CN1617371B - 表面修饰锂离子电池正极材料及其制备方法 - Google Patents

表面修饰锂离子电池正极材料及其制备方法 Download PDF

Info

Publication number
CN1617371B
CN1617371B CN2003101189205A CN200310118920A CN1617371B CN 1617371 B CN1617371 B CN 1617371B CN 2003101189205 A CN2003101189205 A CN 2003101189205A CN 200310118920 A CN200310118920 A CN 200310118920A CN 1617371 B CN1617371 B CN 1617371B
Authority
CN
China
Prior art keywords
lithium
ion batteries
anode material
finishing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2003101189205A
Other languages
English (en)
Other versions
CN1617371A (zh
Inventor
贾永忠
韩金铎
周园
景燕
陈元涛
金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghai Institute of Salt Lakes Research of CAS
Original Assignee
Qinghai Institute of Salt Lakes Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghai Institute of Salt Lakes Research of CAS filed Critical Qinghai Institute of Salt Lakes Research of CAS
Priority to CN2003101189205A priority Critical patent/CN1617371B/zh
Publication of CN1617371A publication Critical patent/CN1617371A/zh
Application granted granted Critical
Publication of CN1617371B publication Critical patent/CN1617371B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种表面修饰锂离子电池正极材料及其制备方法,该方法首先是将锂离子正极粉体材料Li-M1M2-O(M1、M2=Co、Mn、Ni、Cr)放入浓度为0.05~2.00mol/l的含有机物质的水溶液,将此混合物置于带搅拌的水热反应器中,于150~200℃,经0.1~4.0小时反应,将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的正极材料,本发明的锂离子电池正极材料具有比容量高、循环性能好、孔隙均匀、无杂质相等优点,与修饰前相比,电化学性能有较大改进和提高;并且本发明的工艺简单、实用、成本低、易于实现规模化工业生产。

Description

表面修饰锂离子电池正极材料及其制备方法
技术领域
本发明涉及一种表面修饰锂离子电池正极材料及其制备方法。
背景技术
锂离子电池是指以Li+插入化合物为正负极的二次电池。层状和尖晶石型锂过渡金属氧化物被认为是高能量密度锂离子电池优先选择的正极材料。
现在研究的重点为Li-M1M2-O(M1、M2=Co、Mn、Ni、Cr)体系正极材料,特别是尖晶石相Li2Mn2O4,其结构具有共面四面体和八面体构成的三维网络隧道,结构稳定且有利于Li+迁移。室温Li+扩散系数>10- 9cm2/s量级,电导率>10-6δ/cm,可与碳电极耦合组成高能量密度锂离子电池。它有目前最高的电池输出电压(3.75V)和最高析氧温度(400℃),远比LixCoO2和LixNiO2稳定。当前,影响它实用化的主要问题是可再充电性能不稳定(可逆容量衰减)。Li-Mn-O尖晶石材料通常用固相反应法合成:或低温400~500℃,或高温700~900℃加热长时间反应。这除了常有的不均匀反应外,还由于锰的价态变化和锂锰氧化物结构变化都较复杂,因而不易掌握制备条件和充放电条件,常导致放电容量较低或容量随循环次数增加而逐渐衰减。当前Li-Mn-O化合物研究重点仍在改进充放电容量及循环特性等方面。对此,国内外都有大量论文和专利进行研讨和论述,研究和寻找好的表面修饰方法,以防止和减少部分锰离子溶解于电解液,稳定Mn-O骨架结构,克服容量衰减和改善电化学性能。曾有报道用偏硼酸锂、三氧化二铝、二氧化硅等对Li-M1M2-O(M1、M2=Co、Mn、Ni、Cr)体系正极材料进行表面包覆修饰,能抑制其容量衰减现象。
发明内容
本发明的目的是为了提供一种制成电池后的工作电压高、能量密度大、安全性能好、自放电小、可快速充放电、并可做成大容量电池组且无记忆效应的表面修饰锂离子电池正极材料。
本发明的目的还在于提供了一种采用水热法修饰锂离子电池正极材料的方法,该方法具有生产绿色化、成本低,产品包覆均匀、充放电容量衰减小、电化学性能稳定。
本发明的目的可以通过以下措施来实现:
一种表面修饰锂离子电池正极材料由下述步骤制成:将锂离子电池正极粉体材料置于溶解有有机物质的水溶液中,将此混合溶液进行水热反应,使有机物质在水热条件下分解碳化,形成碳微球,所述的碳微球对锂离子正极粉体材料表面在汽液条件下均匀包覆、修饰,从而得到表面修饰锂离子电池正极材料。
所述的锂电池正极材料为Li-M1M2-O,其中M1、M2选自Co、Mn、Ni、Cr中的一种。
所述的有机物为葡萄糖、麦芽糖、蔗糖、果糖、乳糖或可溶性淀粉中的至少一种。
所述的锂电池正极粉体材料与溶解有有机物质的水溶液的质量比为1∶(0.5~10.0)。
所述的溶解有有机物质的水溶液的浓度为0.05~2.00mol/l。
所述的水热反应的温度为150~200℃,反应时间为0.1~4.0小时。
所述的将水热反应后碳微球包覆锂离子正极粉体物料喷雾干燥得到碳微球包覆的表面修饰锂离子电池正极材料。
本发明的目的还可以通过如下措施来实现:
一种表面修饰锂离子电池正极材料的制备方法包括下述步骤:(1)将锂电池正极材料Li-M1M2-O,其中M1、M2选自Co、Mn、Ni、Cr中的一种。超微粉碎至1~35微米:(2)将此粉料混合于溶液A中得到混合物B,粉料与溶液A的质量比为1∶(0.5~10.0):溶液A为溶解有葡萄糖、麦芽糖、蔗糖、果糖、乳糖或可溶性淀粉中任意一种的水溶液,其浓度为0.05~2.00mol/l;(3)将混合物B置于带搅拌的水热反应器中,于150~200℃,经0.1~4.0小时反应;(4)将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的钾离子电池正极粉体材料。
本发明相比现有技术具有如下优点:
1、本发明的工艺采用水热法进行表面包覆修饰,将固相物料置于液相中,实现了包覆物和被包覆物的充分接触,起到充分、均匀包覆的效果。
2、本发明的工艺中采用能溶解于水溶液的有机物为包覆先驱体,可使包覆先驱体均匀分散在溶液中,有利于均匀包覆。
3、本发明的工艺中采用在水热条件下可充分碳化的有机物,反应后除包覆物外没有其它杂质。
4、本发明的工艺具有原料无毒、无害,过程没有污染,结果不产生废物的绿色化学的特点。
5、本发明采用水热条件下有机物产生的碳微球对锂电池正极材料Li-M1M2-O(M1、M2=Co、Mn、Ni、Cr)进行表面修饰包覆,改善材料的表面性质和其电化学性能。使本发明的材料制成电池后能量密度大、容量高、容量衰减小、循环寿命长。
6、本发明操作简单、工艺易于控制、制备周期短、生产成本低、能耗小、无环境污染、易于实现规模化工业生产、产品纯度高、孔隙均匀、电化学性能稳定。
7、本发明方法还可应用于在水热条件下不溶解于水溶液的无机物粉体材料的表面包覆修饰。
具体的实施方式
本发明还可结合实施例作进一步详述:
实施例一:
一种表面修饰锂离子电池正极材料及其制备方法:将100g锂电池正极粉体LiCo0.1Mn1.9O4置于50mL、0.05mol/l的可溶性淀粉水溶液中,将此混合物置于带搅拌的水热反应器,经4.0小时,200℃水热反应,再将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的正极粉体材料LiCo0.1Mn1.9O4。所得包覆有碳微球的锂离子电池正极材料LiCo0.1Mn1.9O4为黑褐色粉末,产品比容量比未包覆的LiCo0.1Mn1.9O4高5%,其容量衰减率比未包覆的LiCo0.1Mn1.9O4低5倍,充放电循环30次后时容量为初始容量的94.0%。
实施例二:
一种锂离子电池正极材料表面修饰的方法:将100g锂电池正极粉体LiCo0.1Mn1.9O4置于100mL、2.0mol/l的蔗糖水溶液中,将此混合物置于带搅拌的水热反应器,经0.5小时,180℃水热反应,再将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的正极粉体材料LiCo0.1Mn1.9O4。所得包覆有碳微球的锂离子电池正极材料LiCo0.1Mn1.9O4为黑色粉末,产品比容量比未包覆的LiCo0.1Mn1.9O4高3%,其容量衰减率比未包覆的LiCo0.1Mn1.9O4低6倍,充放电循环30次后时容量为初始容量的95.0%。
实施例三:
一种锂离子电池正极材料表面修饰的方法:将100g锂电池正极粉体LiCoO2置于1000mL、2.0mol/l的葡萄糖水溶液中,将此混合物置于带搅拌的水热反应器,经1.0小时,200℃水热反应,再将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的正极粉体材料LiCoO2。所得包覆有碳微球的锂离子电池正极材料LiCoO2为黑色粉末,产品比容量比未包覆的LiCoO2高1%,其容量衰减率比未包覆的LiCoO2低5倍,充放电循环30次后时容量为初始容量的99.0%。

Claims (6)

1.一种表面修饰锂离子电池正极材料,其特征在于该材料由下述步骤制成:将锂离子电池正极粉体材料置于溶解有有机物质的水溶液中,将此混合溶液进行水热反应,使有机物质在水热条件下分解碳化,形成碳微球,所述的碳微球对锂离子正极粉体材料表面在汽液条件下均匀包覆、修饰,从而得到表面修饰的锂离子电池正极材料;所述的锂离子电池正极材料为Li-M1M2-O,其中M1、M2均选自Co、Mn、Ni、Cr中的一种。
2.如权利要求1所述的表面修饰锂离子电池正极材料,其特征是所述的有机物为葡萄糖、麦芽糖、蔗糖、果糖、乳糖或可溶性淀粉中的至少一种。
3.如权利要求1所述的表面修饰锂离子电池正极材料,其特征在于所述的锂离子电池正极粉体材料与溶解有有机物质的水溶液的质量比为1∶(0.5-10.0)。
4.如权利要求1、2或3所述的表面修饰锂离子电池正极材料,其特征是所述的溶解有有机物质的水溶液的浓度为0.05-2.00mol/l。
5.如权利要求1所述的表面修饰锂离子电池正极材料,其特征是所述的水热反应的温度为150-200℃,反应时间为0.1-4.0小时。
6.一种权利要求1所述的表面修饰锂离子电池正极材料的制备方法,其特征在于包括下述步骤:(1)将锂离子电池正极材料Li-M1M2-O,其中M1、M2均选自Co、Mn、Ni、Cr中的一种,超微粉碎至1-35微米;(2)将此粉料混合于溶液A中得到混合物B,粉料与溶液A的质量比为1∶(0.5-10.0);溶液A为溶解有葡萄糖、麦芽糖、蔗糖、果糖、乳糖或可溶性淀粉中任意一种的水溶液,其浓度为0.05-2.00mol/l;(3)将混合物B置于带搅拌的水热反应器中,于150-200℃,经0.1-4.0小时反应;(4)将反应后溶液喷雾干燥,则可得到包覆有均匀碳微球的锂离子电池正极粉体材料。
CN2003101189205A 2003-11-12 2003-11-12 表面修饰锂离子电池正极材料及其制备方法 Expired - Fee Related CN1617371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2003101189205A CN1617371B (zh) 2003-11-12 2003-11-12 表面修饰锂离子电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2003101189205A CN1617371B (zh) 2003-11-12 2003-11-12 表面修饰锂离子电池正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN1617371A CN1617371A (zh) 2005-05-18
CN1617371B true CN1617371B (zh) 2010-04-28

Family

ID=34761242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003101189205A Expired - Fee Related CN1617371B (zh) 2003-11-12 2003-11-12 表面修饰锂离子电池正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN1617371B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463255C (zh) * 2005-06-10 2009-02-18 鸿富锦精密工业(深圳)有限公司 锂离子电池阴极、其制备方法及采用该阴极的锂离子电池
CA2534243A1 (fr) 2006-01-25 2007-07-25 Hydro Quebec Particules d'oxyde metallique enrobees a faible taux de dissolution, procedes de preparation et utilisation dans les systemes electrochimiques
CN101088918B (zh) * 2006-06-12 2011-06-29 深圳市比克电池有限公司 一种复合金属氧化物及其制备方法
CN101212046B (zh) * 2006-12-30 2011-08-17 比亚迪股份有限公司 一种包覆锂离子二次电池正极活性物质的方法
CN101894943A (zh) * 2010-04-20 2010-11-24 华南师范大学 一种锂离子电池正极材料的碳包覆方法
CN107394156A (zh) * 2017-07-19 2017-11-24 长沙矿冶研究院有限责任公司 一种基于有机物‑氨水的富锂锰基锂离子电池正极材料的改性方法及其改性正极材料
CN116040674A (zh) * 2023-02-08 2023-05-02 成都理工大学 一种高效率低成本的无机粉体材料的表面包覆技术

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346160A (zh) * 2000-09-25 2002-04-24 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1346160A (zh) * 2000-09-25 2002-04-24 三星Sdi株式会社 用于可充电锂电池的正电极活性材料及其制备方法

Also Published As

Publication number Publication date
CN1617371A (zh) 2005-05-18

Similar Documents

Publication Publication Date Title
CN105958042B (zh) 一种原位合成Li2MnO3包覆改性的锂离子电池正极材料及其合成方法
CN102280614B (zh) 一种锂硫电池的硫正极的制备方法
CN101465420B (zh) 一种锂离子动力电池正极材料镍锰酸锂的制备方法
CN101420034A (zh) 碳包覆粒度可控球形磷酸铁锂复合正极材料及其制备方法
CN108390039A (zh) 一种双氧化物共包覆的高镍锂电池正极材料及制备方法
CN101013751A (zh) 一种稀土掺杂的球形锂离子电池正极材料及其制造方法
CN109546123A (zh) 五氧化二钒包覆核壳结构梯度镍钴锰正极材料及制备方法
CN106299295B (zh) 一种具有梭形形貌的多孔微纳结构锂离子电池富锂正极材料及其制备方法
CN103280570B (zh) 一种微米级单晶镍锰酸锂正极材料的制备方法
CN101847717A (zh) 一种锂离子电池用钛酸锂复合负极材料的制备方法
CN106450295A (zh) 一种钠离子电池正极材料Na3Fe2(PO4)3 及其制备方法
Cheng et al. Hydrothermal synthesis of LiNi0. 5Mn1. 5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries
CN106099083A (zh) 一种水热法表面改性的包覆型镍锰酸锂材料、锂电池及其制备方法
CN102249297A (zh) 一种钛酸锂粉体的制备方法
CN113659141A (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN108493429A (zh) 锂离子电池正极复合材料的制备方法
CN102832381A (zh) 长寿命锂离子电池高压正极材料Li1+xMn3/2-yNi1/2-zMy+zO4的制备方法
CN103094551A (zh) 一种石墨/氧化亚锰复合电极材料及其制备方法
CN109786703B (zh) 导电陶瓷氧化物包覆锂离子电池正极材料及其制备方法
CN1617371B (zh) 表面修饰锂离子电池正极材料及其制备方法
CN104118913A (zh) 用于水系阳离子电池电极材料的铁锰酸钠的水热合成方法及水系电池的制备方法
CN106129400A (zh) 一种镧部分取代锰的球形富锂锰基正极材料及其制备方法
CN114094060A (zh) 一种核壳结构的高电压正极材料的制备方法
CN103413935A (zh) 一种掺杂Mo的富锂正极材料及其制备方法
CN108511697A (zh) 铜镍酸锂正极材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100428

Termination date: 20101112