Labs的30.8g二氯·二甲基甲硅烷基-双(四氢茚基)合锆(Me2Si(H4Ind)2ZrCl2)在320ml甲苯中的悬浮液用插管装入反应器内。再用150ml甲苯在氮气压力下通过插管将固体茂金属晶体冲洗至反应器中。所述茂金属加入MAO溶液时颜色由无色变成黄/橙色。将该混合物在69°F(20.6℃)下搅拌1小时,然后在氮气下移至四升Erlenmeyer烧瓶中。将氧化硅(899g,Davison MS 948,1.65ml/g孔体积)装入反应器内。然后将所述溶液的一半从所述4L Erlenmeyer烧瓶移回该两加仑(7.57L)搅拌式玻璃反应器中。反应温度在5分钟放热量内从70°F(21.1℃)升至100°F(37.8℃)。然后将所述4L Erlenmeyer烧瓶中剩余的溶液加回所述玻璃反应器中,搅拌20分钟。然后加入甲苯(273ml,238g)以稀释所述活性催化剂浆液,再搅拌25分钟。将Antistat AS-990用插管装入反应器内,使该浆液混合30分钟。减压至小于18英寸汞柱(457mmHg)同时向反应器底部供入一小股氮气流并使温度在1小时内从74°F(23.3℃)升至142°F(61.1℃)除去溶剂。然后在142°F(61.1℃)至152°F(66.7℃)的温度和5至22英寸Hg(127至559mmHg)的真空下干燥另外9.5小时使载体干燥,得到1291.4g自由流动的活性负载型催化剂。
实施例2
分别用实施例1A和1B中形成的催化剂如下制备聚乙烯共聚物2A和2B。
聚合在连续气相流化床反应器中进行,反应器直径为16.5英寸(41.9cm),床高约12英尺(3.6m)。所述流化床由聚合物颗粒构成。乙烯和氢气的气态原料流及液态共聚单体在T型混合设备中混合然后在反应床下面输入循环气管线。控制乙烯、氢气和共聚单体各自的流速以保持固定的目标组成。控制乙烯浓度保持恒定的乙烯分压。控制氢气保持恒定的氢气/乙烯摩尔比。通过在线气相色谱测量所有气体的浓度以确保循环气流的组成相对恒定。
用纯氮气作为载气将固体催化剂1A或1B直接注入流化床。调节其注射速度使聚合物的生产率保持恒定。补充进料和循环气连续流过反应区使生长聚合物颗粒的反应床保持流化状态。用1-3ft/s(0.3-0.9m/s)的空塔气速实现。所述反应器在300psig(2068kPa表压)的总压下操作。为使反应器温度保持恒定,不断地上调或下调循环气的温度以适应因聚合所致发热速度的任何变化。
以等于颗粒产物生成速度的速度取出一部分床使流化床保持恒定高度。通过一系列阀使产品半连续地排入定容的室内,同时使气体返回反应器。这样可高效地取出产品,同时使大部分未反应气循环回反应器。吹扫该产品除去夹带的烃并用一小股增湿的氮气流处理使任何痕量的残余催化剂和助催化剂失活。
聚合条件示于表1中。
                  表1
    聚合条件     2A     2B
    Zr(wt%)Al(wt%)Al/Zr(mol/mol)温度(℃)压力(bar)乙烯(mol%)氢气(mol ppm)己烯(mol%)床高(kg PE)生产率(kg PE/hr)催化剂产率(kg PE/kg催化剂)堆积密度(g/ml)平均粒度(μm)灰分(ppm)     0.4311.691.279.421.725.02750.2311327.616900.448920507     0.5011.477.18521.749.94450.3212135.522870.450803386
表1中的参数如前面所述测定;Zr、Al的重量百分率和灰分含量通过元素分析确定。所述反应器中不加烷基铝化合物作为清除剂。试验持续约3天。
实施例3
树脂性能和用常规薄膜吹塑设备由所述树脂形成的单层吹塑薄膜的性能示于表2-3中,其中“3A”和“3B”分别对应于实施例2A和2B中生产的树脂(或由所述树脂生产的薄膜)。
                    表2:树脂性能
    3A     3B
    密度(g/cm3)熔体指数I2.16(dg/min)MIR,I21.6/I2.16MwMnMzMw/Mn第一熔融峰(℃)(a)第二熔融峰(℃)(a)CDBI(%)SCB(/1000C)C6(wt%)C6(mol%)     0.91901.1046.092200183002084005.04108.6119.38615.49.33.3     0.92570.6257.6104700179002875005.85122.6117.383.1010.66.42.2
(a)注:已预先使试样熔融并冷却一次。
                 表3:单层吹塑薄膜的性能
    3A     3B
    吹胀比厚度,mil(μm)MD 1%正割模量,psi(N/cm2)TD 1%正割模量,psi(N/cm2)平均模量,psi(N/cm2)MD埃尔曼多夫撕裂,g/milTD埃尔曼多夫撕裂,g/mil26”(66cm)落镖冲击强度,g/mil计算的DIS(M)最低值,g/mil(a)雾度,%可萃取性     2.52.1(53)29420(20284)31230(21532)30325(20908)20743041029410.21.0     2.12.0(51)45070(31075)47420(32695)46245(31885)1344771561239.9未获取
(a)由本文中式(1a)计算。
实施例4
以类似方式对按本发明制得的不同试样进行更大量的试验,结果示于表4中。该实施例也示于US6 255 426中。
                         表4
          平均模量               落镖冲击强度(26英寸)
psi N/cm2 由式(1)计算的,g/mil     测量的,g/mil
  25,57528,58028,99029,14530,32531,45031,61032,00032,14033,78034,16035,17035,97037,87039,32539,39043,67546,24547,73049,460   17,63319,70519,98720,09420,90821,68421,79422,06322,15923,29023,55224,24824,80026,11027,11327,15830,11231,88432,90834,101     508353337332294264260251248217211196186167155154131123119115     611456553451410284257349223251262223261251197193167156147143
以下实施例中,用各种本发明树脂和对比树脂证明本发明方法和组合物的特征和区别。如下表示树脂:
CZN2.8是对比的齐格勒-纳塔催化的线性低密度聚乙烯树脂,熔体指数I2.16为2.8g/10min,密度为0.918g/cm3
CM3.18是对比的茂金属催化的线性低密度聚乙烯树脂,熔体指数为3.18g/10min,密度为0.9197g/cm3
CM2.31是对比的茂金属催化的线性低密度聚乙烯树脂,熔体指数为2.31g/10min,密度为0.9181g/cm3
M0.5是本发明的茂金属催化的线性低密度聚乙烯,熔体指数为0.5g/10min,密度为0.925g/cm3
M0.87是本发明的茂金属催化的线性低密度聚乙烯,熔体指数为0.87g/10min,密度为0.924g/cm3
M1.0是本发明的茂金属催化的线性低密度聚乙烯,熔体指数为1.0g/10min,密度为0.92g/cm3
M2.0是本发明的茂金属催化的线性低密度聚乙烯,熔体指数为2.0g/10min,密度为0.92g/cm3
这些树脂的其它特性示于表5-6中。
                             表5:对比树脂的性能
树脂性能  CZN2.8     CM3.18     CM2.31
熔体指数I2.16(g/10min)流动指数I21.6(g/10min)熔体指数比I21.6/I2.16密度(g/cm3)  2.870250.918     3.1851.2160.9197     2.3140170.9181
DSC特征
第二熔化周期,Tm(℃)ΔH(J/g)第一次结晶,Tc(℃)  ------     10511612014393101     10311511913093100
GPC特征
MnMwMzMw/MnMz/Mw  ----------     37600799001285002.131.61     41300868001385002.11.6
NMR特征
#甲基支链/1000C总#甲基支链/1000C#乙烯基/1000C#1,2-亚乙烯基/1000C#三取代的基团/1000C#亚乙烯基/1000C  23.3623.510.070.0200.04     16.416.90.070.040.150.06     16.7170.050.010.080.05
                        表6:本发明树脂的性能
树脂性能     M0.5  M0.87  M1.0  M2.0
熔体指数I2.16(g/10min)流动指数I21.6(g/10min)熔体指数比I21.6/I2.16密度(g/cm3)     0.50.925  0.870.924  1.040400.92  2.063.9330.92
DSC特征
第二熔化周期,Tm(℃)ΔH(J/g)第一次结晶,Tc(℃)  113.9118.2140.268.9105.4
GPC特征
MnMwMzMw/MnMz/Mw  233001041002419004.472.32
NMR特征
#甲基支链/1000C总#甲基支链/1000C#乙烯基/1000C#1,2-亚乙烯基/1000C#三取代的基团/1000C#亚乙烯基/1000C 0.010.050.140.03  1.141.5100.050.120.02 0.010.040.130.03 0.010.030.120.04
实施例5-6
将本发明树脂和对比树脂挤出,用一步MONOSILTM型交联法交联。所述树脂用Haake挤出机挤出,模口间隙0.7mm,3∶1螺杆,挤出机相继各挤出区的温度分布为160、180、200、185℃,螺杆速度40rpm。对比树脂的详情和结果示于表7中,本发明树脂的详情和结果示于表8中。
所述树脂中加入常规添加剂如抗氧化剂、稳定剂和加工助剂。典型的添加剂是:IRGANOXTM1076,来自Ciba Specialty Chemicals的酚类抗氧化剂;Weston 399,来自GE Specialty Chemicals的亚磷酸酯稳定剂;硬脂酸锌或氧化锌,作为清除剂/稳定剂;和聚乙二醇(PEG),作为加工助剂。
用来自Osi Specialties的SILQUESTTM A-171(乙烯基三甲氧基硅烷,C2H3Si(OCH3)3);来自Hercules Beringen B.V.B.A.,Beringen,Belgium的DI-CUPTM R(过氧化二枯基引发剂);和来自Akzo Chemie的STANCLERETM TL(双十二烷酸二丁锡催化剂,(C4H9)2Sn(OCC11H23)2)进行硅烷交联。
                                     表7:实验室规模挤出,对比的
参数     CZN2.8     CM3.18     CM2.31
I2.16,初始的(g/10min)密度,初始的(g/cm3)     2.80.918     3.180.9197     2.310.9181
添加剂(ppm)
IRGANOXTM1076Weston 399硬脂酸锌PEG     3601500500200     15001750900(ZnO)0     15001750900(ZnO)0
硅烷溶液(g/100g聚合物)
SILQUESTTM A-171DICUPTM RSTANCLERETM TL     000     1.20.10.05     000     1.20.10.05     000     1.20.10.05
挤出条件
扭矩(N·m)压力(bar)熔体温度(℃)输出量(g/hr)     26-27481891961320     27-2882-851891941184     34-3656-571901961374     3079-811901961245     41-43711891951360     30-3995-1011901951255
热变定,80℃水中,2小时(%)热变定,环境条件,30天(%)     47.529.5     4630     37.528
                                            表8:实验室规模挤出,本发明的
参数     M0.5   M0.87   M1.0     M2.0
I2.16,初始的(g/10min)密度,初始的(g/cm3)     0.50.925   0.870.924   1.00.92     2.00.92
添加剂(ppm)
IRGANOXTM 1076Weston 399硬脂酸锌PEG     200800500200   200800500200   300800500300     200800500200
硅烷溶液(g/100g聚合物)
SILQUESTTM A-171DICUPTM RSTANCLERETM TL     000     1.20.10.05   000   1.20.10.05   000     1.20.10.05     000   1.20.10.05
挤出条件
扭矩(N·m)压力(bar)熔体温度(℃)输出量(g/hr)     38-39791891671390     34-3391-931881971296   35-3868-691901961377   26-2881-831901961240   38-4158-591891961357     30691891961415     25-2644-451891961415   23-2454-551891961294
热变定,80℃水中,2小时(%)热变定,环境条件,30天(%)   6742
实施例7
按IEC 540的方法测量几种树脂组合物的热变定(%)。80℃水和室温下的结果示于表9中。
                 表9:热变定%
    CZN2.8   M0.87   CM3.18   CM2.31
80℃水中
时间(小时)0.511.5246 217.5905947.537.532.5 160946752.542.5 2609160464237.5 1455647.537.527.527.5
室温下
时间(天)2681030 97.577.57029.5 257.516517542 126.5958930 33080706028
实施例5-7表明本发明聚合物组合物可在与对比组合物相同或更低的扭矩/压力下加工,甚至在低得多的熔体指数下加工,产生附加的加工性优点如熔体强度更高、熔体温度更稳定、熔体破裂减少、都很好地与等效交联性平衡,如由热变定值所显示的。
这些实施例还示出其中所述组合物在80℃固化2小时后的热变定值为70%或更低的尤其优选的实施方案,和其中所述组合物在环境条件下30天后的热变定值为50%或更低的其它尤其优选的实施方案。
热变定(%伸长率)可按IEC 540测量。
实施例8
测量实施例7的硅烷接枝聚合物在80℃热水中固化6小时后的机械性能,与相应未接枝聚合物的性能对比。结果示于表10中。如表中所示,本发明组合物的断裂拉伸强度比对比的齐格勒-纳塔LLDPE大,这在最终的电缆中提供更高的机械性能安全性。
                  表10:机械性能
参数   CZN2.8   M0.87   CM3.18   CM2.31
未接枝的
屈服拉伸,MPa屈服伸长,%断裂拉伸,MPa断裂伸长,%1%正割,MPa   10.619.118.4779222   12.28.731.6692298   11.518.731.4646241   10.218.526575195
接枝的
屈服拉伸,MPa屈服伸长,%断裂拉伸,MPa断裂伸长,%1%正割,MPa   1019.823.2499193   12.720.126.3478254   10.919.733504201   9.718.724.5444191
实施例9-10
对几种树脂配混料(如表11中所示)进行工业规模的挤出和一步交联。挤出机是Nokia-Maillefer NMB 100-30D挤出机,模口直径15.6mm。采用如下温度分布:130-150-170-220-230//230-230-230-260℃。与实施例5-6中所述相似用硅烷溶液进行交联,但使用SILMIXTM,来自Constab/Silix的硅烷交联溶液。结果示于表12中。
                           表11:工业规模挤出所用配混料
  CZN2.8   M1.0   M2.0   CM3.18   CM2.31
  I2.16(g/10min)I21.6(g/10min)I21.6/I2.16密度(g/cm3)   2.870250.918   1.040400.920   1.9663.932.60.921   3.251.2160.9197   2.340170.918
  添加剂(ppm)
  IRGANOXTM 1076Weston 399硬脂酸锌氧化锌PEG   36015005000200   3008005000300   2008005000300   1500175009000   1500175009000
                                                      表12:工业规模挤出
 rpm         CZN2.8          M1.0          M2.0         CM3.18         CM2.31
 纯净  接技  纯净  接技  纯净     接技   纯净   接技   纯净   接技
输出量(kg/hr)  204060  3981121  4389131  4080119  4692135  3878117     4693136   4383123   4794136   4178116   4591133
熔体T(℃)  204060  217235247  219236250  212227243  217232246  211225234     202222231   215231241   220234252   218240258   220245264
压力(bar)  204060  198263293  240280315  200280304  240297332  171233268     213279320   224293329   255334365   254324330   296382412
功率(A)  204060  101138164  165192202  99131157  160187197  77108127     150169189   121153167   155200203   121153170   171203228
图5A和5B示出表12的未接枝和接枝树脂的熔体温度随rpm变化的数据。图6A和6B示出相应的压力数据。
实施例11
按IEC 540的方法测量几种树脂配混料的热变定(%伸长率)。在20、40和60的rpm值下,80℃水的结果示于表13中。CZN2.8试样仅在60rpm下测试。各试样在60rpm下的值图示于图7中。
                       表13:热变定%,80℃
rpm XL时间(min) CZN2.8   M1.0     M2.0  CM3.18  CM2.31
 20     60120180240360     *****     150115807060     20511515510095     365335260270200     400330120250185
 40     60120180240360     *****     1551107010080     275190135105100     400400400315290     375300170255180
 60     60120180240360     11580605550     12095656070     1801359510540     375320200170120     400270195215165
表11中所示数据证明通过本发明组合物的较高熔体指数比(I21.6/I2.16)实现的加工益处。表12和图5A、5B、6A和6B表明熔体指数低得多的本发明组合物得到与对比组合物相同或改善的加工参数,如熔体温度、压力、输出量和安培数。与表13的热变定值组合,这些数据说明用本发明组合物使加工性能与交联速度之间的总平衡得到改善。
已参照实施例和各种实施方案详细描述了本发明,不是要限制本发明,以下是优选的实施方案:一种聚合物组合物,包括:(a)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;和(b)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;或其反应产物;或者前面所述的和以下更优选的实施方案(单独或与在本公开的基础上对本领域技术人员显而易见的其它更优选实施方案组合):其中所述α-烯烃共聚单体包括1-丁烯、1-己烯或1-辛烯;其中所述乙烯共聚物的CDBI为至少75%;其中所述乙烯共聚物的CDBI为至少80%;其中所述乙烯共聚物的熔体指数为0.3至10g/10min;其中所述乙烯共聚物的密度为0.916至0.935g/cm3;其中所述乙烯共聚物的熔体指数比I21.6/I2.16为35至80;其中Mw/Mn之比为2.8至4.5;其中所述硅烷化合物的不饱和基团包括乙烯基、烯丙基、异丙烯基、丁烯基、环己烯基或γ-(甲基)丙烯酰氧基烯丙基;其中所述硅烷化合物的可水解基团包括烃氧基、碳酰氧基或烃基氨基;其中所述硅烷化合物为乙烯基三烷氧基硅烷,所述自由基引发剂为有机过氧化物;所述组合物还包含硅烷醇缩合催化剂;其中所述组合物在80℃水中固化2小时后的热变定值为70%或更低;其中所述组合物30天后的热变定值为50%或更低;另一实施方案是一种硅烷交联的聚合物组合物,包括以下物质的反应产物:(a)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;(b)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;和(c)硅烷醇缩合催化剂;和前面所述的和以下更优选的实施方案(单独或与在本公开的基础上对本领域技术人员显而易见的其它更优选实施方案组合):其中所述α-烯烃共聚单体包括1-丁烯、1-己烯或1-辛烯;其中所述乙烯共聚物的CDBI为至少75%;其中所述乙烯共聚物的CDBI为至少80%;其中所述乙烯共聚物的熔体指数为0.3至10g/10min;其中所述乙烯共聚物的密度为0.916至0.935g/cm3;其中所述乙烯共聚物的熔体指数比I21.6/I2.16为35至80;其中Mw/Mn之比为2.8至4.5;其中所述硅烷化合物的不饱和基团包括乙烯基、烯丙基、异丙烯基、丁烯基、环己烯基或γ-(甲基)丙烯酰氧基烯丙基;其中所述硅烷化合物的可水解基团包括烃氧基、碳酰氧基或烃基氨基;其中所述硅烷化合物为乙烯基三烷氧基硅烷,所述自由基引发剂为有机过氧化物;另一实施方案是一种电器件,包括上述包含所述优选和更优选的实施方案的聚合物组合物;另一实施方案是一种电器件,包括:(a)电导体;和(b)包围所述电导体的至少一部分的层,所述层包含以下物质的反应产物:(i)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;(ii)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;和(iii)硅烷醇缩合催化剂;和前面所述的和以下更优选的实施方案(单独或与在本公开的基础上对本领域技术人员显而易见的其它更优选实施方案组合):其中包围所述电导体的至少一部分的层是绝缘层;其中包围所述电导体的至少一部分的层是半导体层;其中包围所述电导体的至少一部分的层是外护套层;其中所述器件是适合在小于或等于66kV的电压下输电的电力电缆;其中所述器件是适合在小于或等于35kV的电压下输电的电力电缆;其中所述器件是适合在小于或等于6kV的电压下输电的电力电缆;其中所述器件是适合在小于或等于1kV的电压下输电的电力电缆;其中所述器件是电信电缆;其中所述器件是组合的电力/电信电缆。
本文引用的所有专利、测试方法和其它文献包括优先权文献均在不与本发明矛盾的程度和允许的权限内引入本文供参考。

Claims (36)

1.一种聚合物组合物,包括:
(a)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;和
(b)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;
或其反应产物。
2.权利要求1的聚合物组合物,其中所述α-烯烃共聚单体包括1-丁烯、1-己烯或1-辛烯。
3.权利要求1的聚合物组合物,其中所述乙烯共聚物的CDBI为至少75%。
4.权利要求1的聚合物组合物,其中所述乙烯共聚物的CDBI为至少80%。
5.权利要求1的聚合物组合物,其中所述乙烯共聚物的熔体指数为0.3至10g/10min。
6.权利要求1的聚合物组合物,其中所述乙烯共聚物的密度为0.916至0.935g/cm3
7.权利要求1的聚合物组合物,其中所述乙烯共聚物的熔体指数比I21.6/I2.16为35至80。
8.权利要求1的聚合物组合物,其中Mw/Mn之比为2.8至4.5。
9.权利要求1的聚合物组合物,其中所述硅烷化合物的不饱和基团包括乙烯基、烯丙基、异丙烯基、丁烯基、环己烯基或γ-(甲基)丙烯酰氧基烯丙基。
10.权利要求1的聚合物组合物,其中所述硅烷化合物的可水解基团包括烃氧基、碳酰氧基或烃基氨基。
11.权利要求1的聚合物组合物,其中所述硅烷化合物为乙烯基三烷氧基硅烷,所述自由基引发剂为有机过氧化物。
12.权利要求1的聚合物组合物,还包含硅烷醇缩合催化剂。
13.权利要求1的聚合物组合物,其中所述组合物在80℃水中固化2小时后的热变定值为70%或更低。
14.权利要求1的聚合物组合物,其中所述组合物30天后的热变定值为50%或更低。
15.一种硅烷交联的聚合物组合物,包括以下物质的反应产物:
(a)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;
(b)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;和
(c)硅烷醇缩合催化剂。
16.权利要求15的聚合物组合物,其中所述α-烯烃共聚单体包括1-丁烯、1-己烯或1-辛烯。
17.权利要求15的聚合物组合物,其中所述乙烯共聚物的CDBI为至少75%。
18.权利要求15的聚合物组合物,其中所述乙烯共聚物的CDBI为至少80%。
19.权利要求15的聚合物组合物,其中所述乙烯共聚物的熔体指数为0.3至10g/10min。
20.权利要求15的聚合物组合物,其中所述乙烯共聚物的密度为0.916至0.935g/cm3
21.权利要求15的聚合物组合物,其中所述乙烯共聚物的熔体指数比I21.6/I2.16为35至80。
22.权利要求15的聚合物组合物,其中Mw/Mn之比为2.8至4.5。
23.权利要求15的聚合物组合物,其中所述硅烷化合物的不饱和基团包括乙烯基、烯丙基、异丙烯基、丁烯基、环己烯基或γ-(甲基)丙烯酰氧基烯丙基。
24.权利要求15的聚合物组合物,其中所述硅烷化合物的可水解基团包括烃氧基、碳酰氧基或烃基氨基。
25.权利要求15的聚合物组合物,其中所述硅烷化合物为乙烯基三烷氧基硅烷,所述自由基引发剂为有机过氧化物。
26.一种电器件,包含权利要求1至25之任一所述聚合物组合物。
27.一种电器件,包括:
(a)电导体;和
(b)包围所述电导体的至少一部分的层,所述层包含以下物质的反应产物:
(i)包含聚合的乙烯单体和C3-C12α-烯烃共聚单体的共聚物,所述共聚物的CDBI为至少70%,熔体指数I2.16为0.1至15g/10min,密度为0.910至0.940g/cm3,熔体指数比I21.6/I2.16为30至80,Mw/Mn之比为2.5至5.5;
(ii)包含硅烷化合物和自由基引发剂的硅烷接枝组合物,所述硅烷化合物包含不饱和基团和可水解基团;和
(iii)硅烷醇缩合催化剂。
28.权利要求27的电器件,其中包围所述电导体的至少一部分的层是绝缘层。
29.权利要求27的电器件,其中包围所述电导体的至少一部分的层是半导体层。
30.权利要求27的电器件,其中包围所述电导体的至少一部分的层是外护套层。
31.权利要求27-30之任一的电器件,其中所述器件是适合在小于或等于66kV的电压下输电的电力电缆。
32.权利要求27-30之任一的电器件,其中所述器件是适合在小于或等于35kV的电压下输电的电力电缆。
33.权利要求27-30之任一的电器件,其中所述器件是适合在小于或等于6kV的电压下输电的电力电缆。
34.权利要求27-30之任一的电器件,其中所述器件是适合在小于或等于1kV的电压下输电的电力电缆。
35.权利要求27-30之任一的电器件,其中所述器件是电信电缆。
36.权利要求27-30之任一的电器件,其中所述器件是组合的电力/电信电缆。
CNB038173069A 2002-07-31 2003-07-25 硅烷可交联的聚乙烯 Expired - Fee Related CN100484975C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40024202P 2002-07-31 2002-07-31
US60/400,242 2002-07-31
US40016002P 2002-08-01 2002-08-01
US60/400,160 2002-08-01

Publications (2)

Publication Number Publication Date
CN1668661A true CN1668661A (zh) 2005-09-14
CN100484975C CN100484975C (zh) 2009-05-06

Family

ID=31720535

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038173069A Expired - Fee Related CN100484975C (zh) 2002-07-31 2003-07-25 硅烷可交联的聚乙烯

Country Status (9)

Country Link
US (1) US7153571B2 (zh)
EP (1) EP1527112B1 (zh)
JP (1) JP2005534802A (zh)
CN (1) CN100484975C (zh)
AT (1) ATE377033T1 (zh)
AU (1) AU2003259234A1 (zh)
CA (1) CA2488983A1 (zh)
DE (1) DE60317204T2 (zh)
WO (1) WO2004014971A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099191A (zh) * 2008-07-10 2011-06-15 北欧化工股份公司 一种电缆的生产方法
CN104205245A (zh) * 2012-01-26 2014-12-10 英尼奥斯欧洲股份公司 用于电线和电缆应用的共聚物
CN108359038A (zh) * 2017-01-26 2018-08-03 中国石油化工股份有限公司 一种乙烯与端烯基硅烷/硅氧烷的共聚方法
CN112384542A (zh) * 2018-06-28 2021-02-19 埃克森美孚化学专利公司 聚乙烯组合物、电线和电缆及其制备方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7795366B2 (en) * 2002-08-12 2010-09-14 Exxonmobil Chemical Patents Inc. Modified polyethylene compositions
US7632887B2 (en) 2002-08-12 2009-12-15 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
AU2004218558B2 (en) * 2003-03-05 2009-01-29 Nbc Meshtec Inc Photocatalytic material
US8192813B2 (en) * 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
DK1731564T3 (da) * 2005-06-08 2010-06-14 Borealis Tech Oy Sammensætning til hæmning af vandtræ
WO2007011530A2 (en) 2005-07-15 2007-01-25 Exxonmobil Chemical Patents, Inc. Elastomeric compositions
US20070212162A1 (en) * 2006-03-08 2007-09-13 Scott Schank Shearing-force mechanism with cross-linked thermoplastic
ATE475972T1 (de) * 2006-10-27 2010-08-15 Borealis Tech Oy Flexibles stromkabel mit verbesserter beständigkeit gegen wasserbäumchen
CA2885441A1 (en) * 2007-03-15 2008-09-18 Union Carbide Chemicals & Plastics Technology Llc Cable insulation with reduced electrical treeing
US8183328B2 (en) 2007-03-30 2012-05-22 Exxonmobil Chemical Patents Inc. Compositions comprising grafted and crosslinked LLDPE's, Methods for making same, and articles made therefrom
US8211985B2 (en) 2007-03-30 2012-07-03 Exxonmobil Chemical Patents Inc. Silicon-containing ethylene-based polymer blends, methods for making same, and articles made therefrom
US7855246B2 (en) 2007-12-05 2010-12-21 Uponor Innovation Ab Plastic pipe made of polyolefin
EA018661B1 (ru) * 2007-12-20 2013-09-30 Бореалис Аг Скважинные насосно-компрессорные трубы с полимерными гильзами
JP5488460B2 (ja) * 2008-04-28 2014-05-14 日本ゼオン株式会社 感放射線樹脂組成物、積層体及びその製造方法ならびに半導体デバイス
JP2009277580A (ja) * 2008-05-16 2009-11-26 Hitachi Cable Ltd 水中モータ用電線
JP2011526956A (ja) * 2008-06-30 2011-10-20 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー 湿気架橋性ポリエチレン組成物
EP2182526A1 (en) * 2008-10-31 2010-05-05 Borealis AG Cable and polymer composition comprising an multimodal ethylene copolymer
KR101009135B1 (ko) 2009-07-02 2011-01-19 정은혜 관상 발열체
FR2947947A1 (fr) * 2009-07-09 2011-01-14 Nexans Composition reticulable pour cable d'energie et/ou de telecommunication a base d'un cocktail silane et procede de fabrication dudit cable
US8523476B2 (en) 2010-06-01 2013-09-03 Reell Precision Manufacturing Corporation Positioning and damper device using shear force from cyclic differential compressive strain of a cross-linked thermoplastic
EP3591670A1 (en) 2010-11-03 2020-01-08 Borealis AG A polymer composition and a power cable comprising the polymer composition
CN102219881A (zh) * 2011-05-23 2011-10-19 安徽格林生态高分子材料技术有限公司 一种新型高性能聚烯烃热塑性弹性体材料
WO2013138336A1 (en) 2012-03-12 2013-09-19 Reell Precision Manufacturing Corporation Circumferential strain rotary detent
JP5977135B2 (ja) * 2012-10-03 2016-08-24 リケンテクノス株式会社 樹脂組成物
ES2775002T3 (es) 2012-12-17 2020-07-23 Spectralight Tech Inc Robot de limpieza de piscinas
CN103102634A (zh) * 2013-02-05 2013-05-15 常熟市中联光电新材料有限责任公司 耐110℃高温的硅烷自然交联聚乙烯电缆料
WO2014185996A1 (en) * 2013-05-14 2014-11-20 Exxonmobil Chemical Patents Inc. Ethylene-based polymers and articles made therefrom
CN105462039A (zh) * 2015-12-25 2016-04-06 四川旭泰通信设备有限公司 一种耐寒抗紫低烟无卤阻燃光缆护套及其制备方法
CN111183160B (zh) 2017-10-06 2022-06-10 埃克森美孚化学专利公司 聚乙烯挤出物及其制备方法
CA3097342A1 (en) * 2018-04-27 2019-10-31 Dow Global Technologies Llc Non-foam polyolefin compositions for wire and cable coating
EP3827448A1 (en) 2018-07-25 2021-06-02 Dow Global Technologies LLC Coated conductor
CN114502602B (zh) 2019-09-30 2024-02-06 埃克森美孚化学专利公司 用于改进的线材涂覆产品的高压聚乙烯管式反应器方法
CN110938274B (zh) * 2019-12-13 2022-05-20 浙江万马高分子材料集团有限公司 硅烷交联型半导电屏蔽材料及其制备方法和应用
US20230279165A1 (en) * 2020-06-24 2023-09-07 Dow Global Technologies Llc Cure and functionalization of olefin/silane interpolymers
WO2023056214A1 (en) * 2021-09-30 2023-04-06 Exxonmobil Chemical Patents Inc. Polyethylene glycol-based polymer processing aid masterbatches

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243619A (en) 1978-03-31 1981-01-06 Union Carbide Corporation Process for making film from low density ethylene hydrocarbon copolymer
US4588790A (en) 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4543399A (en) 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
US4540753A (en) 1983-06-15 1985-09-10 Exxon Research & Engineering Co. Narrow MWD alpha-olefin copolymers
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5264405A (en) 1989-09-13 1993-11-23 Exxon Chemical Patents Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin-copolymer production catalysts
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5241025A (en) 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US4892851A (en) 1988-07-15 1990-01-09 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5026798A (en) 1989-09-13 1991-06-25 Exxon Chemical Patents Inc. Process for producing crystalline poly-α-olefins with a monocyclopentadienyl transition metal catalyst system
US5057475A (en) 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
ATE137770T1 (de) 1989-10-10 1996-05-15 Fina Technology Metallocenkatalysator mit lewissäure und alkylaluminium
ES2086397T5 (es) 1989-10-30 2005-07-16 Fina Technology, Inc. Adicion de alkiloaluminio para un catalizador metaloceno mejorado.
ATE186918T1 (de) 1990-01-02 1999-12-15 Exxon Chemical Patents Inc Ionische metallocenkatalysatoren auf träger für olefinpolymerisation
CA2066247C (en) 1990-07-24 1998-09-15 Ryuichi Sugimoto Polymerization catalyst for .alpha.-olefin and method for preparing poly-.alpha.-olefin by using it
JPH0743689Y2 (ja) * 1990-10-17 1995-10-09 パイオニア株式会社 レンズフレーム
US5189192A (en) 1991-01-16 1993-02-23 The Dow Chemical Company Process for preparing addition polymerization catalysts via metal center oxidation
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
JPH06509528A (ja) 1991-07-18 1994-10-27 エクソン・ケミカル・パテンツ・インク ヒートシール製品
US5416228A (en) 1991-10-07 1995-05-16 Fina Technology, Inc. Process and catalyst for producing isotactic polyolefins
US5206075A (en) 1991-12-19 1993-04-27 Exxon Chemical Patents Inc. Sealable polyolefin films containing very low density ethylene copolymers
EP0574561B1 (en) 1992-01-06 1998-01-28 The Dow Chemical Company Improved catalyst composition
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5436304A (en) 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5350723A (en) 1992-05-15 1994-09-27 The Dow Chemical Company Process for preparation of monocyclopentadienyl metal complex compounds and method of use
US5308817A (en) 1992-05-18 1994-05-03 Fina Technology, Inc. Metallocene catalyst component with good catalyst efficiency after aging
US5434115A (en) 1992-05-22 1995-07-18 Tosoh Corporation Process for producing olefin polymer
EP1110974B1 (en) 1992-08-05 2007-11-28 ExxonMobil Chemical Patents Inc. Method for preparing a supported activator component
US6313240B1 (en) 1993-02-22 2001-11-06 Tosoh Corporation Process for producing ethylene/α-olefin copolymer
US5462999A (en) 1993-04-26 1995-10-31 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
WO1994025495A1 (en) 1993-05-20 1994-11-10 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
IL110380A0 (en) 1994-07-20 1994-10-21 Agis Ind 1983 Ltd Antiviral topical pharmaceutical compositions
US5763543A (en) 1994-09-14 1998-06-09 Exxon Chemical Patents Inc. Olefin polymerization process with little or no scavenger present
US5883144A (en) 1994-09-19 1999-03-16 Sentinel Products Corp. Silane-grafted materials for solid and foam applications
US5932659A (en) 1994-09-19 1999-08-03 Sentinel Products Corp. Polymer blend
CA2203595A1 (en) * 1996-04-26 1997-10-26 Robert F. Hurley Cross-linked polyolefin tape
US5952427A (en) 1996-12-10 1999-09-14 Exxon Chemical Patents Inc. Electrical devices including ethylene, α-olefin, vinyl norbornene elastomers and ethylene α-olefin polymers
US6255426B1 (en) * 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene
DE19808888A1 (de) * 1998-03-03 1999-09-09 Huels Chemische Werke Ag Verstärkte Formmasse
US6218484B1 (en) 1999-01-29 2001-04-17 Union Carbide Chemicals & Plastics Technology Corporation Fluidized bed reactor and polymerization process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099191A (zh) * 2008-07-10 2011-06-15 北欧化工股份公司 一种电缆的生产方法
CN102099191B (zh) * 2008-07-10 2014-10-29 北欧化工股份公司 一种电缆的生产方法
CN104205245A (zh) * 2012-01-26 2014-12-10 英尼奥斯欧洲股份公司 用于电线和电缆应用的共聚物
CN104205245B (zh) * 2012-01-26 2020-06-23 英尼奥斯欧洲股份公司 用于电线和电缆应用的共聚物
CN108359038A (zh) * 2017-01-26 2018-08-03 中国石油化工股份有限公司 一种乙烯与端烯基硅烷/硅氧烷的共聚方法
CN108359038B (zh) * 2017-01-26 2020-10-23 中国石油化工股份有限公司 一种乙烯与端烯基硅烷/硅氧烷的共聚方法
CN112384542A (zh) * 2018-06-28 2021-02-19 埃克森美孚化学专利公司 聚乙烯组合物、电线和电缆及其制备方法

Also Published As

Publication number Publication date
CN100484975C (zh) 2009-05-06
WO2004014971A1 (en) 2004-02-19
EP1527112B1 (en) 2007-10-31
EP1527112A1 (en) 2005-05-04
US7153571B2 (en) 2006-12-26
ATE377033T1 (de) 2007-11-15
US20040024138A1 (en) 2004-02-05
AU2003259234A1 (en) 2004-02-25
JP2005534802A (ja) 2005-11-17
DE60317204T2 (de) 2008-08-07
DE60317204D1 (de) 2007-12-13
CA2488983A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN1668661A (zh) 硅烷可交联的聚乙烯
CN1084342C (zh) 单烯烃/多烯烃共聚合物、其制备方法、含该聚合物的组合物和由其生产的制品
CN1111563C (zh) 聚合物混合物、由其制造模制品的方法和所制造的模制品
CN1255439C (zh) 高熔体强度聚合物及其制造方法
JP5276757B2 (ja) 剪断減粘性エチレン/α−オレフィンインターポリマーおよびそれらの製造法
CN1043648C (zh) 烯烃的气相聚合法
KR102622329B1 (ko) 에틸렌/알파-올레핀 공중합체, 이의 제조방법 및 이를 포함하는 광학필름용 수지 조성물
CN1678678A (zh) 收缩薄膜
CN1498231A (zh) 薄膜用丙烯聚合物
CN1159733C (zh) 用于电力电缆的绝缘组合物
CN1215408A (zh) 生产聚烯烃弹性体的聚合方法、用于活化金属茂前催化剂的生产阳离子的助催化剂、有独特性能组合的聚烯烃弹性体及由其制造的产品
CN1069034A (zh) 烯烃的气相聚合方法
CN1659226A (zh) 热塑性树脂组合物、聚合体组合物及该组合物形成的成型体
CN1678669A (zh) 可伸薄膜
CN1246871A (zh) 结合有聚乙烯大分子单体的丙烯聚合物
JP6152777B2 (ja) 改質エチレン系重合体の製造方法
CN1087648A (zh) 乙烯-α烯烃共聚物及使用该共聚物而成型的成型品
JP6791662B2 (ja) ポリエチレン系パウダー、ポリエチレン系パウダーの製造方法、ポリエチレン系樹脂組成物、及び架橋ポリエチレン管の製造方法
JP2001522399A (ja) 置換インデニル含有金属錯体を用いて生じさせたオレフィンポリマー類
US8183328B2 (en) Compositions comprising grafted and crosslinked LLDPE's, Methods for making same, and articles made therefrom
US8211985B2 (en) Silicon-containing ethylene-based polymer blends, methods for making same, and articles made therefrom
CN1141323C (zh) 宽分子量分布和短全同立构序列的高分子量聚丙烯
CN1203121C (zh) 聚烯烃树脂组合物和其拉伸薄膜
KR102527751B1 (ko) 에틸렌/알파-올레핀 공중합체를 포함하는 광학필름용 수지 조성물 및 이를 포함하는 광학필름
TWI576865B (zh) 絕緣體用聚乙烯系樹脂組合物及使用其之高頻同軸纜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090506

Termination date: 20210725