CN1612844A - 通过电渗析纯化氢氧化鎓 - Google Patents

通过电渗析纯化氢氧化鎓 Download PDF

Info

Publication number
CN1612844A
CN1612844A CNA028267028A CN02826702A CN1612844A CN 1612844 A CN1612844 A CN 1612844A CN A028267028 A CNA028267028 A CN A028267028A CN 02826702 A CN02826702 A CN 02826702A CN 1612844 A CN1612844 A CN 1612844A
Authority
CN
China
Prior art keywords
compartment
hydroxide
solution
incorporated
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028267028A
Other languages
English (en)
Other versions
CN1293231C (zh
Inventor
R·J·莱特
K·赫夫纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sachem Inc
Original Assignee
Sachem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sachem Inc filed Critical Sachem Inc
Publication of CN1612844A publication Critical patent/CN1612844A/zh
Application granted granted Critical
Publication of CN1293231C publication Critical patent/CN1293231C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46128Bipolar electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及改进氢氧化鎓水溶液纯度的方法。特别地,本发明涉及改进含有非所需量阴离子的氢氧化鎓水溶液纯度的方法。本发明还涉及通过上述方法获得的改进的高纯氢氧化鎓溶液。

Description

通过电渗析纯化氢氧化鎓
技术领域
本发明涉及改进氢氧化鎓(onium hydroxide)水溶液纯度的方法。特别地,本发明涉及改进含有非所需量阴离子的氢氧化鎓水溶液纯度的方法。本发明还涉及通过上述方法获得的改进的高纯氢氧化鎓溶液。
发明背景
氢氧化鎓,如包括四甲基氢氧化铵(TMAH)和四乙基氢氧化铵(TEAH)在内的氢氧化季铵,是多年来公知的强碱。已发现,氢氧化季铵具有各种用途,其中包括在沸石制造和聚合物制造中的应用。氢氧化季铵的水溶液,尤其TMAH溶液,在印刷电路板和微电子芯片制造中已被广泛用作光致抗蚀剂用显影剂。出于各种原因,希望在印刷电路板和微电子芯片制造中使用的显影剂的总量最小。使氢氧化物显影剂的总量最小的一种方式是再利用废显影剂。再利用显影剂降低损失量并减少弃置问题。
废显影剂含有包括离子杂质和非离子杂质在内的杂质。离子杂质包括各种金属阳离子如钠、钾、锌、镍、铝、铜和钙;和阴离子如卤离子、硝酸根、亚硝酸根、碳酸根、羧酸根、硫酸根。非离子杂质包括光致抗蚀剂、表面活性剂、胺和许多其它有机分子。废显影剂还含有相对低浓度的氢氧化物显影剂。因此,仍继续需要有效地回收呈可利用形式的氢氧化物显影剂,以便它可再利用,从而使在印刷电路板和微电子芯片制造中使用的显影剂的总量最小。
美国专利4714530(Hale等)描述了制备高纯氢氧化季铵的电解法,该方法利用含有用阳离子交换膜隔开的阴极液室和阳极液室的电池。该方法包括向阳极液室中引入氢氧化季铵的水溶液,向阴极液室中加入水,和使直流电流经电解电池,结果在阴极液室内产生较高纯度的氢氧化季铵,随后将其回收。’530专利还描述了包括在向电解电池的阳极液室中引入氢氧化物之前,在升高的温度下加热氢氧化季铵的改进。
美国专利4938854(Sharifian等)还描述了通过降低潜在的卤离子含量来纯化氢氧化季铵的电解法。电解电池可被隔板分成阳极液室和阴极液室,所述隔板可以是阴离子或阳离子选择性膜。在阴极液室内的阴极包括锌、镉、锡、铅、铜或钛或其合金、汞或汞齐。
日本公开专利No.60-131985(1985)(Takahashi等)描述了在电解电池内制造高纯氢氧化季铵的方法,其中所述电解电池被阳离子交换膜分成阴极室和阳极室。含有杂质的氢氧化季铵溶液被引入到阳极室内,并在将水已引入到阴极室内之后,在两电极之间供应直流电。从阴极室内获得纯化的氢氧化季铵。纯化的氢氧化季铵含有降低量的碱金属、碱土金属、阴离子等。
美国专利5439564和5545309(Shimizu等)涉及通过使废液与阳离子交换材料接触,从阳离子交换材料中洗脱出有机季铵阳离子,和在配有阳极、阴极与阳离子交换膜的两腔室电解电池中电解洗脱液,从而处理含有机氢氧化季铵的废液的方法。从电解电池的阴极室中获得有机氢氧化季铵。
美国专利5968338(Hulme等)描述为了再生氢氧化鎓,使用阳离子交换材料、将形成盐的酸,和含至少三个隔室(compartment)的电化学电池(electrochemical cell),从而从含鎓化合物如氢氧化物和盐的溶液中再生氢氧化鎓的方法。
美国专利6207039(Moulton等)描述了使用含至少两个隔室、阴极、阳极和隔板的电化学电池,从含鎓化合物(例如氢氧化物、盐或其混合物)的溶液中回收氢氧化鎓或鎓盐的方法,其中至少一个隔室含有离子交换材料。公开了各种电化学电池。在图3所示的一种电池中,电池包括阳极、阴极和干电池(unit cell),所述干电池从阳极端开始按序包含第一双极性膜、阳离子选择性膜和第二双极性膜。由第一双极性膜形成隔室和阳离子交换膜(原料隔室)含有离子交换材料。
在’039专利中的图8和8A所示的另一电化学电池包括阳极、阴极和干电池,所述干电池从阳极端开始按序包含第一双极性膜、第一阳离子选择性膜、第二阳离子选择性膜和第二双极性膜。这两个实施方案中的原料隔室含有离子交换材料。在图8B的实施方案中,由第一双极性膜和第一阳离子选择性膜形成原料隔室。
发明概述
在一个实施方案中,本发明是改进氢氧化鎓水溶液纯度的方法,该方法包括:
(A)提供含至少4个隔室的电化学电池,其中由阴极、阳极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含任何离子交换材料,
(C)使电流经过电池,和
(D)从由第一阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓溶液。
在另一实施方案中,本发明涉及改进氢氧化鎓水溶液纯度的方法,该方法包括:
(A)提供含至少5个隔室的电化学电池,其中由阳极、阴极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜、第二阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含任何离子交换材料,
(C)使电流经过电池,和
(D)从由第二阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓。
可通过本发明方法纯化的氢氧化鎓溶液包括氢氧化季铵、氢氧化季鏻和氢氧化叔锍。
本发明方法的结果是,可获得其中浓度和纯度增加的氢氧化鎓的循环溶液。循环氢氧化鎓的废液不仅提供成本节约,而且通过省去或减少对合成新的氢氧化物化合物溶液、相关的昂贵纯化工艺的需要和废液洗脱剂的毒性而提供环境益处。另外,不需要储存大量的化学品。可在其中要求氢氧化鎓溶液的许多场合中有效地使用通过本发明获得的相对高浓度与纯度的氢氧化鎓溶液。
附图说明
图1是根据本发明,含有一个干电池的四室电化学电池的示意图。
图2是根据本发明的五室电化学电池的示意图。
图3是根据本发明的八室电化学电池的示意图。
实施方案的说明
根据本发明,在电化学电池中,藉助电渗析改进含非所需阴离子的氢氧化鎓水溶液的纯度。在一个实施方案中,可根据本发明的方法处理含非所需量阴离子的氢氧化鎓的水溶液。产生含较少量非所需阴离子的氢氧化鎓溶液。可存在的阴离子包括卤离子、碳酸根、甲酸根、亚硝酸根、硝酸根、醋酸根、硫酸根等。在一个实施方案中,可根据本发明纯化的氢氧化鎓水溶液是通过采用有机碱的水溶液洗脱吸附在阳离子交换材料上的鎓离子而获得的溶液,如在2000年10月20日申请的悬而未决的专利申请序列No.09/693293中所述的。
如此处和权利要求中所述的,电化学电池的原料隔室不含任何离子交换材料。也就是说,原料隔室不含有美国专利6207039中所述类型的任何阳离子或阴离子交换材料。在另一实施方案中,电化学电池的其它隔室也不含离子交换材料。
氢氧化鎓一般地可用下式来表征:
            A(OH)x              (I)
其中A是鎓基,和x是等于A的价态的整数。鎓基的实例包括铵基、鏻基和锍基。在一个实施方案中,氢氧化鎓应当充分可溶于溶液如水、醇或其它有机液体或其混合物中,以便允许有用的回收速度。
氢氧化季铵和氢氧化季鏻可用下式来表征:
其中A是氮或磷原子,R1、R2、R3和R4各自独立地为含1-约20个碳原子的烷基、含2-约20个碳原子的羟基烷基或烷氧基烷基、芳基或羟基芳基,或R1和R2与A一起可形成杂环,条件是:若杂环基团含有C=A基,则R3是第二个键。
烷基R1-R4可以是直链或支链的,和含1-约20个碳原子的烷基的具体实例包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、异辛基、壬基、癸基、异癸基、十二烷基、十三烷基、异十三烷基、十六烷基和十八烷基。R1、R2、R3和R4也可以是羟基烷基如羟乙基,和羟丙基、羟丁基、羟戊基等的各种异构体。在一个优选的实施方案中,R1、R2、R3和R4独立地为含1-10个碳原子的烷基和含2-3个碳原子的羟基烷基。烷氧基烷基的具体实例包括乙氧基乙基、丁氧基甲基、丁氧基丁基等。各种芳基和羟基芳基的实例包括苯基、苄基和其中苯环已被一个或多个羟基取代的等价基团。
可根据本发明方法循环或纯化的氢氧化季铵可用式III表示:
Figure A0282670200112
其中R1、R2、R3和R4如式II中的定义。在一个优选的实施方案中,R1-R4是含1-4个碳原子的烷基和含2或3个碳原子的羟基烷基。最常见地通过本发明方法纯化的氢氧化季铵是四甲基氢氧化铵(TMAH)或四乙基氢氧化铵(TEAH)。这种氢氧化铵的具体实例包括四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、四正辛基氢氧化铵、甲基三乙基氢氧化铵、二乙基二甲基氢氧化铵、甲基三丙基氢氧化铵、甲基三丁基氢氧化铵、鲸蜡基三甲基氢氧化铵、三甲基羟乙基氢氧化铵、三甲基甲氧基乙基氢氧化铵、二甲基二羟乙基氢氧化铵、甲基三羟乙基氢氧化铵、苯基三甲基氢氧化铵、苯基三乙基氢氧化铵、苄基三甲基氢氧化铵、苄基三乙基氢氧化铵、二甲基氢氧化吡咯烷鎓、二甲基氢氧化哌啶鎓、二异丙基氢氧化咪唑啉鎓、N-烷基氢氧化吡啶鎓等。
可根据本发明纯化的其中A=P的式II的氢氧化季鏻的代表性实例包括四甲基氢氧化鏻、四乙基氢氧化鏻、四丙基氢氧化鏻、四丁基氢氧化鏻、三甲基羟乙基氢氧化鏻、二甲基二羟乙基氢氧化鏻、甲基三羟乙基氢氧化鏻、苯基三甲基氢氧化鏻、苯基三乙基氢氧化鏻和苄基三甲基氢氧化鏻等。
在另一实施方案中,可根据本发明循环或纯化的氢氧化叔锍可用下式表示:
Figure A0282670200121
其中R1、R2和R3各自独立地为含1-约20个碳原子的烷基,含2-约20个碳原子的羟基烷基或烷氧基烷基,或芳基或羟基芳基,或R1和R2与S一起可形成杂环,条件是:若杂环基团含有C=S基,则R3是第二个键。
式IV表示的氢氧化叔锍的实例包括三甲基氢氧化锍、三乙基氢氧化锍、三丙基氢氧化锍等。
可商购氢氧化鎓。另外,可由相应的鎓盐如相应鎓的卤化物、碳酸盐、甲酸盐和硫酸盐等制备氢氧化鎓。
在美国专利No.4917781(Sharifian等)和No.5286354(Bard等)中描述了各种制备方法,在此通过参考将其引入。至于如何获得或制备氢氧化鎓溶液,没有特别限制。
在电渗析之前,可任选地浓缩或者预处理含氢氧化鎓和杂质的溶液。也就是说,可在电渗析之前增加溶液内氢氧化鎓的浓度和/或可从鎓化合物溶液中除去各种杂质。
在一些实施方案中,可能希望在电渗析之前浓缩氢氧化鎓溶液。浓缩方法是本领域技术人员公知的,和尤其包括蒸发、蒸馏、纳滤(nanofiltration)和反渗透。类似地,可任选地使用这些浓缩方法,浓缩引入到电渗析电池的原料隔室内的氢氧化鎓溶液(进一步如下所述)。
在其它实施方案中,可能希望在根据本发明电渗析之前采用某种形式的过滤预处理氢氧化鎓溶液。可进行各类过滤,其中包括重力过滤、微滤如纳滤、交叉流过滤、筒式过滤、真空过滤和压力诱导过滤。也可进行相关的粗滤和筛滤预处理。可由用于从液体中分离固体的已知材料,其中包括塑料如PTFE、PVDF、PET、尼龙、聚乙烯和聚丙烯、醋酸纤维素、硝酸纤维素、再生纤维素、硝基纤维素,包括无灰纸张在内的纸张,包括玻璃纤维在内的各种纤维,和包括活性炭、氧化硅、砂子等在内的各种粒状物,制造过滤膜。或者,预处理可包括使氢氧化鎓溶液与各种粒状材料接触,进而通过粒状材料从溶液中吸附有机杂质。
在一些实施方案中,可进行大于一类(或次)的过滤预处理,因为每种过滤预处理可除去不同种杂质。例如,在一个实施方案中,进行两次过滤预处理:通过重力过滤基本上或部分除去有机杂质,和在增加溶液pH,引起一些金属形成不溶氢氧化物,从而促进过滤(并进而分离不溶物)之后,通过另一次重力过滤基本上或部分除去金属杂质。
在其它实施方案中,可能希望在根据本发明电渗析之前,采用一些形式的金属处理,来预处理氢氧化鎓溶液。金属预处理从氢氧化鎓溶液中除去过量的金属杂质。在一个实施方案中,金属预处理包括使氢氧化鎓溶液与用于除去金属的初步(preliminary)离子交换材料接触。初步离子交换材料优选为可选择区分金属阳离子与鎓阳离子的初步离子交换材料,以便在鎓化合物溶液内的至少一部分金属离子杂质被初步离子交换材料吸附。例如,对钠具有亲和力的初步离子交换材料可用作金属预处理,以便在根据本发明电渗析之前,从氢氧化鎓溶液中除去钠。
在另一实施方案中,金属预处理包括使氢氧化鎓溶液与金属络合化合物接触。金属络合化合物吸附、键合到、络合、配位、螯合或者啮合(engage)在鎓化合物溶液内的至少一部分金属离子杂质上,从而在根据本发明与阳离子交换材料接触之前,除去它们。金属络合化合物的实例包括冠醚、穴状配体(cryptand)和螯合化合物(二胺、二酮酸盐等)。
在另一实施方案中,金属预处理可包括使鎓化合物溶液与能和金属阳离子形成不溶沉淀(至少部分不溶)的酸或盐接触,从而能容易除去沉淀,并进而根据本发明,由电渗析除去金属。
本发明可用的电化学电池含有至少阳极和阴极、第一和第二双极性膜,和在两个双极性膜之间的一个或多个阳离子选择性膜。可具有为使用而组装的一个或多个干电池,所述干电池位于阳极与阴极之间。此处描述了根据本发明可用的含各种干电池和多重干电池(multipleunit cell)的电化学电池。多重干电池可由在阳极与阴极之间的许多隔室来定义,或多重干电池可由包括阳极与阴极的许多隔室来定义。对可使用的干电池的数量没有特别限制。尽管如此,但在一个实施方案中,根据本发明可用的电化学电池可含有1-约25个干电池,优选约1-约10个干电池。
本发明可用的电化学电池含有至少4或5个隔室。含至少4各隔室的电化学电池通常具有两个电极漂洗或缓冲隔室、一个原料隔室和一个回收隔室。含至少5个隔室的电化学电池通常具有一个原料隔室、一个回收隔室、两个电极漂洗或缓冲隔室,和在原料隔室与回收隔室之间的一个通道或中间隔室。
将离子溶液或电解质引入到电渗析电池的一个或多个隔室中。该溶液可以是含水基、醇或二元醇基溶液、另一有机溶液或其组合。换句话说,该溶液可含有水、水与有机液体的混合物,或其中有机液体包括醇如甲醇和乙醇、二元醇等的有机液体。在一个实施方案中,引入到各隔室内的溶液是水溶液。
最初引入到原料隔室内的氢氧化鎓浓度范围为约0.1M-约6M。在优选的实施方案中,引入到原料隔室内的溶液中鎓盐浓度范围为约0.5M-约2M。在含两个或多个原料隔室的电化学电池中,引入到原料隔室内的溶液中氢氧化鎓的浓度对于各原料隔室可相同或不同。原料隔室,如同该术语所暗含的一样,最初容纳含鎓阳离子的氢氧化鎓溶液和将通过本发明纯化的非所需的阴离子。
回收隔室最初引入有溶液,和优选水溶液。引入到回收隔室内的溶液可以含或不含离子化合物。离子化合物是在溶液中部分或完全离子化的化合物,如电解质。在一个实施方案中,在回收隔室内的离子化合物与引入到原料隔室内的氢氧化鎓相同(或与从回收隔室中回收的氢氧化鎓相同)。在电流流过电池之后,可回收氢氧化鎓或者在某一浓度下从回收隔室中获得氢氧化鎓。在一个实施方案中,在回收隔室内的氢氧化鎓浓度高于约0.5M。在另一实施方案中,在回收隔室内的氢氧化鎓浓度高于约1M。在另一实施方案中,在回收隔室内的氢氧化鎓浓度高于约2M。在含两个或多个回收隔室的电化学电池中,从回收隔室内回收的溶液中有机氢氧化物的浓度对于各回收隔室可相同或不同。
电极漂洗或缓冲隔室(即与阳极和阴极相邻的隔室),含有某一浓度下的离子化合物的溶液。离子化合物起到维持导电率的作用并能降低操作电池的电压。引入到电极漂洗隔室内的溶液中离子化合物的浓度范围为约0.1M-约5M。在另一实施方案中,浓度为约0.5M-约2M。和在另一实施方案中,浓度为约0.7M-约1.5M。在含两个或多个电极漂洗隔室的电化学电池中,引入到电极漂洗隔室内的溶液中离子化合物的浓度对于各隔室可相同或不同。
中间或通道隔室(若存在的话),最初引入有溶液和优选水溶液。引入到中间通道隔室内的溶液可以含或不含离子化合物。离子化合物(若存在的话)可相同或不同于其它隔室的离子化合物。中间或通道隔室由两个阳离子交换膜来定义。当电流流过电化学电池时,鎓阳离子从原料隔室经中间或通道隔室进入回收隔室内。由于大多数非所需的杂质没有流过中间或通道隔室,所以通道隔室起到进一步纯化所得氢氧化鎓的作用。
因此,在一个实施方案中,本发明的方法包括:
(A)提供含至少4个隔室的电化学电池,其中由阴极、阳极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含任何离子交换材料,
(C)使电流经过电池,和
(D)从由第一阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓溶液。
将参考附图描述可在本发明中使用的电渗析电池的数个实施方案。尽管在附图中描述了各种电渗析电池的许多实施方案,但对本领域的技术人员来说,非常显而易见的是,没有在附图中具体地描述的额外许多实施方案在本发明的范围内。
图1示出了可在上述方法中使用的含至少4个隔室的电解电池的实施方案,该图是电化学电池10的示意图,它包含阳极11、阴极12,和干电池,所述干电池从阳极11端开始依次包含第一双极性膜13、阳离子选择性膜15,和第二双极性膜14。该电化学电池10含有4个隔室,亦即,第一电极漂洗或缓冲隔室16、原料隔室17、回收隔室18,和第二电极漂洗或缓冲隔室19。
在图1所示的电池10的操作中,将含一定量阴离子杂质的氢氧化鎓原料溶液引入到原料隔室17中。将离子化合物(电解质)的溶液,优选水溶液,引入到第一和第二电极漂洗或缓冲隔室16和19以及回收隔室18中。在阳极与阴极之间建立并维持电势,在电池上产生流动或电流,于是存在于原料溶液内的鎓阳离子保持在原料隔室17中。鎓阳离子朝向阴极12吸引,并流过阳离子选择性膜15进入回收隔室18内,在此它与在第二双极性膜14另一侧表面上形成的氢氧根离子结合,产生所需的氢氧化鎓。杂质没有朝向阴极吸引和/或没有流过阳离子选择性膜15,并进而保持在原料隔室17内。在回收隔室18内形成并从中回收氢氧化鎓。
在本发明的另一实施方案中,改进氢氧化鎓水溶液纯度的方法利用含至少5个隔室的电化学电池。该方法包括:
(A)提供含至少5个隔室的电化学电池,其中由阳极、阴极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜、第二阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含任何离子交换材料,
(C)使电流经过电池,和
(D)从由第二阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓。
图2和3示出了在该实施方案中使用的电化学电池。图2是电化学电池20的示意图,它包含阳极11、阴极12,和干电池,所述干电池从阳极11端开始依次包含第一双极性膜13、第一阳离子选择性膜21、第二阳离子选择性膜22和第二双极性膜14。因此,电化学电池20含有5个隔室:第一电极漂洗或缓冲隔室16、原料隔室17、中间或通道隔室23、回收隔室18,和第二电极漂洗或缓冲隔室19。
在图2所示的电化学电池20的操作中,将氢氧化鎓溶液引入到原料隔室17中。将电解质引入到第一和第二电极漂洗隔室16和19、通道隔室23与回收隔室18中。在一个实施方案中,引入到这些隔室内的电解质是含有与引入到原料隔室内的氢氧化鎓相同的氢氧化鎓的水溶液,但它不含大量的杂质如阴离子。在阳极与阴极之间建立并维持电势,在电池上产生流动或电流,于是在引入到原料隔室17内的氢氧化鎓溶液中包含的任何阴离子保持在原料隔室17内。鎓阳离子朝向阴极12吸引,并流过第一阳离子选择性膜21进入中间隔室23内,此后流过第二阳离子选择性膜22进入回收隔室18内,在此它与在第二双极性膜14另一侧表面上形成的氢氧根离子结合,产生所需的氢氧化鎓。杂质没有朝向阴极12吸引和/或没有流过阳离子选择性膜22,并进而保持在原料隔室17内。在回收隔室18内回收再生的氢氧化鎓。
图3示出了可在本发明中使用的电化学电池的另一实施方案,该图是包含8个隔室的电化学电池30的示意图。该实施方案是包含两个图2的实施方案中使用的干电池的电渗析电池的示意图,这两个干电池被第三双极性膜31隔开。因此,图3所示的电渗析电池30包含阳极11、阴极12、第一干电池、第二干电池,所述第一干电池从阳极11端开始依次包含第一双极性膜13、第一阳离子选择性膜21、第二阳离子选择性膜22和第三双极性膜31,所述第二干电池包含第三双极性膜31、第三阳离子选择性膜32、第四阳离子选择性膜33和第二双极性膜14。因此,该电池30含有8个隔室:第一电极漂洗隔室16、第一原料隔室17、第一中间或通道隔室23、第一回收隔室18,第二原料隔室17’、第二中间或通道隔室23’、第二回收隔室18’和第二电极漂洗隔室19。
在图3所示的电化学电池30的操作中,将含阴离子杂质的氢氧化鎓溶液引入到原料隔室17和17’中。将电解质引入到第一和第二电极漂洗隔室16和19、第一和第二中间隔室23和23’,与第一和第二回收隔室18和18’中。在阳极与阴极之间建立并维持电势,在电池上产生流动或电流,于是在各原料隔室17和17’中的鎓阳离子朝向阴极12吸引。于是,在隔室17内的鎓阳离子流过第一中间隔室23进入回收隔室18内,在此阳离子与氢氧根离子结合,在回收隔室18内产生所需的氢氧化鎓。类似地,在第二原料隔室17’内的鎓阳离子流过第三阳离子选择性膜32进入第二中间隔室23’内,此后流过第四阳离子选择性膜33进入第二回收隔室18’内,在此阳离子与氢氧根离子结合,形成所需的氢氧化鎓,可从第二回收隔室18’中回收所述氢氧化鎓。由于引入到原料隔室17和17’内的存在于氢氧化鎓溶液中的任何阴离子没有流过阳离子最小选择性膜,所以从回收隔室18和18’中回收的氢氧化鎓溶液含有降低量的非所需阴离子。
本发明方法的操作可以是连续或间歇操作。本发明方法的操作通常是连续操作,和一些组分被连续循环。通过泵送和/或通过气体排放进行循环。
各种材料可用作电化学电池内的阳极,例如,可由金属如钛涂布的电极、钽、镍、锆、铪或其合金制造阳极。一般地,阳极具有不可钝化和催化的膜,它可包括贵金属如铂、铱和铑或其合金,或含贵金属如铂、铱、钌、钯或铑的氧化物或混合氧化物中的至少一种的导电氧化物的混合物。在一个实施方案中,阳极为尺寸稳定的阳极,如在其上具有钌和/或铱氧化物的钛基阳极。在另一实施方案中,由用铂涂布的钛制造阳极。
可用作电化学电池内的阴极的各种材料可包括在本发明的上述和其它实施方案中使用的阴极内。阴极材料包括镍、铁、不锈钢、镀镍钛、石墨、碳钢(铁)或其合金等。术语“合金”以广义的含义使用,和包括两种或多种金属的紧密混合物以及在另一金属上涂布的一种金属。
在本发明的电池和方法中使用的阳离子选择性膜可以是已在氢氧化鎓的电化学纯化或循环中使用的那些中的任何一种。在一个实施方案中,阳离子选择性膜含有高度耐用的材料,如基于氟烃系列的膜,或来自不那么昂贵的聚苯乙烯或聚丙烯系列材料。然而,优选可在本发明中使用的阳离子选择性膜包括含阳离子选择基团的氟化膜,如全氟磺酸、全氟羧酸和全氟磺酸和/全氟羧酸、全氟烃聚合物膜如由E.I.Dupont Nemours & Co.以通用商标“Nafion”销售的,如DuPont的Cationic Nafion 902膜。其它合适的阳离子选择性膜包括来自AsahiGlass的CMV阳离子选择性膜和含阳离子选择基团如磺酸基、羧酸基等的苯乙烯二乙烯基苯共聚物膜等。来自Pall RAI的Raipore CationicR1010和来自Tokuyama Soda的NEOSEPTA CMH和NEOSEPTACM1膜由于为较高分子的季型化合物是特别有用的。可在本发明使用的全氟羧酸阳离子选择性膜以牌号F785获自Asahi Glass。在Encyclopedia of Chemical Technology,Kirk-Othmer,第3版,Vol.15,pp.92-131,Wiley & Sons,New York,1985中标题为“MembraneTechnology”的章节中描述了阳离子选择性膜的制备与结构。这些页的内容因其披露的可在本发明中使用的各种阳离子选择性膜而在此通过参考引入。
在电化学电池中使用的双极性膜是含有三部分的复合膜:阳离子选择侧或区、阴离子选择侧或区和介于该两区之间的界面。当直流电流过双极性膜,且阳离子选择侧朝向或面向阴极时,通过输送H+和OH-离子而实现导电,而H+和OH-离子是在电场影响下在界面处发生水的解离而产生的。
例如在美国专利No.2829095、No.4024043(单一薄膜的双极性膜)和在No.4116889(流延双极性膜)描述了双极性膜。可在本发明方法中使用的双极性膜包括Tokuyama Soda的NEOSEPTA BIPOLAR1、WSI BIPOLAR和Aqualytics Bipolar膜。
通过在阳极与阴极之间施加电流(通常直流电)进行电渗析。流过电池的电流是由电池的设计和性能特征决定的电流,这对本领域的技术人员来说是非常显而易见的和/或可通过常规实验来确定。可使用约10至约500毫安/平方厘米的电流密度,和优选约70至约300毫安/平方厘米的电流密度。对于一些特定的应用,可使用较高或较低的电流密度。施加电流密度到电池上一段时间,所述时间段足以导致在回收隔室内再生或形成所需用量或浓度的氢氧化鎓。
在电渗析过程中,通常希望在电池内液体的温度维持在约2℃-约90℃范围内,和优选约20℃-约60℃。
尽管不希望受到任何理论的束缚,但认为本发明的电化学电池的操作部分基于所施加的电流导致在最初引入到原料隔室内的氢氧化鎓的阳离子迁移到回收隔室中。
下述实施例阐述本发明的方法。除非在下述实施例和另外在说明书和权利要求中另有说明,所有份和百分数以重量计,所有温度为摄氏度,和压力为大气压或接近大气压。
实施例
实施例1
根据图1组装电渗析电池,其中阳极11包括用氧化钌涂布的钛,和阴极12包括不锈钢。第一双极性膜13和第二双极性膜14是Tokuyama Soda的NEOSEPTA BIPOLAR-1。阳离子选择性膜15是来自DuPont的Nafion 90209阳离子选择性膜。电极漂洗隔室16与19引入有0.5M四甲基氢氧化铵溶液,和原料隔室17引入有1.0M含约194ppm氯离子的四甲基氢氧化铵溶液。回收隔室18引入有1.6M四甲基氢氧化铵水溶液。在所有隔室已被如上所述地引入之后,在40毫安/平方厘米的电流密度下进行电渗析约22小时。从回收隔室18中回收2.0M四甲基氢氧化铵溶液,和回收的溶液具有1.6ppm的氯离子含量。
实施例2
根据图3组装电渗析电池,其中阳极11包括用铂涂布的钛,和阴极12包括不锈钢。在该实施例中使用的第一、第二和第三双极性膜(13、14和31)与实施例1中使用的那些相同,和阳离子选择性膜21、22、32和33以商标牌号F795购自Asahi Glass Co.。
电极漂洗隔室16与19引入有0.5M四甲基氢氧化铵溶液,第一原料隔室17和第二原料隔室17’引入有1.6M含约22ppm氯离子的四甲基氢氧化铵溶液。中间隔室23和23’引入有1.0M四甲基氢氧化铵溶液,和第一与第二回收隔室(18和18’)引入有2.2M四甲基氢氧化铵。在所有隔室已被如上所述地引入之后,最初在70毫安/平方厘米的电流密度下进行电渗析。当电渗析持续68小时时,循环的原料溶液消耗到0.39M。结合回收隔室18和18’内的溶液并用超纯去离子水稀释,维持2.2M氯离子浓度低于100ppb的四甲基氢氧化铵溶液。
尽管涉及其实施方案解释了本发明,但应当理解,在阅读说明书的基础上,它的各种改性对本领域的技术人员来说是显而易见的。因此,应理解,此处所披露的本发明拟涵盖落在所附权利要求范围内的这种改性。

Claims (37)

1.一种改进氢氧化鎓水溶液纯度的方法,该方法包括:
(A)提供含至少4个隔室的电化学电池,其中由阴极、阳极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含离子交换材料,
(C)使电流经过电池,和
(D)从由第一阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓溶液。
2.权利要求1的方法,其中氢氧化鎓是氢氧化季铵、氢氧化季鏻或氢氧化叔锍。
3.权利要求1的方法,其中氢氧化鎓是氢氧化季铵。
4.权利要求3的方法,其中氢氧化季铵用下式表征:
其中R1、R2、R3和R4各自独立地为含1-约10个碳原子的烷基、含2-约10个碳原子的羟基烷基或烷氧基烷基、或芳基或羟基芳基,或为烷基的R1和R2与氮原子一起可形成芳族或非芳族杂环,条件是:若杂环基团含有-C=N-基,则R3是第二个键。
5.权利要求4的方法,其中R1、R2、R3和R4是含1-约5个碳原子的烷基,或含2-约5个碳原子的羟基烷基。
6.权利要求4的方法,其中R1、R2、R3和R4是含有1或2个碳原子的烷基。
7.权利要求1的方法,其中阳离子选择性膜包括全氟磺酸、全氟羧酸,或全氟磺酸-全氟羧酸全氟烃聚合物膜。
8.权利要求1的方法,其中在步骤(B)中引入到电池内的氢氧化鎓溶液来源于采用无机碱水溶液对吸附在阳离子交换材料上的鎓阳离子的洗脱。
9.权利要求1的方法,其中将电解质引入到电化学电池的其它隔室内。
10.权利要求9的方法,其中电解质是氢氧化鎓水溶液。
11.权利要求1的方法,其中在步骤(B)中引入的氢氧化鎓溶液含一定量的卤离子,和在步骤(D)中回收的溶液含有较少量的卤离子。
12.一种改进氢氧化鎓水溶液纯度的方法,该方法包括:
(A)提供含至少5个隔室的电化学电池,其中由阳极、阴极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜、第二阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将氢氧化鎓溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含离子交换材料,
(C)使电流经过电池,和
(D)从由第二阳离子选择性膜和第二双极性膜形成的回收隔室中回收纯化的氢氧化鎓。
13.权利要求12的方法,其中氢氧化鎓是氢氧化季铵、氢氧化季鏻或氢氧化叔锍。
14.权利要求12的方法,其中氢氧化鎓是氢氧化季铵。
15.权利要求14的方法,其中氢氧化季铵用下式表征:
其中R1、R2、R3和R4各自独立地为含1-约10个碳原子的烷基、含2-约10个碳原子的羟基烷基或烷氧基烷基、或芳基或羟基芳基,或为烷基的R1和R2与氮原子一起可形成芳族或非芳族杂环,条件是:若杂环基团含有-C=N-基,则R3是第二个键。
16.权利要求15的方法,其中R1、R2、R3和R4是含1-约5个碳原子的烷基,或含2-约5个碳原子的羟基烷基。
17.权利要求14的方法,其中R1、R2、R3和R4是含有1或2个碳原子的烷基。
18.权利要求12的方法,其中在步骤(B)中引入到电池内的氢氧化鎓溶液来源于采用无机碱水溶液对吸附在阳离子交换材料上的鎓阳离子的洗脱。
19.权利要求12的方法,其中将电解质引入到电化学电池的其它隔室内。
20.权利要求19的方法,其中电解质是氢氧化鎓水溶液。
21.权利要求12的方法,其中在步骤(B)中引入的氢氧化鎓溶液含一定量的卤离子,和在步骤(D)中回收的溶液含有较少量的卤离子。
22.一种降低含卤离子的氢氧化季铵水溶液中卤离子含量的方法,该方法包括:
(A)提供含至少4个隔室的电化学电池,其中由阳极、阴极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将含一定量的卤离子的氢氧化季铵溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含离子交换材料,
(C)将电解质引入到其它隔室中,
(D)使电流经过电池,和
(E)从由第一阳离子选择性膜和第二双极性膜形成的回收隔室中回收氢氧化季铵水溶液,其中从回收隔室中回收的氢氧化季铵含有比引入到原料隔室内的氢氧化季铵溶液中存在的卤离子的量要少的卤离子。
23.权利要求22的方法,其中氢氧化季铵用下式表征:
24.权利要求23的方法,其中R1、R2、R3和R4是含有1-约5个碳原子的烷基,或含有2-约5个碳原子的羟基烷基。
25.权利要求23的方法,其中R1、R2、R3和R4是甲基或乙基。
26.权利要求22的方法,其中在步骤(B)中引入到电池内的氢氧化季铵溶液来源于采用无机碱水溶液对吸附在阳离子交换材料上的季铵阳离子的洗脱。
27.权利要求22的方法,其中在步骤(C)中引入到其它隔室内的电解质是氢氧化季铵水溶液。
28.一种降低含卤离子的氢氧化季铵水溶液中卤离子含量的方法,该方法包括:
(A)提供含至少5个隔室的电化学电池,其中由阳极、阴极、以及依次从阳极到阴极的第一双极性膜、第一阳离子选择性膜、第二阳离子选择性膜和第二双极性膜形成所述隔室,
(B)将含一定量的卤离子的氢氧化季铵溶液引入到由第一双极性膜和第一阳离子选择性膜形成的原料隔室中,其中原料隔室不含离子交换材料,
(C)将电解质引入到其它隔室中,
(D)使电流经过电池,和
(E)从由第二阳离子选择性膜和第二双极性膜形成的回收隔室中回收氢氧化季铵溶液,其中回收的氢氧化季铵溶液含有比在步骤(B)中引入到原料隔室内的氢氧化季铵溶液中存在的卤离子的量要少的卤离子。
29.权利要求28的方法,其中氢氧化季铵用下式表征:
Figure A028267020006C1
其中R1、R2、R3和R4各自独立地为含1-约10个碳原子的烷基、含2-约10个碳原子的羟基烷基或烷氧基烷基、或芳基或羟基芳基,或为烷基的R1和R2与氮原子一起可形成芳族或非芳族杂环,条件是:若杂环基团含有-C=N-基,则R3是第二个键。
30.权利要求29的方法,其中R1、R2、R3和R4是含1-约5个碳原子的烷基,或含2-约5个碳原子的羟基烷基。
31.权利要求29的方法,其中R1、R2、R3和R4是甲基或乙基。
32.权利要求28的方法,其中在步骤(B)中引入到电池内的氢氧化季铵溶液来源于采用无机碱水溶液对吸附在阳离子交换材料上的季铵阳离子的洗脱。
33.权利要求28的方法,其中在步骤(C)中引入到其它隔室内的电解质是氢氧化季铵水溶液。
34.通过权利要求1的方法获得的氢氧化鎓水溶液。
35.通过权利要求12的方法获得的氢氧化鎓水溶液。
36.通过权利要求22的方法获得的氢氧化季铵水溶液。
37.通过权利要求28的方法获得的氢氧化季铵水溶液。
CNB028267028A 2002-01-03 2002-11-27 通过电渗析纯化氢氧化鎓 Expired - Fee Related CN1293231C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/038,537 US6787021B2 (en) 2002-01-03 2002-01-03 Purification of onium hydroxides by electrodialysis
US10/038,537 2002-01-03

Publications (2)

Publication Number Publication Date
CN1612844A true CN1612844A (zh) 2005-05-04
CN1293231C CN1293231C (zh) 2007-01-03

Family

ID=21900512

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028267028A Expired - Fee Related CN1293231C (zh) 2002-01-03 2002-11-27 通过电渗析纯化氢氧化鎓

Country Status (13)

Country Link
US (1) US6787021B2 (zh)
EP (1) EP1472188B1 (zh)
JP (1) JP2005514447A (zh)
KR (1) KR100966215B1 (zh)
CN (1) CN1293231C (zh)
AT (1) ATE483514T1 (zh)
AU (1) AU2002346578A1 (zh)
CA (1) CA2478768C (zh)
DE (1) DE60237921D1 (zh)
IL (2) IL162691A0 (zh)
MY (1) MY122894A (zh)
TW (1) TWI230631B (zh)
WO (1) WO2003059824A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531927A (zh) * 2011-12-28 2012-07-04 浙江工业大学 一种利用双极膜电渗析制备四丙基氢氧化铵的方法
CN104292114A (zh) * 2013-07-19 2015-01-21 广州大有精细化工厂 一种鎓氢氧化物的制备方法
CN104744269A (zh) * 2013-12-30 2015-07-01 塞克姆公司 改进的从包含工艺残余物的组合物中回收鎓氢氧化物的方法
CN104744269B (zh) * 2013-12-30 2018-08-31 塞克姆公司 改进的从包含工艺残余物的组合物中回收鎓氢氧化物的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582513B1 (en) * 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
WO2006096578A1 (en) * 2005-03-04 2006-09-14 Honeywell International Inc. Method for purifying quaternary onium salts
US7572379B2 (en) * 2005-09-02 2009-08-11 Sachem, Inc. Removal of metal ions from onium hydroxides and onium salt solutions
DE102009037954A1 (de) * 2009-08-18 2011-02-24 Voith Patent Gmbh Verfahren zur Rückgwinnung von Chemikalien aus bei der Erzeugung lignozellulosischer Faserstoffe anfallendem Abwasser
JP5909190B2 (ja) * 2009-11-04 2016-04-26 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research 工業廃水からのジメチルスルホキシド(dmso)溶媒の回収のための電気透析−蒸留ハイブリッドプロセス
CN102373341A (zh) * 2010-08-12 2012-03-14 独立行政法人日本原子力研究开发机构 锂的回收方法及锂的回收装置
WO2012059133A1 (de) * 2010-11-05 2012-05-10 Voith Patent Gmbh Verfahren zur rückgewinnung von chemikalien aus bei der erzeugung lignozellulosischer faserstoffe anfallendem abwasser
JP6197235B2 (ja) * 2014-06-26 2017-09-20 国立大学法人 奈良先端科学技術大学院大学 ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
RU2730338C2 (ru) * 2015-10-30 2020-08-21 Чайна Петролеум Энд Кемикал Корпорейшн Способ обработки сточных вод и система для их обработки, а также способ получения молекулярного сита и система для его получения
TWI622428B (zh) 2017-03-31 2018-05-01 財團法人工業技術研究院 電透析模組及電透析系統
CN108299209A (zh) * 2018-01-20 2018-07-20 盐城泛安化学有限公司 一种利用膜集成技术制备并浓缩四乙基氢氧化铵的方法
CN110318066A (zh) * 2019-06-20 2019-10-11 青岛鼎海电化学科技有限公司 一种四烷基氢氧化铵的制备方法
US20220112103A1 (en) * 2020-10-14 2022-04-14 Duke University Methods and systems for wastewater treatment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536269A (en) * 1983-05-02 1985-08-20 Allied Corporation Multichamber two-compartment electrodialytic water splitter and method of using same for acidification of aqueous soluble salts
JPS60131985A (ja) 1983-12-19 1985-07-13 Showa Denko Kk 高純度第4級アンモニウム水酸化物の製造法
US4714530A (en) 1986-07-11 1987-12-22 Southwestern Analytical Chemicals, Inc. Method for producing high purity quaternary ammonium hydroxides
US4938854A (en) 1988-11-28 1990-07-03 Southwestern Analytical Chemicals, Inc. Method for purifying quaternary ammonium hydroxides
US5135626A (en) * 1988-12-01 1992-08-04 Allied-Signal Inc. Method for purification of bases from materials comprising base and salt
JP3151043B2 (ja) * 1992-04-03 2001-04-03 株式会社トクヤマ 酸及びアルカリの製造方法
JPH06299385A (ja) * 1992-08-28 1994-10-25 Mitsubishi Gas Chem Co Inc 水酸化第四級アンモニウム水溶液および有機カルボン 酸の製造方法
DE69307659T2 (de) 1992-11-10 1997-09-04 Tama Chemicals Co Ltd Methode zur Behandlung von organischem quaternärem Ammonium-hydroxyd enthaltendem Abwasser
US5833832A (en) * 1996-08-30 1998-11-10 Sachem, Inc. Preparation of onium hydroxides in an electrochemical cell
US5709790A (en) 1996-10-03 1998-01-20 Sachem, Inc. Electrochemical process for purifying hydroxide compounds
US5753097A (en) 1996-10-03 1998-05-19 Sachem, Inc. Process for purifying hydroxide compounds
US5709789A (en) 1996-10-23 1998-01-20 Sachem, Inc. Electrochemical conversion of nitrogen containing gas to hydroxylamine and hydroxylammonium salts
US6217743B1 (en) * 1997-02-12 2001-04-17 Sachem, Inc. Process for recovering organic hydroxides from waste solutions
US5868916A (en) 1997-02-12 1999-02-09 Sachem, Inc. Process for recovering organic hydroxides from waste solutions
US5853555A (en) 1997-04-03 1998-12-29 Sachem, Inc. Synthesis of onium hydroxides from onium salts
US5959845A (en) 1997-09-18 1999-09-28 International Business Machines Corporation Universal chip carrier connector
JPH11106977A (ja) * 1997-09-30 1999-04-20 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
GB2332210B (en) * 1997-12-10 2000-07-19 Toshiba Kk Processing method of waste water and processing apparatus thereof
US5968338A (en) * 1998-01-20 1999-10-19 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds
US6207039B1 (en) 1998-04-07 2001-03-27 Sachem, Inc. Process for recovering onium hydroxides or onium salts from solutions containing onium compounds using electrochemical ion exchange
DE19856376A1 (de) * 1998-12-07 2000-06-08 Basf Ag Verfahren zur Herstellung oder Reinigung von Oniumhydroxiden mittels Elektrodialyse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531927A (zh) * 2011-12-28 2012-07-04 浙江工业大学 一种利用双极膜电渗析制备四丙基氢氧化铵的方法
CN104292114A (zh) * 2013-07-19 2015-01-21 广州大有精细化工厂 一种鎓氢氧化物的制备方法
CN104292114B (zh) * 2013-07-19 2016-05-04 广州众合环保工程技术服务有限公司 一种鎓氢氧化物的制备方法
CN104744269A (zh) * 2013-12-30 2015-07-01 塞克姆公司 改进的从包含工艺残余物的组合物中回收鎓氢氧化物的方法
CN104744269B (zh) * 2013-12-30 2018-08-31 塞克姆公司 改进的从包含工艺残余物的组合物中回收鎓氢氧化物的方法

Also Published As

Publication number Publication date
JP2005514447A (ja) 2005-05-19
DE60237921D1 (de) 2010-11-18
IL162691A (en) 2006-12-31
KR100966215B1 (ko) 2010-06-25
CA2478768A1 (en) 2003-07-24
CN1293231C (zh) 2007-01-03
US20030121787A1 (en) 2003-07-03
TWI230631B (en) 2005-04-11
EP1472188A1 (en) 2004-11-03
MY122894A (en) 2006-05-31
EP1472188A4 (en) 2005-05-04
CA2478768C (en) 2008-10-21
KR20040082383A (ko) 2004-09-24
US6787021B2 (en) 2004-09-07
AU2002346578A1 (en) 2003-07-30
WO2003059824A1 (en) 2003-07-24
IL162691A0 (en) 2005-11-20
TW200302128A (en) 2003-08-01
ATE483514T1 (de) 2010-10-15
EP1472188B1 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
CN1293231C (zh) 通过电渗析纯化氢氧化鎓
CN1102073C (zh) 回收抗坏血酸的电化学方法
CN1247481A (zh) 从废溶液中回收有机氢氧化物的方法
CN1236454C (zh) 从包含鎓化合物的溶液回收鎓氢氧化物的方法
JP4430818B2 (ja) オニウム化合物を含有する溶液から水酸化オニウムを回収するプロセス
CN1106874C (zh) 提纯氢氧化物的电化学方法
JP5189322B2 (ja) ヨウ化水素酸の製造方法
CN1185489A (zh) 提纯氢氧化物的电化学方法
CN1259174A (zh) 从鎓盐合成氢氧化鎓
US6217743B1 (en) Process for recovering organic hydroxides from waste solutions
CN100406107C (zh) 通过在双液室池中的电解而改进季铵氢氧化物的纯度的方法
CN1630548A (zh) 通过电解改进氢氧化季铵纯度的方法
JPS61261488A (ja) アミノ酸アルカリ金属塩の電解法
TWI354653B (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070103

Termination date: 20201127

CF01 Termination of patent right due to non-payment of annual fee