CN1639964A - 信号处理方法及信号处理设备 - Google Patents

信号处理方法及信号处理设备 Download PDF

Info

Publication number
CN1639964A
CN1639964A CN03805635.6A CN03805635A CN1639964A CN 1639964 A CN1639964 A CN 1639964A CN 03805635 A CN03805635 A CN 03805635A CN 1639964 A CN1639964 A CN 1639964A
Authority
CN
China
Prior art keywords
signal
input
phase
output
handling equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03805635.6A
Other languages
English (en)
Other versions
CN100449937C (zh
Inventor
松野典朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1639964A publication Critical patent/CN1639964A/zh
Application granted granted Critical
Publication of CN100449937C publication Critical patent/CN100449937C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

一个输入到输入端(1)的信号被输入到混频器(2、4),并且分别以具有90度相位差的本地信号进行降频变换,从而获得I信号和Q信号。混频器(4)的输出信号由移相器(6)延迟90度相位。加法器(7)输出I信号和Q信号的和信号,减法器(8)输出I信号和Q信号之间的差信号。和信号及差信号输入到带通滤波器(9、10)中,其中处于不需的频带上的信号被截除,然后由AD转换器(11、12)转换为数字信号并输入到信号处理器(13)中。在信号处理器(13)中,形成和信号和差信号的关联信号,并使用关联信号和差信号移除包括在和信号中的图像信号。

Description

信号处理方法及信号处理设备
技术领域
本发明涉及例如图像抑制混频器的一种信号处理设备和一种信号处理方法,该图像抑制混频器用于移除在高频信号和本地信号混频并降频变换为中频信号(IF信号)时所产生的图像信号分量。
背景技术
在一个将IF(中频)设置为相对低的IF接收机中,IF滤波器可由半导体元件构成,它具有不需要外部SAW(表面声波)滤波器的优点。
然而,将IF接收机的IF频率设置为低意味着将用于转换RF(射频)信号频率的本地信号的频率设置为相对接近RF信号频率。因此,在频率轴上参照本地信号的频率而与所需信号对称的不需要的信号(以下称为图像信号)的频率与所需信号的频率接近,由此,先于降频变换而将图像信号移除是困难的。
这样,降频混频器必须具有这样的功能以便只对所需信号降频变换,并作为抑制图像信号的图像抑制混频器。
图16是示出根据传统技术作为典型图像抑制混频器的哈特利(Hartley)型图像抑制混频器的配置的示意图。图16所示的哈特利型图像抑制混频器在美国专利公开号为1666206中给出了描述并为人们所公知。
图16所示的图像抑制混频器具有输入端1、4、5,混频器2、3,作为相位延迟装置的移相器6,加法器(加法装置)7和输出端34。这样配置混频器以便对从输入端1输入的RF信号的频率进行转换并从输出端34输出IF信号。
下面将描述图16所示的哈特利型图像抑制混频器的操作。图17是示出输入到图16所示的哈特利型图像抑制混频器的输入信号的频率分布图的一个示例。在图17中,纵轴表示输入信号的频率,横轴表示输入信号的大小。为简化说明,假设输入信号只包括两个分别具有频率为±ω1的所需信号14、15,以及分别具有频率为±ω2的图像信号16、17。注意到,所需信号14的频率ω1、图像信号16的频率ω2、和本地信号的频率ωLD具有(ω12)/2=ωLD的关系。
输入到图16所示的输入端1的RF信号分为两个分支。一个分支的RF信号与输入到混频器2的输入端4的本地信号cos(ωLD*t)(第一周期信号)进行混频,而另一分支的RF信号与输入到混频器3的输入端5的本地信号sin(ωLD*t)(第二周期信号)进行混频。结果,混频器2将降频变换的信号输出为I信号,混频器3将降频变换的信号输出为Q信号。然后,Q信号经过移相器以便使相位延迟90度。
图18示出了输入信号降频变换到I信号的状态。在图18中,所需信号的降频变换的相应关系由实线箭头表示,而图像信号的降频变换的相应关系由虚线箭头表示。
如图18所示,在混频器2中,所需信号14、15被降频变换,从而获得降频变换的所需信号18、19。降频变换的所需信号18、19的频率是±(ω1LD)。
而且,在混频器2中,图像信号16、17被降频变换,从而获得降频变换的图像信号20、21。从图18中可明显地看出,降频变换的所需信号18、19和降频变换的图像信号21、20呈现出分别在频率为±(ω1LD)的周围叠加。
图19示出了输入信号降频变换到Q信号的状态。在图19中,所需信号的降频变换的相应关系由实线箭头表示,而图像信号的降频变换的相应关系由虚线箭头表示。
图19示出了降频变换信号22至25,它们的相位由移相器6延迟90度。
在混频器3中,所需信号14、15被降频变换,从而分别获得降频变换的所需信号22、23。降频变换的所需信号22、23的频率是±(ω1LD)。
而且,在混频器3中,图像信号16、17被降频变换,从而分别获得降频变换的图像信号24、25。通过对所需信号进行降频变换而获得的降频变换的所需信号22、23和通过对图像信号进行降频变换而获得的降频变换的图像信号25、24分别出现在±(ω1LD)的频率周围。在这种情况下,输入到混频器2、3的本地信号(cos(ωLD*t),sin(ωLD*t);频率ωLD)之间的相位差为90度。而且,由于移相器(90度移相器)6的相位延迟,在图19所示的降频变换的情况下,降频变换的所需信号22、23的相位以及降频变换的图像信号的相位都偏移180度。
在图19中,降频变换的图像信号24、25向下突出表示降频变换的图像信号与降频变换的所需信号22、23的相位具有180度的相位偏移。
当图18和图19所示的降频变换的I信号和Q信号由加法器7相加时,降频变换的图像信号20和24以及21和25的每个都是相反极性相同振幅,如图18和19所示。因此,它们互相抵消,从而只获得具有降频变换的所需信号18、19及22、23的累积振幅的降频变换的所需信号26、27。
然而,如果在从混频器2到加法器7的I信号路径和从混频器3到加法器7的Q信号路径之间存在着增益偏差,那么图像信号在加法器输出上没有完全抵消,从而,没有完全抑制图像信号。
而且,如果在移相器6中的90度相移不够精确,或者如果具有频率ωLD(cos(ωLD*t)和sin(ωLD*t))的输入到混频器2和混频器3的信号之间的相位差偏移了90度,那么也没有完全抑制图像信号。
图21示出了在降频变换的图像信号18和24,及19和25之间出现的振幅差的上述现象。因此,它们通过加法没有互相抵消。所以,降频变换的图像信号28和29从加法器7中输出。这样,加法器7的输出包括降频变换的图像信号28、29以及降频变换的所需信号26、27,而降频变换的图像信号28、29叠加在降频变换的所需信号26、27上。
在例如收音机的设备中,需要支持图像信号的强度大于所需信号的强度的状况。在这种情况下,例如,图像抑制混频器需要大于50dB的图像抑制比。
然而,当考虑到构成图像抑制混频器的晶体管和/或无源元件的过程波动,由于温度变化而导致的设备特性漂移等时,传统图像抑制混频器的典型的图像抑制比最多为30dB。
一种传统的提高图像抑制混频器的图像抑制比的技术是增加一个用于在降频变换混频器之前移除图像信号的滤波器。
然而,在上述具有相对低IF频率的IF接收机中,所需信号的频率和图像信号的频率是接近的。因而,由前述图像抑制滤波器所导致的所需信号的损耗变大了,这就导致IF接收机性能的恶化。
而且,在这种图像抑制滤波器中,所需信号的频带在RF区域内,因此,就不能将其集成在半导体芯片中。这样就会在小型化和降低成本中产生问题。
另一种提高图像抑制比的传统技术是反馈控制方法,其中混频器2、3和移相器6依据外部控制是可调的。
然而,这种方法难于在温度变化下在现场监视每一个元件补偿操作的特性,以及新增了用于反馈控制的元件所需的准确性。这就导致了产量的下降,成本的升高以及缺乏稳定性。
如上所述,在传统的图像抑制混频器中,存在着这样的问题,即:由于在信号处理过程中电路的性质遗留了不需要的图像信号,其中该不需要的图像信号叠加在所需信号上。
而且,传统的用于抑制图像信号(图像泄漏)的技术产生这种缺点,即:设备性能的恶化、成本升高、功耗增加,并且抑制功能在某些情况下不能充分工作。
本发明的目的就是要提供一种信号处理方法以及一种能够抑制不需要的图像信号的设备,其中该不需要的图像信号在信号处理中产生并叠加在所需信号上。
发明内容
为了实现上述目的,一种根据本发明的信号处理方法包括:第一频率转换步骤,其中执行处理来以一个具有预定频率的第一周期信号转换输入信号的频率;第二频率转换步骤,其中执行处理来以一个具有该预定频率的第二周期信号转换输入信号的频率;相位延迟步骤,其中执行处理以便将在第一频率转换步骤中转换的信号和第二频率转换步骤中转换的信号之间的相位差增加π/2;以及加法步骤,其中执行处理以便输出在相位延迟步骤中增加了互相之间的相位差的各信号的和信号。信号处理方法具有这样的配置,包括:减法步骤,其中执行处理来输出在第一频率转换步骤中转换的信号和相位延迟步骤中延迟的信号之间的差信号;以及信号处理步骤,其中假设和信号或者差信号中的一个是第一信号并且另一信号是第二信号,那么执行处理以便利用第一信号和第二信号之间的关联以及第一信号来移除包括在第二信号中的图像信号分量。
在本发明的信号处理方法中,假设和信号或者差信号中的一个是第一信号并且另一信号是第二信号,那么执行处理以便利用第一信号和第二信号之间的关联以及第一信号来移除包括在第二信号中的图像信号分量。
因此,根据本发明,包括在第二信号中的图像信号的剩余分量能够全部移除,从而确实可以防止出现不需要的图像信号叠加在所需信号之上的现象。
而且,用于实施根据本发明的信号处理方法的信号处理设备包括:第一频率转换装置,用于以一个具有预定频率的第一周期信号转换输入信号的频率;第二频率转换装置,用于以一个具有该预定频率的第二周期信号转换输入信号的频率;相位延迟装置,用于将在第一频率转换装置中转换的信号和第二频率转换装置中转换的信号之间的相位差增加π/2;以及加法装置,用于输出由相位延迟装置增加了互相之间的相位差的各信号的和信号。信号处理设备具有这样的配置,包括:减法装置,用于输出在第一频率转换装置中转换的信号和相位延迟装置中延迟的信号之间的差的差信号;以及信号处理器,其中假设和信号或者差信号中的一个是第一信号并且另一信号是第二信号,那么利用第一信号和第二信号之间的关联以及第一信号来移除包括在第二信号中的图像信号分量。
在本发明的信号处理设备中,包括在第二信号中的图像信号的剩余分量能够全部移除,从而确实可以防止出现不需的图像信号叠加在所需信号之上的现象。
而且,信号处理器可以配置为执行处理以便获得第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以及执行处理以便通过从第二信号中减去以第一比率放大第一信号而获得的信号而计算差值。该信号处理器可以执行在第一信号的相位被延迟π/2后的每个处理。
而且,该信号处理器可以配置为执行处理来计算第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以第一比率放大第一信号,计算延迟第一信号π/2而得的信号和第二信号之间的关联的低频分量与第一信号的平方的低频分量相比的第二比率,以第二比率放大延迟第一信号π/2而得的信号,并执行处理来计算通过从第二信号中减去以第一比率放大的信号与以第二比率放大的信号的和信号,而获得差值。
第一比率可以是通过从第一信号和第二信号的乘积信号的低频分量的对数值中减去第一信号的平方的低频分量的对数值而计算的值。第二比率可以是通过从延迟第一信号π/2而得的信号和第二信号的乘积信号的低频分量的对数值中减去第一信号的平方的低频分量的对数值而计算的值。
而且,该信号处理器可以包括一个开关装置,用于选择输出差值或者输出第二信号。
而且,该信号处理器可以被配置为包括第一强度检测装置,用于检测第一信号的强度,以及第二强度检测装置,用于检测第二信号的强度,并且如果第二信号的强度与第一信号的强度的比值超过一个阈值,开关装置就选择输出第二信号。
通过这种配置,如果图像信号的强度不够强,就可以通过以与传统设备相同的方式进行输出,来防止由于不需要的图像信号的叠加操作而导致的所需信号接收特性的退化。
而且,本发明信号处理设备可以被配置为检测从信号处理器输出的信号的误码率,并将开关装置切换到误码率降低的一侧,或者改变该阈值。
附图说明
图1是示出根据本发明第一实施例的信号处理设备的整体配置的示意图,
图2是示出输入到根据本发明第一实施例的信号处理设备的信号的图表。
图3是示出从带通滤波器9输出的输出信号的图表,
图4是示出从带通滤波器10输出的输出信号的图表,
图5是示出信号处理器13的特定配置的一个示例的示意图。
图6是示出根据本发明第二实施例的信号处理设备的配置的示意图。
图7是示出根据本发明第三实施例的信号处理设备的配置的示意图。
图8是示出根据本发明第四实施例的信号处理设备的配置的示意图。
图9是示出根据本发明第五实施例的信号处理设备的配置的示意图。
图10是示出根据本发明第六实施例的信号处理设备中的信号处理器13的示意图。
图11是示出根据本发明第七实施例的信号处理设备中的信号处理器的配置的示意图。
图12是示出根据本发明第八实施例的信号处理设备中的信号处理器13的配置的示意图。
图13是示出根据本发明第九实施例的信号处理设备中的信号处理器13的配置的示意图。
图14是示出执行数字信号处理的部分的框图,包括根据本发明第十实施例的信号处理设备中的信号处理器13。
图15是示出包括根据本发明第十一实施例的信号处理器13的数字信号处理单元的框图。
图16是示出传统技术的作为典型图像抑制混频器的哈特利型图像抑制混频器配置的示意图。
图17是示出输入到图16的哈特利型图像抑制混频器的输入信号的频率分布的一个示例的图表。
图18是示出在混频器2中输入信号到I信号降频变换的状态的图表。
图19是示出在混频器3中输入信号到Q信号降频变换的状态的图表。
图20是示出降频变换的信号的分量的图表。
图21是示出图像信号没有被完全抑制的一个状态示例的图表。
具体实施方式
下面,将参照附图详细解释本发明的实施例。
(第一实施例)
首先,将解释本发明的第一实施例。图1是示出根据本实施例的信号处理设备的整体配置的示意图。
如图1所示,本发明的信号处理设备包括:减法器(减法装置)8,带通滤波器(BPF)9、10,AD转换器11、12以及信号处理器13,以及传统图像抑制混频器的配置。在本实施例中,带通滤波器9、10分别用作第二滤波器和第一滤波器,AD转换器11、12分别用作第二AD转换器和第一AD转换器。
在该实施例中,带通滤波器9、10的输出分别被AD转换器转换为数字信号。因此,在信号处理设备13中执行数字信号处理。这里,假设图2所示的信号输入到输入端1中。为了简化解释,图2所示的输入信号只包括具有频率在±ω1附近的所需信号14、15和具有频率在±ω2附近的图像信号16、17。然而事实上,输入信号包括与图2所示的信号的频带不同的不需要的信号。注意到所需信号14的频率ω1、图像信号16的频率ω2以及本地信号的频率ωLD之间的关系为(ω12)/2=ωLD
在图1中,输入到输入端1的RF信号分为两个分支。一个分支的RF信号与从混频器2的输入端4输入的本地信号cos(ωLD*t)进行混频。另一个分支的RF信号与从混频器3的输入端5输入的本地信号sin(ωLD*t)进行混频。
在本实施例中,输入到混频器2的本地信号cos(ωLD*t)和输入到混频器3的本地信号sin(ωLD*t)之间的相位差为90度(π/2)。结果,从混频器2中输出的降频变换的信号作为I信号,而从混频器3中输出的降频变换的信号作为Q信号。移相器6将Q信号延迟90度。代替使用cos(ωLD*t)和sin(ωLD*t)作为本地信号,本地信号cos(ωLD*t)可输入到使用了移相器的混频器2和3中,该移相器将输入到混频器3的RF信号的相位相对于输入到混频器2的RF信号的相位延迟π/2。
加法器7对I信号和Q信号求和。带通滤波器9从加法器7输出的和信号中截除处于不需频带上的信号。当I信号路径的增益和Q信号路径的增益完全平衡时,输入到混频器2、3的本地信号(cos(ωLD*t)和sin(ωLD*t))的频率之间的相位差整整为90度,理想地在移相器6中进行90度移相,并且I信号路径和Q信号路径的寄生的相位旋转量完全一致,只有所需信号出现在带通滤波器9的输出上。
然而事实上,I信号路径和Q信号路径的相位和增益不完全平衡,并且移相器6的移相量和频率为ωLD的信号之间的相位差不完全是90度。因此,带通滤波器9的输出信号是所需信号和衰减的图像信号的总和。这里,假设所需信号的分量是X(t),图像信号的分量是Y(t),从输入端1到带通滤波器9的路径的图像抑制比是“a”(第一比率),那么带通滤波器9的输出信号(第二信号)如下表示:
X(t)+aY(t)    (1)
更严格地,用于带通滤波器9的输出的输出信号公式应当包括由输入端1到带通滤波器9的路径增益所产生的系数以及由相位旋转所产生的系数。为简化,这些系数在等式(1)中被省略了。
图3是示出从带通滤波器9输出的输出信号的图表。在图3中,所需信号的降频变换的相应关系由实线箭头表示,而图像信号的降频变换的相应关系由虚线箭头表示。
如图3所示,在本实施例中,两个所需信号14、15分别被降频变换为两个降频变换的所需信号26、27(X(t)),两个图像信号16、17分别被降频变换为两个降频变换的遗留下来没有抑制的图像信号28、29(aY(t))。
遗留的图像信号aY(t)的相位不总是和图像信号Y(t)一致。也就是,“a”是一个复数。从输入端1到带通滤波器9的输出端的信号路径的配置与传统技术所公知的哈特利型图像抑制混频器的配置相同,如上所述,因此,“a”的绝对值的一个标准值大约为-30dB。
另一方面,减法器8从I信号中减去Q信号并输出差信号。差信号输入到具有与带通滤波器9相同的截止特性的带通滤波器10中。带通滤波器10截除差信号中处于不需频带中的分量,从而输出已截除了处于不需频带中的分量的信号。
当I信号路径的增益和Q信号路径的增益完全平衡时,输入到各混频器2、3的本地信号(cos(ωLD*t)和sin(ωLD*t))之间的相位差整整为90度,理想地在移相器6中进行90度移相,并且I信号路径和Q信号路径的寄生的相位旋转量完全一致,只有所需信号出现在带通滤波器10的输出上。
然而事实上,I信号路径和Q信号路径的相位和增益不完全平衡,并且移相器6的90度移相以及频率为ωLD的信号之间的相位差并不完整。因此,带通滤波器10的输出信号是所需信号和衰减的图像信号的总和。这里,假设所需信号是X(t),图像信号是Y(t),从输入端1到带通滤波器10的信号路径的图像抑制比为“b”(第二比率),那么带通滤波器10的输出信号如下表示:
Y(t)+bX(t)          (2)
图4是示出从带通滤波器10输出的输出信号的图表。在图4中,所需信号的降频变换的相应关系由实线箭头表示,而图像信号的降频变换的相应关系由虚线箭头表示。
如图4所示,所需信号14、15分别被降频变换为降频变换的所需信号33、32(bX(t)),而图像信号16、17分别被降频变换为降频变换的遗留下来没有抑制的图像信号30、31(X(t))。
遗留的降频变换的所需信号bY(t)的相位不总是与原始的所需信号X(t)的相位一致。也就是,“b”是一个复数。输入端1到带通滤波器10的信号路径的配置是传统技术所公知的哈特利型图像抑制混频器的变形,因此“b”的绝对值的标准值也约为-30dB。
带通滤波器9的输出信号由AD转换器11转换为数字信号。相似地,带通滤波器10的输出信号由AD转换器12转换为数字信号。AD转换器11、12所输出的数字信号输入到信号处理器13中。
这里,第二信号是从AD转换器11中输出的数字信号,第一信号从AD转换器12中输出的数字信号。信号处理器13利用第一信号和第二信号之间的关联并使用第一信号移除包含在第二信号中的图像信号分量。
图5是示出信号处理器的特定配置的一个示例的示意图。信号处理器13的所有元件都用于处理数字信号。这里,所需信号的平方X(t)2的时间平均值表示为|X|2,图像信号平方Y(t)2的时间平均值表示为|Y|2。信号处理器13有一个接收来自AD转换器11的输出信号的输入端54,以及一个接收来自AD转换器12的输出信号的输入端55。
尽管所示的每个输入端54、55都具有图1的一条信号线,但输入端54、55实际上为了来自AD转换器11、12的并行数字信号而连接到多路位线。
首先,考虑到图像信号|Y|的绝对值比所需信号|X|的绝对值大或多大约10dB的情况。
均方计算电路59计算从AD转换器12输出的信号(第一信号)的均方值。由于AD转换器12的输出值是Y(t)+bX(t),所以由均方计算电路59平方该输出值的结果是Y(t)2+2bX(t)Y(t)+{bX(t)}2。通常,X(t)和Y(t)没有关联,因此2bX(t)Y(t)的时间平均值为0。
所以,均方计算电路59的输出值是|Y|2+{|b||X|}2。注意到|b|表示“b”的绝对值。这里,考虑到|b|的标准值大约为-30dB的事实,如果|X|与|Y|数量级相同或较小,那么均方计算电路59的输出值近似等于|Y|2。这里,由于|Y|比|X|大或多大约10dB,那么就可以很好地建立这种近似。
混频器56用AD转换器12的输出信号乘以AD转换器11的输出信号,即用第一信号乘以第二信号。注意到混频器56事实上是数字混频器,也就是乘法器。混频器56的输出值是{X(t)+aY(t)}*{Y(t)+bX(t)}=bX(t)}2+(1+ab)X(t)Y(t)+aY(t)2
平均值计算电路57计算混频器56的输出信号的时间平均值。通常,X(t)和Y(t)没有关联,因此X(t)Y(t)的时间平均值为0。而且,假设这里|Y|比|X|大10dB或更多并且认为|a|和|b|基本相等,因而平均值计算电路57的输出值近似为Re(a)|Y|2。这里Re(a)表示“a”的实部。
混频器70将AD转换器11的输出信号(第二信号)与使用数字域中的移相器69而将AD转换器12的输出信号(第一信号)的相位延迟90度而得的信号相乘。
平均值计算电路71计算混频器70的输出信号的时间平均值。考虑到X(t)和Y(t)没有关联、|a|和|b|基本相等以及|Y|比|X|大10dB或更多的事实,平均值计算电路71的输出值为Im(a)|Y|2。这里,Im(a)表示“a”的虚部。
每个平均值计算电路57、59、71的输出信号分别被对数压缩电路58、60、72转换为对数值信号。也就是,对数压缩电路58、60、72的输出值分别是log{Re(a)|Y|2}、log{|Y|2}、log{Im(a)|Y|2}。
减法器61输出对数压缩电路58的输出值log{Re(a)|Y|2}和对数压缩电路60的输出值log{|Y|2}的差。减法器73输出对数压缩电路72的输出信号和对数压缩电路60的输出信号之间的差。也就是,减法器73的输出值是log{Im(a)}。
可变增益放大器62、64是相应于减法器61、73的输出值来控制增益的数字可变增益放大器。可变增益放大器62放大AD转换器12的输出信号(第一信号)并获得减法器输出值的指数信号。因此,可变增益放大器62的输出值是Re(a){Y(t)+bX(t)}。相似地,可变增益放大器74的输出值是J*Im(a){Y(t)+bX(t)}。
注意到相同的功能可通过以除法器代替对数压缩电路58、60和减法器61,以另一除法器代替对数压缩电路60、72和减法器73,以及以数字域内的混频器也就是乘法器代替可变增益放大器62、74来实现。
加法器75计算可变增益放大器62的输出信号与可变增益放大器74的输出信号的和。因此,加法器75的输出值是a{Y(t)+bX(t)}。减法器63从AD转换器11的输出信号(第二信号)中减去加法器75的输出信号。因此,减法器63的输出值为{X(t)+aY(t)}-a{Y(t)+bX(t)}=X(t)=abX(t)。换句话说,一个具有从第二信号中移除图像信号Y(t)的输出值的输出信号是从减法器63中输出的,并且如果开关67选择了减法器63,那么输出端68的输出就是这个信号。
信号处理器13的前述操作用于|Y|大于|X|某一程度(在上述解释中为10dB)的情况。
相反,例如,如果|Y|几乎等于|X|或比|X|小,那么上述信号处理器中的信号处理会恶化图像抑制比。为应付这种情况,信号处理器13要加入一种功能。这种功能将在下面解释。
均方计算电路64(第二强度检测装置)计算AD转换器11输出的信号(第二信号)的均方值并将其输出。考虑到X(t)和Y(t)没有关联,对AD转换器11的输出值X(t)+aY(t)均方的结果是|X|2+{|a||Y|}2。对数压缩电路65将AD转换器11的输出值转换为对数值。也就是,对数压缩电路65的输出值是log{|X|2+{|a||Y|}2}。
另一方面,AD转换器12的输出信号(第一信号)被均方计算电路59(第一强度检测装置)均方并被对数压缩电路60转换为对数。
减法器77计算对数压缩电路65的输出值log{|X|2+{|a||Y|}2}和对数压缩电路60的输出值log{|Y|2+{|b||X|}2}之间的差。这样,减法器77的输出值是log[[|X|2+{|a||Y|}2]/[|Y|2+{|b||X|}2]]。考虑到|a|和|b|的标准值约为-30dB的事实,如果|X|的强度比|Y|的强度大30dB,那么减法器77的输出值约为log{1/|b|2}。这个值为+30dB。
另一方面,如果|X|与|Y|的强度比在-30dB到+30dB之间,那么减法器77的输出值可近似为log{|X|2/|Y|2}。而且,如果|X|的强度比|Y|的强度小-30dB,那么减法器77的输出值约为log{|a|2}。这个值为-30dB。
输出值基本上表示|X|与|Y|的强度比,也就是,所需信号与图像信号(干扰信号)在dB计量上的强度比,而减法器77的输出值具有log{1/|a|2}的最大饱和输出值和log{|a|2}的最小饱和输出值。
减法器77的输出信号输入到比较器66中,如果减法器77的输出值超过了一个预定的阈值,开关67就切换到直接连接到输入端54的一侧,如果不超过这个预定的阈值,开关67就切换到连接到减法器63的一侧。这里,阈值最好大于-30dB并小于30dB。
如上所述,根据本实施例,如果所需信号的强度与图像信号(干扰信号)的强度的比超过了一个阈值,就可能从信号处理器13的输出端68中输出AD转换器11的输出信号,也就是,传统哈特利型图像抑制混频器的输出信号。在这种情况下,所需信号与图像信号(干扰波信号)的强度比超过了某个程度。这样,即使具有在传统技术的哈特利型图像抑制混频器中获得的图像抑止比,也可能在随后的在解调电路中进行的信号处理中获得足够的S/N比。
另一方面,如果所需信号的强度与图像信号(干扰信号)的强度的比小于阈值,那么一种通过使用AD转换器11和12的输出信号来提高图像抑止比的信号从信号处理器13的输出端68中输出。注意到当图像信号(干扰信号)的强度比所需信号的强度大某一程度时,这种操作有效。在这种情况下,在传统的哈特利型图像抑制混频器中的图像抑止比就不够了。
而且,如果图像信号的强度大于所需信号的强度,那么在传统的哈特利型图像抑制混频器中的图像抑制比就不够了。在这种情况下,一种提高了图像抑制比的信号从本实施例的信号处理器13的输出端68中输出。而且,当图像信号的强度不够那么强时,哈特利型图像抑制混频器提供了足够的图像抑制比。在这种情况下,加法器7(图1)的输出信号(和信号,即第二信号)被输出,它与传统的哈特利型图像抑制混频器的输出信号相同。
根据本实施例,可以解决当考虑到构成该图像抑制混频器的晶体管和无源元件的分散和/或温度改变而出现的这种典型图像抑制比约为30dB且不足的问题。
而且,如上所述,在降频变换混频器之前配置图像抑制滤波器,如前所介绍的另一传统技术,会导致不仅图像信号而且所需信号的损失增加,以及接收机的特性退化的问题。而且,在这种图像抑制滤波器中,目标信号的频带是在RF域中的。这样,就不可能集成在半导体芯片上并且会在小型化或减少成本上产生问题。在本实施例中,这些问题基本上不会发生。
而且,在如另一传统技术所述的,在可从外部调谐混频器和移相器并执行反馈控制来提高图像抑制比的方法中,在收音机中对图像抑制比现场监视、补偿由于温度变化而带来的元件特性的改变以及为反馈控制而新增的元件的高操作准确性都存在着困难。这就导致了成本的增加、产量的下降和实际应用中可靠性的缺乏。在本实施例中,这些问题将不会发生。
在本实施例中,尽管有90度相位差的cosωLDt和sinωLDt用作输入到图1所示的混频器2、3的本地信号,但输入到混频器2、3的本地信号可以是同相的,并且分别输入到混频器2、3的RF信号之间的相位差是90度。
而且,在本实施例中,尽管移相器6作为图1所示的相位延迟装置,但该相位延迟装置可以包括一个对由混频器2转换的I信号的相位延迟α度的移相器,和一个对由混频器3转换的Q信号的相位前进90-α度的移相器。这里,如果α被设置为0度,那么相位等于图1所示的那样。如果α被设置为90度,那么I信号的相位前进90度。
(第二实施例)
第一实施例已经描述了用于执行实现本发明最佳实施方式的数字信号处理的信号处理方法和设备。然而,本发明并不局限于此,它也可以应用到实施模拟信号处理的信号处理方法和设备中。在下面第二至第四实施例中,将描述本发明应用到模拟信号处理中的实施方式。
首先将解释根据本发明第二实施例的信号处理方法和设备。图6是示出根据本实施例的信号处理设备的配置的示意图。
输入到图6所示的输入端1中的信号分为两个分支。一个分支的输入信号在混频器2中与输入到输入端4的本地信号cos(ωLD*t)进行混频。在混频器2中降频变换的信号变为I信号。另一分支的输入信号在混频器3中与输入到输入端5的本地信号sin(ωLD*t)进行混频。在混频器3中降频变换的信号变为Q信号。移相器6对Q信号延迟90度。
加法器7对I信号和Q信号求和。该和信号(第二信号)经过带通滤波器9,从而从该信号中截除处于不需要的频带内的信号。带通滤波器9的输出信号是所需信号和衰减的图像信号的总和。
减法器8计算I信号和Q信号的差。差信号(第一信号)经过具有与带通滤波器9相同截止特性的带通滤波器10,因此从差信号中截除处于不需要的频带内的信号。带通滤波器10的输出信号是图像信号和衰减的所需信号的总和。
在本实施例中,由于在模拟域中处理信号,因此不需要AD转换器11、12。
均方计算电路43、38分别计算带通滤波器9、10的输出信号(第二信号和第一信号),也就是平局功率信号的均方值。混频器35将带通滤波器9的输出信号与带通滤波器10的输出信号相乘。低通滤波器36只输出混频器35的输出信号的直流附近的分量(低频分量)。低通滤波器36和均方计算电路38、43的每个的输出值分别在对数压缩电路37、39、44中被转换为对数值。
减法器40通过从对数压缩电路37的输出值中减去对数压缩电路39的输出值来计算差信号。可变增益放大器41的增益相应于减法器40的输出值来控制。可变增益放大器41设计为增益与用低通滤波器36的输出值除以均方计算电路38的输出值而获得的值相等。换句话说,可变增益放大器41将减法器40输出的对数值作为一个输入值,并将该值线性地映射到以dB描述的增益中。
减法器42从带通滤波器9的输出信号(第二信号)的输出值中减去可变增益放大器41的输出信号的输出值。减法器84输出对数压缩电路44的输出值和对数压缩电路39的输出值之间的差。
减法器84的输出信号输入到比较器45中。如果减法器84的输出值超过比较器45的一个预定的阈值,那么开关46就切换到带通滤波器9的输出侧,如果该值不超过阈值,那么开关就切换到减法器42。输出信号经由开关46从输出端47输出。
例如,如果用于将相位延迟90度的移相器6非常准确,如果输入到混频器2、3的本地信号之间的相位差很准确,并且如果存在着从输入端1刚好到加法器7的前端的信号路径的增益与从输入端刚好到减法器8的前端的信号路径的增益之间的差,那么包括在带通滤波器9的输出信号中的图像信号的相位和包括在带通滤波器10的输出信号中的图像信号的相位是同相或反相的。本实施例在提高这种情况的图像抑止比上格外有效。
(第三实施例)
接着,将解释根据本发明第三实施例的信号处理方法及其设备。图7是示出根据本实施例的信号处理设备的配置的示意图。该实施例与第二实施例的差别在于:将用于对带通滤波器10的信号延迟90度的移相器48连接到带通滤波器10的输出上。
当输入端1到加法器7的输入节点的信号路径的增益和输入端1到减法器8的输入节点的信号路径的增益很好地平衡,并且移相器6的相位延迟或输入到混频器2、3的本地信号之间的相位差不精确时,包括在带通滤波器9的输出信号中的图像信号和包括在带通滤波器10的输出信号中的图像信号在相位上被偏移90度。
本实施例在提高这种情况的图像抑止比上格外有效。
(第四实施例)
接着,将解释根据本发明第四实施例的信号处理方法和设备。图8是示出根据本实施例的信号处理设备的配置的示意图。该实施例与图6所示的第二实施例的信号处理设备的区别在于:本实施例的信号处理设备包括用于延迟相位90度的移相器48、混频器49、低通滤波器50、对数压缩电路51、减法器76、可变增益放大器52和加法器53,以及构成图6所示的第二实施例的信号处理设备的元件。
包括了混频器49、低通滤波器50、对数压缩电路51、减法器76和可变增益放大器52的电路块(图8中以虚线示出)与图6所示的由混频器35、低通滤波器36、对数压缩电路37、减法器40和可变增益放大器41所组成的电路块具有相同的配置,并且以相同的方式操作。
可变增益放大器41输出用于抵消包括在带通滤波器9的输出信号中的一部分图像信号的信号,并具有与包括在带通滤波器10的输出信号中的图像信号相同或相反的相位。
另一方面,在图8的配置中增加的可变增益放大器52输出用于抵消包括在带通滤波器9的输出信号中的一部分图像信号的信号,并与包括在带通滤波器10的输出信号中的图像信号相比具有90度的相位差,这是因为移相器48连接到可变增益放大器52的输入端。
可变增益放大器41的输出信号和可变增益放大器52的输出信号在加法器53中求和。减法器42从带通滤波器9的输出信号中减去加法器53的和信号,从而移除包括在带通滤波器9的输出信号中的图像信号。
在本实施例中,可以提高图像抑止比而不管包括在带通滤波器9的输出信号中的图像信号的相位旋转量。
(第五实施例)
在根据第二至第四实施例的信号处理方法和设备中,已经描述了根据本发明的用于执行模拟信号处理的信号处理方法和设备。在第五至第十一实施例中,将描述采用第一实施例所描述的数字信号处理的其它信号处理方法和设备。第五至第十一实施例的信号处理设备只在信号处理器13的配置和操作上有不同。
首先,将描述本发明的第五实施例。图9是示出根据本实施例的信号处理设备13的配置的示意图。图9所示的信号处理器13的所有元件都用于处理数字信号。该信号处理器13包括两个输入端54、55。
与第一实施例相似,AD转换器11的输出信号(第二信号)输入到输入端54中,AD转换器12的输出信号(第一信号)输入到输入端55中。均方计算电路64计算来自输入端54的信号(第二信号)的均方,而均方计算电路59计算来自输入端55的信号(第一信号)的均方。
混频器56将两个输入信号(第一信号和第二信号)相乘。平均值计算电路57计算混频器56的输出信号的时间平均值。平均值计算电路57和均方计算电路59、64的输出值分别在对数压缩电路58、60、65中被转换为对数值。减法器61通过从对数压缩电路58的输出值中减去对数压缩电路60的输出值来计算差信号。参照减法器61的输出值,处于数字域中的可变增益放大器62的增益就可被控制。注意到相同的功能可通过以除法器代替由均方电路58、60和减法器61所构成的电路,并且以乘法器代替可变增益放大器62来实现。
减法器63输出通过从输入端54的信号(第二信号)中减去可变增益放大器62的输出信号而获得的一个差信号。减法器77通过从对数压缩电路65的输出值中减去对数压缩电路60的输出值来计算一个差信号。减法器77的输出信号输入到比较器66中。如果减法器77的输出值超过比较器66的一个预定的阈值,那么开关67就连接到输入端54,如果该值没有超过阈值,开关67就连接到减法器63上。输出端68输出经过开关67的输出信号。
与图6所示的第二实施例相似,本发明在提高这种情况,即包括在通过输入端54输入的信号中的图像信号和包括在通过输入端55输入的信号中的图像信号是同相或反相的情况,的图像抑止比上格外有效。
(第六实施例)
接着,将解释本发明的第六实施例。图10是示出根据本实施例的信号处理设备中的信号处理器13的配置的示意图。根据本实施例的信号处理设备的信号处理器13具有连接到输入端55的移相器69,用于在数字域中延迟相位90度。这就是与图9所示的信号处理器13的不同之处。
与图7所示的第三实施例的模拟信号处理相似,本实施例在提高这种情况,即包括在通过输入端54输入的信号(第二信号)中的图像信号与包括在通过输入端55输入的信号(第一信号)中的图像信号在相差90度相位的情况,的图像抑止比上格外有效。
(第七实施例)
接着,将描述本发明的第七实施例。图11是示出根据本实施例的信号处理设备中的信号处理器13的配置的示意图。该信号处理器13包括用于延迟相位90度的移相器69、混频器70、平均值计算电路71、对数压缩电路72、减法器73、可变增益放大器74和加法器75,以及图9所示的实施例中的元件。
信号处理器13的操作与图8所示的第四实施例中的带通滤波器9、10之后的电路相同,但该信号处理器13工作在数字域中。
因此,与图8所示的第四实施例相似,本实施例能够在包括在从输入端54输入的图像信号的任何给定相位旋转下提高图像抑止比。
(第八实施例)
接着,将描述本发明的第八实施例。图12是示出根据本实施例的信号处理设备中的信号处理器的配置的示意图。如图12所示,该信号处理器13与图11所示的信号处理器13的不同之处在于开关67由输入到输入端78的外部信号来控制。这样,图11中的该信号处理器13的如下元件被省略:用于控制开关67的均方计算电路64、对数压缩电路65、比较器66和减法器77。
(第九实施例)
接着,将描述本发明的第九实施例。图13是示出根据本实施例的信号处理设备中的信号处理器13的配置的示意图。除了比较器66的阈值可从输入端82中输入外,根据本实施例的信号处理设备中的信号处理器13的配置与图11所示的第七实施例的信号处理器相同。
(第十实施例)
接着,将解释本发明的第十实施例。图14示出了包括根据本实施例的信号处理设备中的信号处理器13,执行数字信号处理的部分。该信号处理器13的配置与图12所示的信号处理器13相同。
在本实施例中,信号处理电路79(第一信号处理电路)连接到信号处理器13的输出端68。信号处理电路79对来自输出端68的信号执行解调和纠错。由信号处理电路79解调和纠错的信号从输出端81输出。
信号处理电路79检测的误码率从该信号处理电路79的其它输出端输出,并输入到另一信号处理电路80(第二信号处理电路)中。如果误码率超过一个预定的阈值,信号处理电路80就输出一个信号,用于将开关67切换到使得开关67通过输入端78。而且,信号处理电路80监视开关67被切换后信号的误码率,当误码率比切换前更高时信号处理电路80就产生用于回位开关67的信号。然后,即使误码率超过了阈值,信号处理电路80也要切换开关67一段预定的时间。
在本实施例中,用于降低所接收的信号的误码率的图像抑止功能的开/关控制可通过使用信号处理电路79、80切换开关67来执行。
(第十一实施例)
接着,将描述本发明的第十一实施例。图15是示出包括根据本实施例的信号处理器13的数字信号处理单元的框图。如图15所示,信号处理器13的配置与图13所示的信号处理器13相同。在本实施例中,信号处理电路79(第一信号处理电路)连接到信号处理器13的输出端68,信号处理电路80(第二信号处理电路)通过输入端82连接到比较器66。
信号处理电路79对来自输出端68的信号执行解调和纠错处理。由信号处理电路79解调和纠错的信号从输出端81输出。由信号处理电路79检测的误码率从该信号处理电路79的其它输出端输出,并输入到另一信号处理设备80中。
信号处理电路80每次只改变比较器66的阈值一少量,并监视误码率的变动。信号处理电路80控制比较器66的阈值的时间平均值以便最小化误码率。当误码率变得比一个预定值小时,信号处理电路80就停止改变该阈值并停止优化该阈值。
在该实施例中,可以动态地优化比较器66的阈值,以便通过使用信号处理电路79、80切换开关67来降低所接收的信号的误码率。
在第一至第十一实施例中,假设第二信号是从加法器7中输出的信号,并且假设第一信号是从减法器8中输出的信号。然而,本发明并不局限于这种配置,第二信号可以是减法器8的一个输出,第一信号也可以是加法器7的一个输出。换言之,本发明可以如此配置,以便基于各信号与加法器7的输出信号之间的关联从而移除减法器8的输出信号中的图像信号。
工业实用性
如上所述,本发明这样配置以便在抑止图像信号的第一信号中计算图像信号与所需信号相比的图像抑止比,并输出一个通过从该第一信号中减去第二信号与第一信号中的图像抑止比的乘积而得的信号,这里所需信号是按图像抑止比抑止的。因此,包括在第二信号中的图像信号的剩余部分能够完全被移除。这就可以抑止在信号处理过程中产生的不需要的图像信号在所需信号上的叠加。
而且,在本发明中,如果在第一信号的均方的对数值与第二信号的均方的对数值之间存在着差,也就是所需信号的强度与图像信号的强度的比值超过一个预定值,加法装置的输出就作为输出信号。这样,就可以防止由于在图像信号的强度不够强时用与传统电路相同的输出对不需要的图像信号进行抑止处理而使所需波的接收特性退化。

Claims (38)

1.一种信号处理方法,包括:
第一频率转换步骤,其中执行处理来以一个具有预定频率的第一周期信号转换输入信号的频率;
第二频率转换步骤,其中执行处理来以一个具有预定频率的第二周期信号转换输入信号的频率;
相位延迟步骤,其中执行处理以便将在第一频率转换步骤中转换的信号和第二频率转换步骤中转换的信号之间的相位差增加π/2;以及
加法步骤,其中执行处理以便输出在相位延迟步骤中增加了互相之间的相位差的各信号的和信号;其中
该信号处理方法包括:
减法步骤,其中执行处理来输出作为第一频率转换步骤中转换的信号和相位延迟步骤中延迟的信号之间的差的差信号;以及
信号处理步骤,其中假设和信号或者差信号中的一个是第一信号并且另一信号是第二信号,那么执行处理以便利用第一信号和第二信号之间的关联以及第一信号来移除包括在第二信号中的图像信号分量。
2.如权利要求1的信号处理方法,其中在该信号处理步骤中,
执行处理以便计算第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以及
执行处理以便通过从第二信号中减去以第一比率放大第一信号而获得的信号而计算差值。
3.如权利要求1或2的信号处理方法,其中在该信号处理步骤中,每个处理都在第一信号的相位被延迟π/2之后执行。
4.如权利要求1的信号处理方法,其中在该信号处理步骤中,
执行处理来计算第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以第一比率放大第一信号;
执行处理来计算延迟第一信号π/2而得的信号和第二信号之间的关联的低频分量与第一信号的平方的低频分量相比的第二比率,以第二比率放大延迟第一信号π/2而得的信号;并
执行处理来通过从第二信号中减去以第一比率放大的信号与以第二比率放大的信号的和信号,而计算差值。
5.如权利要求2的信号处理方法,其中将第一比率设置为通过从第一信号和第二信号的乘积值的低频分量的对数值中减去对第一信号进行平方而计算的值的低频分量的对数值而获得的值。
6.如权利要求2的信号处理方法,其中将第二比率设置为通过从延迟第一信号π/2而得的信号和第二信号的乘积值的低频分量的对数值中减去对第一信号进行平方而计算的值的低频分量的对数值而获得的值。
7.如权利要求2至6任意一个的信号处理方法,其中在该信号处理步骤中,执行切换处理用于选择输出差值或者输出第二信号。
8.如权利要求7的信号处理方法,包括:
第一信号处理步骤,其中执行处理以便检测在该信号处理步骤的处理中输出的信号的误码率;以及
第二信号处理步骤,其中执行处理以便监视该误码率,并输出切换信号,用于将信号处理步骤的处理切换到误码率降低的一侧。
9.如权利要求7的信号处理方法,其中
执行第一强度检测步骤,其中执行处理以便检测第一信号的强度,以及第二强度检测步骤,其中执行处理以便检测第二信号的强度,并且
如果第二信号的强度与第一信号的强度的比值超过一个阈值,就执行输出经过信号处理步骤的第二信号的处理。
10.如权利要求9的信号处理方法,其中执行处理来检测经由该信号处理步骤的处理而输出的信号的误码率,从而监视误码率,并改变该阈值以便使误码率最小。
11.如权利要求9或10的信号处理方法,其中通过将该阈值设置在-60dB至30dB之间来执行处理。
12.如权利要求1至11的任意一个的信号处理方法,其中对第一信号进行数字转换并对第二信号进行数字转换,从而在该信号处理步骤的处理中进行数字计算。
13.如权利要求1至12的任意一个的信号处理方法,其中,处于不需的频带中的信号分量从第一信号中截除,并且处于不需的频带中的信号分量从第二信号中截除。
14.如权利要求1至13的任意一个的信号处理方法,其中,第二周期信号通过将其相位比第一周期信号的相位延迟π/2而产生。
15.如权利要求1的信号处理方法,其中通过将输入到第一频率转换步骤的输入信号与输入到第二频率转换步骤的输入信号之间的相位差设置为π/2来执行处理。
16.如权利要求1的信号处理方法,其中在相应延迟步骤中,在第一频率转换步骤中转换的信号的相位前进α,而在第二频率转换步骤中转换的信号的相位延迟(π/2-α)。
17.如权利要求16的信号处理方法,其中α被设置为0或π/2。
18.一种信号处理设备,包括:
第一频率转换装置,用于以一个具有预定频率的第一周期信号转换输入信号的频率;
第二频率转换装置,用于以一个具有预定频率的第二周期信号转换输入信号的频率;
相位延迟装置,用于将在第一频率转换装置中转换的信号和第二频率转换装置中转换的信号之间的相位差增加π/2;以及
加法装置,用于输出由相位延迟装置增加了互相之间的相位差的各信号的和信号;其中
信号处理设备包括:
减法装置,用于输出作为第一频率转换装置中转换的信号和相位延迟装置中延迟的信号之间的差的差信号;以及
信号处理器,其中假设和信号或者差信号中的一个是第一信号并且另一信号是第二信号,那么利用第一信号和第二信号之间的关联以及第一信号来移除包括在第二信号中的图像信号分量。
19.如权利要求18的信号处理设备,其中该信号处理器执行如下处理:
获得第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以及
计算通过从第二信号中减去以第一比率放大第一信号而获得的信号而得的差值。
20.如权利要求18或19的信号处理设备,其中该信号处理器在第一信号的相位被延迟π/2后执行每个处理。
21.如权利要求18的信号处理设备,其中该信号处理器执行如下处理:
计算第一信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第一比率,以第一比率放大第一信号,
计算延迟第一信号π/2而得的信号和第二信号之间的关联值的低频分量与第一信号的平方的低频分量相比的第二比率,以第二比率放大延迟第一信号π/2而得的信号,以及
通过从第二信号中减去以第一比率放大的信号与以第二比率放大的信号的和信号,来计算差值。
22.如权利要求19至21的任意一个的信号处理设备,其中第一比率是通过从第一信号和第二信号的乘积信号的低频分量的对数值中减去第一信号的平方的低频分量的对数值而计算的值。
23.如权利要求21或22的信号处理设备,其中第二比率是通过从延迟第一信号π/2而得的信号和第二信号的乘积信号的低频分量的对数值中减去第一信号的平方的低频分量的对数值而计算的值。
24.如权利要求19至23的任意一个的信号处理设备,其中该信号处理器具有一个开关装置,用于选择输出差值或者输出第二信号。
25.如权利要求24的信号处理设备,其中该信号处理器进一步包括一个输入端,用于输入用来切换该开关装置的信号。
26.如权利要求25的信号处理设备,进一步包括:第一信号处理电路,用于检测从该信号处理器输出的信号的误码率,以及
第二信号处理电路,用于监视该误码率并输入用于将该开关装置切换到误码率降低的一侧的切换信号。
27.如权利要求24的信号处理设备,其中信号处理器包括:
第一强度检测装置,用于检测第一信号的强度;以及
第二强度检测装置,用于检测第二信号的强度;其中
如果第二信号的强度与第一信号的强度的比值超过一个阈值,开关装置就选择输出第二信号。
28.如权利要求27的信号处理设备,其中信号处理器进一步包括一个输入端,用于输入改变该阈值的信号。
29.如权利要求28的信号处理设备,进一步包括:第一信号处理电路,用于检测从该信号处理器输出的信号的误码率,以及
第二信号处理电路,用于监视误码率,并将改变该阈值的信号输入到输入端中以便使误码率最小。
30.如权利要求27至29的任意一个的信号处理设备,其中该阈值在-60dB至30dB的范围内。
31.如权利要求18至30的任意一个的信号处理设备,进一步包括:
第一AD转换器,用于在第一信号输入到该信号处理器中之前将其进行数字转换;以及
第二AD转换器,用于在第二信号输入到该信号处理器中之前将其进行数字转换;其中该信号处理器通过数字计算执行每个处理。
32.如权利要求18至31任意一个的信号处理设备,进一步包括:
第一滤波器,用于从第一信号中截除处于不需的频带中的信号分量;以及
第二滤波器,用于从第二信号中截除处于不需的频带中的信号分量。
33.如权利要求32的信号处理设备,其中第一滤波器和第二滤波器是通过特定频带上的分量的带通滤波器。
34.如权利要求18至33的任意一个的信号处理设备,其中第二周期信号具有比第一周期信号的相位延迟π/2的相位。
35.如权利要求18至33的任意一个的信号处理设备,进一步包括相位延迟装置,用于将输入到第一频率转换装置的输入信号与输入到第二频率转换装置的输入信号之间的相位差设置为π/2。
36.如权利要求18至37的任意一个的信号处理设备,其中相位延迟装置包括:
移相器,用于将由第一频率转换装置转换的信号的相位前进α;以及
移相器,用于将由第二频率转换装置转换的信号的相位延迟(π/2-α)。
37.如权利要求36的信号处理设备,其中α是0。
38.如权利要求36的信号处理设备,其中α是π/2。
CNB038056356A 2002-03-20 2003-02-21 信号处理方法及信号处理设备 Expired - Fee Related CN100449937C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP78855/2002 2002-03-20
JP2002078855A JP4009827B2 (ja) 2002-03-20 2002-03-20 信号処理装置

Publications (2)

Publication Number Publication Date
CN1639964A true CN1639964A (zh) 2005-07-13
CN100449937C CN100449937C (zh) 2009-01-07

Family

ID=28035612

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038056356A Expired - Fee Related CN100449937C (zh) 2002-03-20 2003-02-21 信号处理方法及信号处理设备

Country Status (5)

Country Link
US (1) US7373131B2 (zh)
JP (1) JP4009827B2 (zh)
CN (1) CN100449937C (zh)
AU (1) AU2003211257A1 (zh)
WO (1) WO2003079539A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489153B (zh) * 2009-02-27 2011-08-17 航天恒星科技有限公司 一种卫星转发器干扰信号的监测装置及监测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035359A1 (ja) 2008-09-26 2010-04-01 パナソニック株式会社 複素信号処理回路、受信回路、信号再生装置
KR101159887B1 (ko) * 2008-12-22 2012-06-26 창원대학교 산학협력단 디지털 직접 변환 수신 장치 및 방법
JP4801194B2 (ja) * 2009-09-25 2011-10-26 大学共同利用機関法人自然科学研究機構 低周波信号光伝送システム及び低周波信号光伝送方法
WO2011077618A1 (ja) * 2009-12-21 2011-06-30 日本電気株式会社 受信機およびイメージ除去比測定方法
JP2011199554A (ja) 2010-03-19 2011-10-06 Panasonic Corp 複素信号処理回路、受信回路、信号再生装置
US8654908B2 (en) * 2010-06-11 2014-02-18 Comtech Ef Data Corp. Correlation prevention methods for satellite adaptive cancellation links
CN103099615B (zh) * 2013-01-23 2015-01-07 深圳市理邦精密仪器股份有限公司 一种消除运动心电信号干扰的方法和装置
JP2015023367A (ja) * 2013-07-18 2015-02-02 日本無線株式会社 イメージ抑圧装置
US9431997B1 (en) * 2015-06-12 2016-08-30 Raytheon Company Interference signal cancellor with active tunable notch filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2177875A (en) * 1985-07-08 1987-01-28 Philips Electronic Associated Radio transmission system
JP3346915B2 (ja) * 1994-10-31 2002-11-18 株式会社東芝 ミキサー回路
US6633550B1 (en) 1997-02-20 2003-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Radio transceiver on a chip
US6081697A (en) * 1997-03-21 2000-06-27 Telefonaktiebolaget Lm Ericsson Multi-carrier radio system and radio transceiver implementation
JP2000223956A (ja) * 1999-01-29 2000-08-11 Hitachi Ltd イメージキャンセルミクサ回路
JP3510556B2 (ja) 2000-03-30 2004-03-29 Nec化合物デバイス株式会社 イメージリジェクションミキサ及びそれを用いた受信機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489153B (zh) * 2009-02-27 2011-08-17 航天恒星科技有限公司 一种卫星转发器干扰信号的监测装置及监测方法

Also Published As

Publication number Publication date
JP2003283354A (ja) 2003-10-03
US7373131B2 (en) 2008-05-13
WO2003079539A1 (fr) 2003-09-25
US20050147184A1 (en) 2005-07-07
JP4009827B2 (ja) 2007-11-21
CN100449937C (zh) 2009-01-07
AU2003211257A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
CN1320773C (zh) 高频接收装置
CN1409481A (zh) 接收装置
CN1853351A (zh) 放大电路及放大方法
CN1310447C (zh) 广播接收器
CN1547801A (zh) 混合失真补偿方法和混合失真补偿装置
CN1601892A (zh) 带预畸变方式畸变补偿功能的放大器
CN1643799A (zh) 低功耗高线性接收机的直接转换
CN1531196A (zh) 可变增益放大电路
CN1723610A (zh) 用于射频(rf)信号的上下变换的再生分频器
CN1585263A (zh) 高频可变增益放大器件、控制器件及变频器件和通讯器件
CN1951040A (zh) 高频接收器及其使用的集成电路、使用它们的便携设备及其使用的发射器、以及它们的制造方法
CN1639964A (zh) 信号处理方法及信号处理设备
CN1706106A (zh) 用于射频下变频的直流微调电路
CN1518309A (zh) 校准相位和增益失配的直接转换接收器
CN1230996C (zh) 传输频带限幅滤波器装置和传输装置
CN1170988A (zh) 放大器电路和多级放大器电路
CN1231011C (zh) 自动增益控制装置
CN1235348C (zh) 语音通信装置及回声处理处理器
CN1741591A (zh) 高频接收装置及使用它的便携设备
CN1960360A (zh) 正交调制器和向量校正方法
CN1647364A (zh) 降频变换方法及补偿杂散响应的拓扑
CN1389022A (zh) 直接变换接收装置
CN1251415C (zh) 直接变换数字域控制
CN1929568A (zh) 具有低失真性能和低功耗的调谐器电路和数字广播接收器
CN101030990A (zh) 回声防止电路、滤波系数设定方法及程序

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20150221

EXPY Termination of patent right or utility model