CN1582265A - 氧含量较低的立方氮化硼及其生产方法 - Google Patents

氧含量较低的立方氮化硼及其生产方法 Download PDF

Info

Publication number
CN1582265A
CN1582265A CNA028220056A CN02822005A CN1582265A CN 1582265 A CN1582265 A CN 1582265A CN A028220056 A CNA028220056 A CN A028220056A CN 02822005 A CN02822005 A CN 02822005A CN 1582265 A CN1582265 A CN 1582265A
Authority
CN
China
Prior art keywords
cbn
oxygen
product
toughness
oxygen absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028220056A
Other languages
English (en)
Other versions
CN1253411C (zh
Inventor
迈克尔·H·齐默曼
埃里克·O·爱因塞特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1582265A publication Critical patent/CN1582265A/zh
Application granted granted Critical
Publication of CN1253411C publication Critical patent/CN1253411C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种用于改善通过高温/高压(HP/HT)工艺制备的CBN产品的韧度的方法。在该方法的起始阶段,形成氧吸收剂和用于制备CBN产品的原料的掺合物。利用CBN高温/高压(HP/HT)工艺对该掺合物进行处理以制备CBN产品。掺合物中氧吸收剂的量足以改善CBN产品的韧度。所获得的CBN产品的氧含量要求低于约300ppm。氧吸收剂包括Al、Si以及Ti。HP/HT工艺在催化材料存在或不存在的情况下进行。

Description

氧含量较低的立方氮化硼及其生产方法
相关申请的交叉引用
关于联邦政府资助研究的声明
不适用
技术领域
本发明涉及立方氮化硼(CBN)材料,更具体地说,本发明涉及具有很高的韧度和高热稳定性的CBN产品。
立方氮化硼(Cubic boron nitride,简称为CBN)是人类所知的仅次于金刚石的第二硬的材料。通过高压/高温(HP/HT)工艺制造CBN的方法在本领域中是已知的,在美国专利号2,947,617中描述了此类方法的一个典型实例,其中涉及基本的单晶CBN。美国专利号4,188,194中描述了一种用于制造烧结的多晶CBN坯件(compact)的工艺,其中在没有任何催化剂存在的情况下,使用了热解的六方氮化硼(hexagonal boron nitride,简称为HBN)。美国专利号4,289,503中描述了对此类直接转化工艺的改进,其中在所述转化工艺之前,将硼的氧化物从HBN粉末的表面除去。美国专利号5,106,792中,在没有任何催化剂存在的情况下,由不同结构类型的类石墨氮化硼(graphitic boron nitride,简称为GBN)制造CBN复合体(composite mass)。
坯件是一团粘结在一起的磨粒,它们之间可以通过自粘结方式(self-bonded relationship)(参见美国专利号3,852,078和3,876,751);通过粘结介质(参见美国专利号3,136,615,3,233,988,3,743,489,3,767,371以及3,918,931);或通过其组合的方式粘结。复合坯件(composite compact)是与基底材料,例如硬质金属碳化物(cemented metalcarbide)相粘结的坯件。美国专利号3,918,219中教导了六方氮化硼(HBN)向CBN的催化转变,其与硬质合金相接触以形成复合CBN坯件。坯件或复合坯件可以用于切削工具、钻头、修整工具(dressing tool)以及磨损部件(wear parts)的毛坯(例如,参见美国专利号3,136,615以及3,233,988)。
由于多晶CBN坯件与含铁工件的相对的不反应性(relatively non-reactivity),它们经常被用于加工硬的铁合金工件。因此,CBN材料经常被制成切削、铣削以及车削工具。CBN晶体的韧度(toughness)可以是研磨性能的一个因素,可以通过标准脆性测试来测定韧度。脆性测试中涉及对一定量的产品在受控条件下进行球磨,以及对残余物进行筛选以测定所述产品的碎裂状况。韧度指数(Toughness Index,简称为TI)在室温下测定;热韧度指数(Thermal Toughness Index,简称为TTI)是在产品经高温灼烧后测定的。在很多情况下,晶体的韧度越高,研磨或加工工具中的晶体的寿命就越长,因此工具的寿命也就越长。这使得工具的磨损降低,并最终使工具的总成本减少。
Corrigan,等人,″Direct Transition Among Allotropic Forms of Boron Nitride at HighPressures and Temperatures(高压和高温下在同素异形氮化硼之间的之间转化″,The Journalof Chemical Physics(化学物理杂志),Vol 63.No.9,第3812页(1995年11月1日)中讨论了在HBN向CBN的HP/HT转变中杂质(例如氧)的影响(参见第3814页)。Dreger,等人,″Sublimation and Decomposition Studies on Boron Nitride and Aluminum Nitride(氮化硼和氮化铝的升华和分解研究)″,J.Phys.Chem.(物理化学杂志),66,第1556页(1962)中提出,将BN加热到1200-2000℃以释出氮气并留下硼覆层。美国专利号3,926,571第3栏中提到,将各向同性HBN进行真空烧制(vacuum firing)以在金属化之前除去氧化硼。美国专利号4,150,098第3栏中公开了将HBN进行初步干燥。最后,美国专利号4,289,503中,在HBN热分解范围内的温度下,通过真空烧制或在惰性气氛中加热对HBN进行预处理,以除去硼的氧化物并留下硼表面覆层。然后,经预处理的HBN被转化为CBN。
发明内容
不论制造CBN产品时采用的是何种技术,都可以通过在氧吸收剂存在下进行的高温/高压(HP/HT)制造工艺而改善CBN产品的韧度指数(TI)。氧吸收剂包括但不限于:Al、Si以及Ti。HP/HT工艺按照常规进行,包括在催化剂材料存在或不存在的情况下。可选择地,可以对HP/HT工艺的HBN原料进行预处理,以从中除去氧化物。
本发明另一方面提供了一种CBN产品,其氧含量低于约300ppm,较好的是低于约200ppm,优选为低于约100ppm。
本发明的优点包括:改善任何CBN产品韧度指数的能力,不管它是如何被制造出来的。另一个优点是改善CBN产品的韧度指数而不会对该CBN产品的其他所期望的性质产生有害负面影响的能力。再一个优点是能够制备氧含量超低的CBN产品的能力。对于本领域普通技术人员来说,在阅读本发明所公开的内容之后,这些优点以及其他优点将会变得明显。
附图说明
为了更全面地理解本发明的本质和目的,应当将下面的详细描述与本发明的附图结合起来阅读,在附图中:
图1是针对多种所制造的CBN晶体而做的晶体韧度相对于氧含量的图;
图2是针对多种经热处理的CBN晶体而做的晶体韧度相对于氧含量的图;
图3是针对利用一个催化剂系统制造出来的CBN晶体而做的晶体韧度相对于氧含量的图;以及
图4是针对CBN晶体而做的晶体韧度相对于氧含量的图,其中所述CBN晶体是利用一个催化剂系统制造出来的,并且经过了热处理。
下面将对附图进行更为详尽的描述。
具体实施方式
本发明涉及CBN晶体,这些CBN晶体的实测氧水平低于,例如,约300ppm。此类晶体可以通过任何已知的化学过程在除去氧的条件下(例如在生长的化学过程中添加氧吸收材料(氧吸收剂)而除去氧)生长出来。合适的氧吸收剂(oxygen getter)包括:例如Al、Si或Ti,它们形成非常稳定的氧化物,可以在合成的化学过程中减少氧,以获得氧水平低于约300ppm目标值的晶体。
加入到原料中的氧吸收剂对于将CBN产品中的氧含量降低到预期水平(也就是获得预期的目标TI)而言是足量的。使用过量的氧吸收剂可能会有影响CBN产品的其他所期望性质的风险。那么,一般而言,氧吸收剂的量的范围可以在按重量计占反应单元原料的约0.005%到0.5%之间。
氧吸收剂,例如Al、Si或Ti,可以在反应单元中以一种或多种如下形式存在:(a)单质金属(elemental metal)以及(b)其形成自由能高于该金属的氧化物、碳化物、氮化物等的形成自由能的任何化合物。在CBN制造过程中,氧吸收剂被转化为氧化物。此类氧吸收剂的氧化物一般不会被混到CBN晶体中,因此可以通过后续处理将其除去,这种处理是可行的,而且成本也不是非常高。
根据本发明,可以使用任何技术生产CBN晶体。因此,可以通过减少氧气的存在量而改善烧结的CBN晶体、坯件以及再烧结的CBN材料的韧度。在CBN的催化制备过程中,可以使用催化材料和粘结材料,例如,美国专利号3,233,988和3,918,219中详细描述的催化制备的CBN坯件,以及美国专利号3,743,489和3,767,371中详细描述的粘结介质。单晶CBN也可以在金属或合金催化剂的存在下由HBN制得。
美国专利号4,188,194中教导了一种优选的直接转化工艺,其中,烧结的多晶CBN坯件是通过将优先取向的(preferentially oriented)热解六方氮化硼(PBN)放置于反应单元中而制得的,其中氮化硼中基本不含具有催化活性的材料。反应单元的条件包括:压力在约50到100千巴之间,温度至少为约1800℃,位于BN相图的CBN稳定区域内。当HBN被研磨为尺寸较小的颗粒时,美国专利号4,289,503中公开了一种改良的工艺,其中在转化工艺之前,将硼的氧化物从HBN粉末的表面除去。美国专利号5,106,792中,由不同结构类型的GBN混合物制造CBN/CBN复合体。美国专利号4,673,414中,通过不使用催化剂的HP/HT工艺对多晶CBN进行再烧结。这些工艺的变体在本领域中也是已知的。上述引用文献中所公开的内容在此以引用的方式明确地包括在本文中。因此,用于制备CBN产品的HP/HT工艺以及用于制备CNB产品的原料可以在这些参考文献中找到。
根据本发明的一个方面,HP/HT工艺在下列的一种或多种情况下进行:不存在催化剂或存在催化剂。在一个实施方案中,所述工艺在没有氧含量的催化剂存在下进行。
“没有氧含量的催化剂”是指氧不是任何一种催化剂化合物的组分。但是,这并不排除那些只含有以杂质等形式存在的少量氧的催化剂,其中,以杂质等形式存在的少量氧不会给CBN产品的韧度带来负面影响。
虽然已经结合优选实施方案对本发明进行了描述,但本领域普通技术人员能够理解,在不脱离本发明范围的情况下,可以对本发明进行各种改变,还可以对本发明的技术特征进行等同替换。此外,在不脱离本发明基本范围的情况下,可以对本发明的教导进行很多改变,以适应某一特定情形或材料。因此,本文的意图是,本发明不应当被限制到作为实施本发明的最佳实施方式而公开的特定实施方案,本发明包括落入所附权利要求范围内的所有实施方案。在本申请中,所有的单位都采用公制,所有的量和百分比都是按重量计,除非有明确的说明。本文中所引用的全部参考文献在此也以引用的方式明确地包括在本文中。
在全部实施例中,“韧度指数”(toughness index,简称为TI)由如下方法定义:将2克拉的材料放置于有钢珠的容器(capsule)中,剧烈搅动,持续一段固定的时间,针对某一尺寸的某一起始重量,测定所产生的具有某一尺寸的碎片的重量。所使用的钢珠的尺寸以及搅动时间根据金刚石磨料颗粒的尺寸而变化。在一个实施例中,某一定量的材料已通过139μm网筛并且被保留在107μm网筛上,相当于尺寸为120/140,将所述某一定量的材料与直径为7.94mm的钢珠一起放置于2ml的容器中,将其置于振动测试仪上并研磨一段时间(30.0±0.3秒),然后利用90μm网筛进行筛选。保留在90μm网筛上的晶体的量被表达为基于起始晶体的重量百分比。
TTI的值是在以金刚石晶体进行热处理之后通过测定TI而获得的值。
实施例1
图1示出了针对多种CBN产品的晶体韧度相对于氧含量的图,其中,晶体韧度通过标准韧度测试而测得,氧含量通过LECO氧氮分析仪(Model TC-436,由Leco Corporation,3000 Lakeview Avenue,St.Joseph,MI提供)而测得。这些CBN产品是由催化剂系统制得的,所述催化剂系统主要含有碱金属和碱土金属氮化物、氨化物、氢氧化物和氢化物。相似地,图2示出了在经过800℃30分钟的热处理之后晶体韧度相对于氧含量的图。对CBN产品进行热处理的目的是模拟在轮形件加工(wheel manufacture)过程中CBN产品所经历的热曲线。图1和图2中的数据也列在下面的表1中。
                                    表1
    平均氧浓度(ppm)     标准差     线性回归赋予的权重     韧度指数(TI)     热韧度指数(TTI)
    1091     71     0.000198     53.1     54.6
    1072     72     0.000193     65.4     64.9
    996     37     0.00073     65.6     64.9
    856     25     0.0016     51.1     49.3
    1803     119     7.06 E-05     54.7     40.8
    1674     137     5.33 E-05     54.5     45.6
    1471     29     0.001189     53.1     64.8
    393     32     0.000977     67.4     64.8
    335     17     0.00346     72.8     68.1
    611     50     0.004     66.5     68
    1321     18     0.003086     56.5     54.4
    1261     80     0.000156     60.1     55.6
    1225     21     0.002268     62.2     67.2
    1189     65     0.000237     62.7     66
很明显,就所测试的多种材料而言,CBN晶体的平均韧度随着氧含量的减少而增加。对于经过热处理的材料而言,氧含量影响的强度要高约50%(图2中的斜率相对于图1中的斜率)。
实施例2
如上所述,图1和图2中所测试的材料代表了很多种合成化学过程。如果将测试限制在利用单一化学系统合成出来的材料上,那么氧含量对韧度的影响将会变得更为明显。因此,对利用氮化锂、氢化锂、氢氧化锂催化剂系统制造出来的CBN晶体进行了TI测试。这些测试的结果示于图3、图4以及下面的表2中。
                                   表2
    平均氧浓度(ppm)     标准差     线性回归赋予的权重     韧度指数(TI)     热韧度指数(TTI)
    1803     119     7.06 E-05     54.7     40.8
    1674     137     5.33 E-05     54.5     45.6
    1471     29     0.001189     53.1     52.9
    611     50     0.004     66.5     68
    1321     18     0.003086     56.5     54.4
    1261     80     0.00156     60.1     55.6
    1225     21     0.002268     62.2     67.2
    1189     65     0.000237     62.7     66
如图3和图4所示,在热处理之后,氧含量对韧度的影响特别大,这可以从曲线的斜率上看出来。由于在使用同样的催化剂系统合成具有不同氧含量的晶体时不受控制的变量更少,因此上述相关性改善了。
这些试验结果导致如下结论:不管合成CBN晶体时使用的是何种化学过程,氧含量降低使得CBN晶体的韧度改善。此类韧度更好的晶体将会在研磨或机加工中表现出更长的寿命,从而使得工具的寿命也延长了。工具的寿命长导致工具的磨损降低,并最终使工具的总成本降低。
实施例3
在该实施例中,变体I代表利用Li3N、LiOH、LiH催化剂系统制得的CBN晶体。变体II代表利用Li3N、LiH催化剂系统制得的CBN晶体,其中Li的总量与变体I的相同。对每个催化剂系统都进行了三次试验。所记录的数据列于下面的表3中。
                                            表3
  材料               氧(ppm)     氧平均值(ppm)     氧的标准差   TI   TTI   TI-TTI
  试验1   试验2   试验3
  变体I   1879   1863   1666     1803     119   54.7   40.8   13.9
  变体II   1305   1316   1341     1321     18   56.5   54.4   2.1
这些结果表明,所使用的含氧催化剂(LiH-Li3N-LiOH)对产物CBN晶体贡献了氧,与用只含LiH和Li3N作为催化剂系统所合成的产品相比,这使得此类晶体的TI和TTI降低。
实施例4
这几组试验中,变体I代表实施例2中的变体I。变体III代表同样的催化剂系统,但加入了按重量计0.12%的单质Si。变体IV代表同样的催化剂系统,但加入了按重量计0.2%的Si3N4(与变体III中的Si含量相同)。所记录的数据列于下面的表4中。
                                          表4
  材料               氧(ppm)     氧平均值(ppm)     氧的标准差   TI   TTI   TI-TTI
  试验1   试验2   试验3
  变体I   1879   1863   1666     1803     119   54.7   40.8   13.9
  变体III   1195   1250   1121     1189     65   62.7   66.0   -3.3
  变体IV   1236   1201   1239     1225     21   62.2   67.2   -5.0
这些结果表明,单质Si和氮化硅都是有效的氧吸收剂。值得注意的是,与室温下的韧度指数相比热韧度指数增加了。
实施例5
在这几组试验中评估了不同浓度氧吸收剂的影响。变体V中使用了LiNH2、LiH催化剂系统,其中加入了按重量计0.75%的Si3N4。变体VI中使用了同样的催化剂系统,但其中加入了按重量计1.8%的Si3N4。所记录的数据列于下面的表5中。
                                         表5
  材料             氧(ppm)     氧平均值(ppm)     氧的标准差   TI   TTI   TI-TTI
  试验1   试验2   试验3
  变体I   1879   1863   1666     1803     119   54.7   40.8   13.9
  变体V   392   362   426     393     32   67.4   64.8   2.6
  变体VI   343   315   346     335     17   72.8   68.1   4.7
这些结果也表明,由于添加了氧吸收剂而使得韧度改善。这些结果还证明,对于所测试的化学过程而言,需要较高的氧吸收剂含量以便将氧含量降低到预期的300ppm的水平左右。虽然本申请中所报道的数据并未达到氧水平300ppm的目标,但它却证明了对于任何给定的CBN化学过程而言,可以通过降低其氧含量而改善其韧度。它也证明了300ppm水平的目标可以达到。

Claims (18)

1.一种用于改善通过高温/高压(HP/HT)工艺制备的CBN产品的韧度的方法,包括如下步骤:
(a)形成氧吸收剂和用于制备CBN产品的原料所组成的掺合物;
(b)对所述掺合物进行CBN高温/高压(HP/HT)工艺处理以制备CBN产品;
所述掺合物中氧吸收剂的量足以改善所述CBN产品的韧度。
2.根据权利要求1的方法,其中所述氧吸收剂是Al、Si或Ti中的一种或多种。
3.根据权利要求1的方法,其中所述氧吸收剂的量按重量计在约0.005%到0.5%之间。
4.根据权利要求2的方法,其中所述氧吸收剂的量按重量计在约0.005%到0.5%之间。
5.根据权利要求2的方法,其中所述氧吸收剂的形式为单质金属、金属碳化物或金属氮化物中的一种或多种。
6.根据权利要求4的方法,其中所述氧吸收剂的形式为单质金属、金属碳化物或金属氮化物中的一种或多种。
7.根据权利要求1的方法,其中所述氧吸收剂的量足以将所述CBN产品的氧含量降低到低于约300ppm。
8.根据权利要求1的方法,其中所述HP/HT工艺是在下列的一种或多种情况下进行的:不存在催化剂或存在催化剂。
9.根据权利要求8的方法,其中所述HP/HT工艺是在没有氧含量的催化剂存在下进行的。
10.根据权利要求7的方法,其中所述HP/HT工艺是在没有氧含量的催化剂存在下进行的。
11.根据权利要求1的方法,其中所述氧吸收剂从所述CBN产品中被除去。
12.根据权利要求7的方法,其中所述氧吸收剂从所述CBN产品中被除去。
13.根据权利要求9的方法,其中所述氧吸收剂从所述CBN产品中被除去。
14.根据权利要求10的方法,其中所述氧吸收剂从所述CBN产品中被除去。
15.根据权利要求7的工艺的产品。
16.根据权利要求10的工艺的产品。
17.根据权利要求12的工艺的产品。
18.根据权利要求14的工艺的产品。
CNB028220056A 2001-11-02 2002-10-23 氧含量较低的立方氮化硼及其生产方法 Expired - Lifetime CN1253411C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/001,573 US7001577B2 (en) 2001-11-02 2001-11-02 Low oxygen cubic boron nitride and its production
US10/001,573 2001-11-02

Publications (2)

Publication Number Publication Date
CN1582265A true CN1582265A (zh) 2005-02-16
CN1253411C CN1253411C (zh) 2006-04-26

Family

ID=21696751

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028220056A Expired - Lifetime CN1253411C (zh) 2001-11-02 2002-10-23 氧含量较低的立方氮化硼及其生产方法

Country Status (7)

Country Link
US (1) US7001577B2 (zh)
JP (1) JP2005514300A (zh)
CN (1) CN1253411C (zh)
AU (1) AU2002359300A1 (zh)
DE (1) DE10297420T5 (zh)
TW (1) TW574173B (zh)
WO (1) WO2003040062A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068943A (zh) * 2010-12-31 2011-05-25 柳州市大荣非金属材料有限公司 片状褐色立方氮化硼单晶的合成方法
CN104321154A (zh) * 2012-05-31 2015-01-28 山特维克知识产权股份有限公司 制造cbn材料的方法
CN109293369A (zh) * 2018-10-24 2019-02-01 福州赛瑞特新材料技术开发有限公司 一种低氧含量的氮化硼陶瓷的制备方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227031B2 (en) * 2004-09-02 2012-07-24 Karlsruher Institut Fuer Technologie Method of producing a layered composite including cubic boron nitride
US8871024B2 (en) * 2008-06-05 2014-10-28 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US8097081B2 (en) 2008-06-05 2012-01-17 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090301388A1 (en) * 2008-06-05 2009-12-10 Soraa Inc. Capsule for high pressure processing and method of use for supercritical fluids
US9157167B1 (en) 2008-06-05 2015-10-13 Soraa, Inc. High pressure apparatus and method for nitride crystal growth
US20090320745A1 (en) * 2008-06-25 2009-12-31 Soraa, Inc. Heater device and method for high pressure processing of crystalline materials
WO2011044554A1 (en) 2009-10-09 2011-04-14 Soraa, Inc. Method for synthesis of high quality large area bulk gallium based crystals
US9404197B2 (en) 2008-07-07 2016-08-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
WO2010017148A1 (en) 2008-08-04 2010-02-11 Soraa, Inc. White light devices using non-polar or semipolar gallium containing materials and phosphors
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8979999B2 (en) * 2008-08-07 2015-03-17 Soraa, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
US8430958B2 (en) * 2008-08-07 2013-04-30 Soraa, Inc. Apparatus and method for seed crystal utilization in large-scale manufacturing of gallium nitride
US8021481B2 (en) 2008-08-07 2011-09-20 Soraa, Inc. Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
US8323405B2 (en) * 2008-08-07 2012-12-04 Soraa, Inc. Process and apparatus for growing a crystalline gallium-containing nitride using an azide mineralizer
US7976630B2 (en) 2008-09-11 2011-07-12 Soraa, Inc. Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture
US8354679B1 (en) 2008-10-02 2013-01-15 Soraa, Inc. Microcavity light emitting diode method of manufacture
US8455894B1 (en) 2008-10-17 2013-06-04 Soraa, Inc. Photonic-crystal light emitting diode and method of manufacture
US8461071B2 (en) * 2008-12-12 2013-06-11 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8987156B2 (en) 2008-12-12 2015-03-24 Soraa, Inc. Polycrystalline group III metal nitride with getter and method of making
US8878230B2 (en) * 2010-03-11 2014-11-04 Soraa, Inc. Semi-insulating group III metal nitride and method of manufacture
US9589792B2 (en) 2012-11-26 2017-03-07 Soraa, Inc. High quality group-III metal nitride crystals, methods of making, and methods of use
USRE47114E1 (en) 2008-12-12 2018-11-06 Slt Technologies, Inc. Polycrystalline group III metal nitride with getter and method of making
US9543392B1 (en) 2008-12-12 2017-01-10 Soraa, Inc. Transparent group III metal nitride and method of manufacture
US20100147210A1 (en) * 2008-12-12 2010-06-17 Soraa, Inc. high pressure apparatus and method for nitride crystal growth
US20110100291A1 (en) * 2009-01-29 2011-05-05 Soraa, Inc. Plant and method for large-scale ammonothermal manufacturing of gallium nitride boules
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8435347B2 (en) 2009-09-29 2013-05-07 Soraa, Inc. High pressure apparatus with stackable rings
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
US8729559B2 (en) 2010-10-13 2014-05-20 Soraa, Inc. Method of making bulk InGaN substrates and devices thereon
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8492185B1 (en) 2011-07-14 2013-07-23 Soraa, Inc. Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US9694158B2 (en) 2011-10-21 2017-07-04 Ahmad Mohamad Slim Torque for incrementally advancing a catheter during right heart catheterization
US10029955B1 (en) 2011-10-24 2018-07-24 Slt Technologies, Inc. Capsule for high pressure, high temperature processing of materials and methods of use
US8482104B2 (en) 2012-01-09 2013-07-09 Soraa, Inc. Method for growth of indium-containing nitride films
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US9275912B1 (en) 2012-08-30 2016-03-01 Soraa, Inc. Method for quantification of extended defects in gallium-containing nitride crystals
US9299555B1 (en) 2012-09-28 2016-03-29 Soraa, Inc. Ultrapure mineralizers and methods for nitride crystal growth
TWI632024B (zh) 2012-09-29 2018-08-11 戴蒙創新公司 在硏磨期間具有微破裂特徵之單晶cbn
US9650723B1 (en) 2013-04-11 2017-05-16 Soraa, Inc. Large area seed crystal for ammonothermal crystal growth and method of making
KR101500343B1 (ko) * 2014-06-17 2015-03-12 일진다이아몬드(주) 다결정 cbn 및 그 제조방법
US10174438B2 (en) 2017-03-30 2019-01-08 Slt Technologies, Inc. Apparatus for high pressure reaction
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11466384B2 (en) 2019-01-08 2022-10-11 Slt Technologies, Inc. Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US11721549B2 (en) 2020-02-11 2023-08-08 Slt Technologies, Inc. Large area group III nitride crystals and substrates, methods of making, and methods of use
WO2021162727A1 (en) 2020-02-11 2021-08-19 SLT Technologies, Inc Improved group iii nitride substrate, method of making, and method of use

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701826A (en) * 1971-01-28 1972-10-31 Gen Electric Cubic boron nitride preparation from lithium-boron-nitrogen mixtures
US3768972A (en) * 1971-05-10 1973-10-30 Westinghouse Electric Corp Method of producing cubic boron nitride with aluminum containing catalyst
US3918219A (en) * 1971-07-01 1975-11-11 Gen Electric Catalyst systems for synthesis of cubic boron nitride
SU674372A1 (ru) * 1977-07-05 1983-11-15 Всесоюзный Научно-Исследовательский Институт Абразивов И Шлифования Способ получени кубического нитрида бора
GB2058840B (en) * 1979-09-28 1983-07-13 Inst Khim Fiz An Sssr Production of polycrystalline cubic boron nitride
US4349517A (en) * 1980-10-21 1982-09-14 Lysanov Vladislav S Method of producing cubic boron nitride
KR920004181B1 (ko) * 1990-09-13 1992-05-30 한국과학기술연구원 입방정질화붕소의 제조방법
FR2686101A1 (fr) * 1992-01-14 1993-07-16 Centre Nat Rech Scient Procede de preparation de monocristaux de nitrure de bore cubique.
US5618509A (en) * 1993-07-09 1997-04-08 Showa Denko K.K. Method for producing cubic boron nitride
RU2098388C1 (ru) 1994-09-30 1997-12-10 Акционерное общество закрытого типа "Темп+" Способ получения изделий из сверхтвердых композиционных материалов
JP3471167B2 (ja) * 1996-05-21 2003-11-25 昭和電工株式会社 立方晶窒化ホウ素の製造方法
AUPP040297A0 (en) 1997-11-14 1997-12-11 Australian National University, The A cell for forming a composite hard material and method of forming composite hard materials
US6248303B1 (en) * 1997-11-25 2001-06-19 Showa Denko Kabushiki Kaisha Method of producing cubic boron nitride
US6331497B1 (en) 1999-07-27 2001-12-18 Smith International, Inc. Polycrystalline cubic boron nitride cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068943A (zh) * 2010-12-31 2011-05-25 柳州市大荣非金属材料有限公司 片状褐色立方氮化硼单晶的合成方法
CN104321154A (zh) * 2012-05-31 2015-01-28 山特维克知识产权股份有限公司 制造cbn材料的方法
CN109293369A (zh) * 2018-10-24 2019-02-01 福州赛瑞特新材料技术开发有限公司 一种低氧含量的氮化硼陶瓷的制备方法

Also Published As

Publication number Publication date
WO2003040062A3 (en) 2004-03-11
US7001577B2 (en) 2006-02-21
CN1253411C (zh) 2006-04-26
WO2003040062A2 (en) 2003-05-15
TW574173B (en) 2004-02-01
JP2005514300A (ja) 2005-05-19
AU2002359300A1 (en) 2003-05-19
DE10297420T5 (de) 2005-04-14
US20030099587A1 (en) 2003-05-29

Similar Documents

Publication Publication Date Title
CN1253411C (zh) 氧含量较低的立方氮化硼及其生产方法
JP4106574B2 (ja) 立方晶窒化ホウ素焼結体およびその製造方法
CA1260672A (en) Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same
JP5189504B2 (ja) 複合焼結体
JP4160898B2 (ja) 高強度高熱伝導性立方晶窒化硼素焼結体
JP2004160637A (ja) 化学反応性材料の機械加工に用いる焼結成形体
EP2177585B1 (en) Cubic boron nitride, method for producing cubic boron nitride, grinding wheel with cubic boron nitride, and sintered cubic boron nitride compact
JP2006347850A (ja) 立方晶窒化硼素焼結体およびその製造方法
KR20140108243A (ko) 다이아몬드 복합물 및 다이아몬드 복합물의 제조 방법
JP3908259B2 (ja) 立方晶窒化ホウ素合成用触媒
JP4106590B2 (ja) 立方晶窒化硼素焼結体およびその製造方法
JP3472630B2 (ja) 切削工具用立方晶窒化ほう素燒結体及び切削工具
CN114845974B (zh) 立方晶氮化硼烧结体及其制造方法
JP4223518B2 (ja) 立方晶窒化ホウ素砥粒および立方晶窒化ホウ素砥粒の製造方法
JP4110338B2 (ja) 立方晶窒化ホウ素焼結体
JP4110339B2 (ja) 立方晶窒化ホウ素焼結体
JPH09142932A (ja) ダイヤモンド焼結体及びその製造方法
CN111315710A (zh) 多晶立方氮化硼体
JPH11322310A (ja) 立方晶窒化ホウ素多結晶砥粒およびその製造方法
EP4039766A1 (en) Easily crushable diamond abrasive grains and method for manufacturing same
JPS61205664A (ja) 導電性焼結ダイヤモンドの製造方法
JPH0563539B2 (zh)
JPH07291735A (ja) 多結晶型立方晶窒化ほう素焼結体及びその用途
JPS6136172A (ja) 導電性ダイヤモンド焼結体
JPS62108714A (ja) 立方晶窒化ほう素の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060426

CX01 Expiry of patent term