CN1527858A - 高度氟化离子交换聚合物的溶解方法 - Google Patents

高度氟化离子交换聚合物的溶解方法 Download PDF

Info

Publication number
CN1527858A
CN1527858A CNA028140435A CN02814043A CN1527858A CN 1527858 A CN1527858 A CN 1527858A CN A028140435 A CNA028140435 A CN A028140435A CN 02814043 A CN02814043 A CN 02814043A CN 1527858 A CN1527858 A CN 1527858A
Authority
CN
China
Prior art keywords
ion
water
tetrahydrofuran
polymkeric substance
fluid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028140435A
Other languages
English (en)
Other versions
CN100523062C (zh
Inventor
Q・孙
Q·孙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1527858A publication Critical patent/CN1527858A/zh
Application granted granted Critical
Publication of CN100523062C publication Critical patent/CN100523062C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

高度氟化的离子交换聚合物在含水四氢呋喃中在比在其它溶剂中低的压力和温度下实现了溶解,在该过程中几乎没有或没有副产物生成。

Description

高度氟化离子交换聚合物的溶解方法
发明领域
本发明涉及一种高度氟化离子交换聚合物的液态组合物。
背景技术
高度氟化离子交换聚合物,如美国专利No.3282875披露的磺酰类聚合物,应用于电化学电池中作为隔板的膜。该类聚合物还被用作酸催化剂。这些应用基本上采用熔融制造即熔融加工的形式,例如薄膜和颗粒。由于离子交换聚合物难以以离子形式熔融加工,因此当聚合物处在熔融工艺前体形式时进行加工,然后将加工了的制品水解以使聚合物转化为离子(也称作离子交换)形式。以后,发现了制备高度氟化的离子交换聚合物的液态组合物的方法,参见,US4433082以及US6150426。通过薄膜浇铸工艺,能够由这类液态组合物来制得离子交换薄膜。在惰性基质上涂布液态组合物能够制造催化剂。同时还发现液态组合物能用于制造燃料电池的电极。
溶解上述离子形式的聚合物需要足以克服使聚合物以固态保持在一起的力的溶剂和温度。这些力包括离子性基团相互间的极性吸引力。极性溶剂,如水和乙醇,能够使聚合物的离子基团溶剂化,减弱其相互作用,促进溶解。加热也能进一步减弱分子间的吸引力。
该液态组合物的制备通常都通过将以磺酸形式存在的高度氟化离子交换聚合物加入到水、醇或者含水的醇中,然后加热组合使聚合物溶解。所需温度通常为220℃或更高。这种温度高于溶剂在常压下的沸点,因此溶解在高压釜中进行。用水,则需要更高的温度。醇是较好的溶剂,能使用较低的温度。然而,通过乙醇与强酸聚合物的反应生成副产物如醚和烯烃促使溶解过程中产生压力增大。水-醇体系,即含水的醇,在比单独用水所需的温度低的温度下是有效的,也不产生单独用醇所产生的那么高的压力。然而,尽管副产物在数量上减少了,但是它们仍然形成,加到反应压力中,需要从液态组合物中分离出并排除,也导致了溶剂的损失。因此,需要一种新的,在较低的温度下是有效的,并且产生更少的副产物的溶剂。
发明概述
一种制备高度氟化离子交换聚合物的液态组合物的方法,包含
a)使所述聚合物与含水四氢呋喃接触,和
b)加热所述的与含水四氢呋喃接触的聚合物,形成所述液态组合物。
本发明进一步提供了一种在含水的四氢呋喃中的高度氟化的离子交换聚合物的液态组合物。
发明详述
本发明中所使用的聚合物为带有磺化官能团的高度氟化离子交换聚合物。“高度氟化”指的是聚合物中的卤素原子和氢原子总数的至少约50%为氟原子,优选为至少约75%,更优选为至少90%左右。最优选地,聚合物为全氟化的。术语“磺化官能团”是指磺酸基团或者磺酸盐基团,优选碱金属盐或铵盐。磺化官能团由式-SO3X表示,其中X为阳离子,也称为抗衡离子。X可以是H,Li,Na,K或者N(R1)(R2)(R3)(R4),其中R1,R2,R3,R4为相同或不同,优选为H,CH3或者C2H5。更优选地,X为H,在这种情况下该聚合物被说成是“酸式”。X也可以是多价的,比如离子Ca++和Al+++。本领域技术人员能够清楚,在多价的抗衡离子情况下,一般由Mn+来表示,每个抗衡离子的磺化官能团的数目等于化合价“n”。
优选地,该聚合物包含带有连接于主链的重复支链的聚合物主链,支链上带有阳离子交换基团。聚合物包括均聚物或两种或多种单体的共聚物。通常共聚物由无官能团的单体和带有阳离子交换基团的或者它的前体的第二单体,比如氟化磺酰基(-SO2F),形成,该氟化磺酰基随后能被水解为磺化官能团。比如,能够使用第一氟化乙烯基单体和带有氟化磺酰基(-SO2F)的第二氟化乙烯基单体的共聚物。可能的第一单体包括四氟乙烯(TFE),六氟丙烯,氟乙烯,1,1-二氟乙烯,三氟乙烯,三氟氯乙烯,全氟(烷基乙烯基醚)及其组合。TFE为优选的第一单体。
可能的第二单体包括带有磺化官能团或能够提供聚合物中所需支链的前体基团的氟化乙烯醚。如果需要,还可以在这些聚合物中加入另一种单体,包括乙烯、丙烯以及R-CH=CH2,其中R为含有1到10个碳原子的全氟化烷基。这些聚合物可以属本文称作的无规共聚物,它是在下述条件下进行聚合制造的共聚物,即共聚单体相对浓度尽可能保持恒定,这样单体单元按其相对浓度和相对反应速度沿聚合物链进行分布。在聚合过程中通过改变单体的相对浓度所制备的较少无规的无规共聚物也能被应用。称为嵌段共聚物的聚合物,如欧洲专利申请No.1026152A1所披露者,同样也可以应用。
用于本发明的优选聚合物包括高度氟化的,最优选为全氟化的碳主链以及由下式表示的支链。
           -(O-CF2CFRf)a-O-CF2CFR’fSO3X其中Rf与R’f独立地选自F,Cl或者含有1到10个碳原子的全氟化烷基,a=0,1或2,X为H,Li,Na,K或者N(R1)(R2)(R3)(R4),其中R1,R2,R3,R4为相同或不同,优选为H,CH3或C2H5。更优选,X为H。如上所述,X可以是多价的。
优选的聚合物包含有,如美国专利US3282875、US4358545和US4940525所披露的聚合物。优选聚合物的例子包含有全氟化的碳主链、以及由下式表示的支链
              -O-CF2CF(CF3)-O-CF2CF2SO3X其中X定义如上。这类聚合物在US3282875中有描述,能够通过下述方法制备,使四氟乙烯(TFE)和全氟化乙烯基醚CF2=CF-O-CF2CF(CF3)-O-CF2CF2SO2F,全氟(3,6-二氧杂-4-甲基-7-辛烯磺酰氟)(PDMOF)共聚随后通过磺酰氟基团的水解转化成磺化基团,以及必需的离子交换使它们转化为所要求的离子形态。优选的该类型的聚合物的一个例子是US4358545、US4940525所披露的聚合物,其支链是-O-CF2CF2SO3X,其中X的定义如上。这种聚合物能够通过四氟乙烯(TFE)和全氟化乙烯基醚CF2=CF-O-CF2CF2SO2F,全氟(3-氧杂-4-戊烯磺酰氟)(PDPE),共聚而成,随后进行水解以及必需的进一步的离子交换。
本发明聚合物优选具有低于约33的离子交换率。在本发明中,“离子交换率”或者“IXR”的定义是相对于阳离子交换基团的聚合物主链上的碳原子数。在低于约33的范围之内,IXR能够随着具体的应用要求而变化。对于大多数的聚合物而言,优选IXR为约3-约33,更优选为约8-约23。
聚合物的阳离子交换能力通常用当量(equivalent weight,EW)来表示。对本发明来说,当量(EW)的定义为中和一当量的氢氧化钠所需要的酸式聚合物的重量。对于具有全氟碳主链和支链为-O-CF2-CF(CF3)-O-CF2-CF2-SO3H(或者其盐)的磺化聚合物,当IXR约为8-23时,其当量范围约为750EW-1500EW。该聚合物的IXR与当量有下式的关系:50IXR+344=EW。对于美国专利US4358545、US4940525所披露的磺化官能团聚合物来说,当IXR范围相同时,例如支链为-O-CF2CF2SO3H(或其盐)的聚合物,其当量稍低,原因在于含有阳离子交换基团的单体单元具有较低的分子量。对于优选的IXR范围约8-约23,相应的当量范围约为575EW-1325EW。该聚合物的IXR与其当量的关系可由下式表示:50IXR+178=EW。
本工艺中所用的温度范围为约150℃-约300℃。已经发现,当采用含水的四氢呋喃时,高度氟化离子交换聚合物的溶解能够在较用已知溶剂时更低的温度和压力下实现。制备该液态组合物的技术人员会认识到,聚合物的IXR影响所需的温度。IXR越高,聚合物中的离子交换基团的含量就越低,以及因四氟乙烯的含量较高,因此导致了结晶度就越大。另外的因素也是一样,溶解具有较高IXR的聚合物需要较高的温度。对于IXR=14.3的酸式聚合物,采用含水的THF为溶剂时,温度为160℃-260℃是有效的,优选为180℃-240℃,更优选为190℃-220℃。
水与THF的组合,就是本文通常用的术语“含水THF”或者“含水四氢呋喃”所指的含义,其中水与四氢呋喃的重量比例约为1∶99至99∶1。为了在最低温度和压力下快速进行溶解,其水与四氢呋喃的比例范围优选约为10∶90至90∶10,更优选约为20∶80至80∶20,还更优选的范围约为40∶60至60∶40,最优选约为45∶55至55∶45。然而,已经发现,如果溶剂中四氢呋喃(THF)<50wt%,该液态组合物保持在可浇铸的状态时,固体含量能够更高。如果得到固态物质含量高的液态组合物的要求优先于维持较低的溶解温度和压力的要求,那么优选水与四氢呋喃的比例范围约为50∶50至99∶1,更优选约为50∶50至90∶10,还更优选约为50∶50至75∶25,最优选约为50∶50至60∶40。
酸式及钠离子和钾离子形式以及其混合形式,是制备本发明溶液用的高度氟化离子交换聚合物的优选形式。根据本发明技术,通过与制备酸式聚合物大体相同的方法,能够制备钠和钾以及其他离子形式的聚合物。酸式是制备溶液时所用聚合物的最优选形式,因为在绝大多数应用中,聚合物在所制备的溶液中呈酸式是可心的。由酸式开始反应可以避免接下来的酸交换步骤。当使用含有钠和钾形式代替酸式时,需要稍高的温度。
本发明另外一个更意想不到的方面在于,在为使聚合物溶解在含水THF中进行加热之后,发现只有少许THF与该酸式聚合物的反应产物产生,如,醚、烯烃或者别的有机产物,或者根本就没有。由于不存在这些挥发性副产物,在溶解过程中产生的压力增大要小得多,这就会降低制备聚合物液态组合物所用装置的成本,也使反应更加容易进行。由于仅存在少许或者不存在副产物,所得的聚合物液态组合物优选为基本上不含有副产物。“基本上不含有”是指该聚合物液态组合物含有低于约3wt%的除了THF和与聚合物有关的有机物以外的有机产物,更优选为含有低于1wt%的这种有机产物。因而所得的聚合物液态组合物就无需进一步的加工处理以除去副产物杂质。因此,基本上所有的溶剂都能够被回收重复利用。由于THF与水形成了共沸物(沸点为64℃,在大气压下,THF与水的重量比为95∶5),因此有利于THF的回收。
在本发明的液态组合物中固态物质的含量优选为约1-约15wt%,更优选为约5-约12wt%,最优选为约6-约10wt%。当固态物质含量增大时,粘度也增大直至液态组合物不可浇铸,呈现凝胶状态。实际的固态物质含量范围取决于能够允许的粘度。温度也对其有所影响,因为如果能够将该液态组合物保持在较高的温度,或者如果能够当它刚制备好就加以应用,含有高含量固态物质的液态组合物也是可以接受的。
本发明的液态组合物能在任何能够承受在为实现溶解而使用的温度下所发生的压力的容器中制备。该容器的结构材料应该耐腐蚀,如镍合金,如Hastelloy-C。如果盛有聚合物和含水的THF的容器被简单的加热足够长的时间,溶解就会发生。但是,优选进行搅拌以减少使聚合物溶解在含水THF中所需要的时间。搅拌可以通过使容器本身运动来完成,比如通过振动或者摇动。如果不是这种搅拌形式,优选地,采用带有搅拌器的容器来搅拌或者混合聚合物和含水的THF,可以使容器内容物被单独的搅拌。
实施例
所用的全氟化离子交换聚合物为由杜邦公司(Wilmington,Delaware USA)制造的Nafion全氟化磺酸聚合物。该聚合物的当量重量为1060(IXR=14.3)。所述聚合物可得自Aldrich Chemical Co.Milwaukee Wisconsin USA。所用的溶剂,THF和甲醇,为试剂级别。所用的水为蒸馏水。
将Nafion树脂溶解在THF/水溶液中所用的反应釜为容积为300ml的垂直搅拌的高压釜,由Autoclave Engineers(EriePennsylvania USA)制造。反应釜由Hastelloy-C合金制成。它能够在最高3000psi(20MPa)的压力下操作。通常地,将高压釜从室温加热至180℃需要大约30分钟的时间。
实施例1
将16g全氟化离子交换聚合物颗粒(约圆柱状,1mm×1mm),92g蒸馏水,92g试剂级别THF加入300ml高压釜中。所装物料含有8wt%的聚合物。在搅拌速度设定为1000rpm的搅拌下,高压釜在30分钟内被加热至190℃。高压釜内的压力为310psi(2.1MPa)。加热搅拌四小时后,冷却高压釜至室温。高压釜内压力为0(表压),表示没有产生诸如醚或烯烃之类的副产物,它们的存在将施加除THF水溶液在室温时的蒸气压之外的蒸气压。当排出反应产物时,高压釜中仅有液态物质存在,即均匀的全氟化离子交换聚合物的液态组合物。不存在第二层液体,进一步证明了没有副产物醚生成。没有固态物质存在,说明了聚合物颗粒的溶解是彻底的。
实施例2
将16g全氟化离子交换聚合物,92g蒸馏水,92g THF加入300ml高压釜中。在搅拌速度为1500rpm的搅拌下,所得混合物在35分钟内被加热到200℃。在200℃时,高压釜内的压力为370psi(2.6MPa)。再继续加热搅拌四小时。冷却至室温后,排空高压釜,发现均匀的全氟离子交换聚合物的液态组合物存在。
对比例
为了对照,根据US4433082实施例11的概述制备全氟化离子交换聚合物的液态组合物。将17g全氟化离子交换聚合物、23g甲醇、50g正丙醇以及100g蒸馏水加入到高压高压釜中。机械搅拌3小时,并且加热至230℃。高压釜压力为1000-1100psi(6.9-7.6MPa)。冷却到室温后,仍有压力残留,排空。所得的液态产物分为两层。上层主要由醚组成,约占液态产物总体积的10%。该实例表明,与本发明的工艺相比,使用含水的醇以实现全氟化离子交换聚合物的溶解会产生3-4倍的较高压力,以及相当大体积的溶剂副产物。

Claims (22)

1.一种制备高度氟化离子交换聚合物液态组合物的方法,包含:
a)使所述聚合物与含水四氢呋喃接触,和
b)加热所述与含水四氢呋喃接触的聚合物,形成所述液态组合物。
2.根据权利要求1的方法,其中,所述的含水四氢呋喃由水和四氢呋喃组成,其中水和四氢呋喃的重量比约为10∶90至90∶10。
3.根据权利要求1的方法,其中,所述的含水四氢呋喃含有水和四氢呋喃,其中水和四氢呋喃的重量比约为45∶55至55∶45。
4.根据权利要求1的方法,其中,所述的含水四氢呋喃中含有少于约50wt%的四氢呋喃。
5.根据权利要求1的方法,其中,所述的聚合物占聚合物和水以及四氢呋喃总重量的约1-15wt%。
6.根据权利要求1的方法,其中,加热所述与含水四氢呋喃接触的聚合物至约150℃-约300℃。
7.根据权利要求1的方法,其中,所述的与含水四氢呋喃接触的聚合物在高压釜中被加热。
8.根据权利要求1的方法,其中,所述的高度氟化离子交换聚合物呈酸式、钠离子形式或钾离子形式或其组合的形式。
9.根据权利要求1的方法,其中,所述的高度氟化离子交换聚合物呈酸式。
10.根据权利要求1的方法,其中,所述的离子交换聚合物是全氟化的。
11.根据权利要求1的方法,其中,所述的离子交换聚合物的离子交换率约为3-33。
12.根据权利要求1的方法,其中,所述的离子交换聚合物的离子交换率约为8-23。
13.根据权利要求1的方法,其中,所述的组合物基本上不含有在制备该组合物的过程中溶剂反应所生成的产物。
14.一种高度氟化离子交换聚合物在含水四氢呋喃中的液态组合物。
15.根据权利要求14的液态组合物,其中所述的含水四氢呋喃中水与四氢呋喃的重量比约为10∶90至90∶10。
16.根据权利要求14的液态组合物,其中所述的含水四氢呋喃中水与四氢呋喃的重量比约为45∶55至55∶45。
17.根据权利要求14的液态组合物,其中,所述的高度氟化离子交换聚合物呈酸式。
18.根据权利要求14的液态组合物,其中,所述的高度氟化离子交换聚合物占该聚合物与含水四氢呋喃总重量的约1-约15wt%。
19.根据权利要求14的液态组合物,其中,所述的离子交换聚合物为全氟化的。
20.根据权利要求14的液态组合物,其中,所述的离子交换聚合物的离子交换率约为3-33。
21.根据权利要求14的液态组合物,其中,所述的离子交换聚合物的离子交换率约为8-23。
22.根据权利要求14的液态组合物,其中,所述的组合物基本上不含有在制备该组合物的过程中溶剂反应所生成的产物。
CNB028140435A 2001-07-13 2002-07-12 高度氟化离子交换聚合物的溶解方法 Expired - Fee Related CN100523062C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30512901P 2001-07-13 2001-07-13
US60/305,129 2001-07-13

Publications (2)

Publication Number Publication Date
CN1527858A true CN1527858A (zh) 2004-09-08
CN100523062C CN100523062C (zh) 2009-08-05

Family

ID=23179462

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028140435A Expired - Fee Related CN100523062C (zh) 2001-07-13 2002-07-12 高度氟化离子交换聚合物的溶解方法

Country Status (9)

Country Link
US (1) US20030013787A1 (zh)
EP (1) EP1451245B1 (zh)
JP (1) JP4223393B2 (zh)
CN (1) CN100523062C (zh)
AU (1) AU2002320475B2 (zh)
CA (1) CA2449473C (zh)
DE (1) DE60214418T2 (zh)
TW (1) TW593461B (zh)
WO (1) WO2003006537A1 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131116A1 (en) * 2002-07-12 2005-06-16 Qun Sun Process for dissolution of highly fluorinated ion-exchange polymers
US7317047B2 (en) 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7371336B2 (en) 2002-09-24 2008-05-13 E.I. Du Pont Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
EP1549696A1 (en) 2002-09-24 2005-07-06 E.I. Du Pont De Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
AU2003279011A1 (en) 2002-09-24 2004-04-19 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
ATE404609T1 (de) 2002-09-24 2008-08-15 Du Pont Wasserdispergierbare polythiophene hergestellt unter verwendung von kolloiden auf basis von polymersäuren
US7390438B2 (en) 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
EP1706444B1 (en) * 2003-11-25 2008-01-02 INVISTA Technologies S.à.r.l. Process for making a solution of perfluorosulfonated ion exchange polymers
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US7338620B2 (en) 2004-03-17 2008-03-04 E.I. Du Pont De Nemours And Company Water dispersible polydioxythiophenes with polymeric acid colloids and a water-miscible organic liquid
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
US7446655B2 (en) * 2004-06-18 2008-11-04 Qualcomm Incorporated Tracking lost and stolen mobile devices using location technologies and equipment identifiers
US7850871B2 (en) 2004-10-13 2010-12-14 Air Products And Chemicals, Inc. Resistivity stable electrically conductive films formed from polythiophenes
US7569158B2 (en) 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
US7727421B2 (en) 2005-06-27 2010-06-01 E. I. Du Pont De Nemours And Company Dupont Displays Inc Electrically conductive polymer compositions
EP1896515A4 (en) 2005-06-27 2010-03-10 Du Pont ELECTRICALLY CONDUCTIVE POLYMER COMPOSITIONS
JP5489458B2 (ja) 2005-06-28 2014-05-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高仕事関数の透明コンダクタ
CN101595532B (zh) 2005-06-28 2013-07-31 E.I.内穆尔杜邦公司 缓冲组合物
JP4708133B2 (ja) 2005-09-14 2011-06-22 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜及びその製造方法
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
WO2007143124A1 (en) 2006-06-01 2007-12-13 E. I. Du Pont De Nemours And Company Conductive polymer compositions
US7911134B2 (en) 2006-06-05 2011-03-22 E. I. Du Pont De Nemours And Company Process for forming an organic light-emitting diode and devices made by the process
US8057708B2 (en) 2006-06-30 2011-11-15 E. I. Du Pont De Nemours And Company Stabilized compositions of conductive polymers and partially fluorinated acid polymers
US8153029B2 (en) 2006-12-28 2012-04-10 E.I. Du Pont De Nemours And Company Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
US20080251768A1 (en) 2007-04-13 2008-10-16 Che-Hsiung Hsu Electrically conductive polymer compositions
US8241526B2 (en) 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
WO2009055628A1 (en) 2007-10-26 2009-04-30 E. I. Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
US8216685B2 (en) 2008-05-16 2012-07-10 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8268195B2 (en) 2008-09-29 2012-09-18 Air Products And Chemicals, Inc. Electrically conductive films formed from dispersions comprising polythiophenes and ether containing polymers
EP2370481A4 (en) 2008-12-09 2014-03-26 Du Pont POLYMER COMPOSITIONS CONDUCTING ELECTRICITY
KR101517651B1 (ko) 2008-12-09 2015-05-04 이 아이 듀폰 디 네모아 앤드 캄파니 전기 전도성 중합체 조성물
US8461758B2 (en) 2008-12-19 2013-06-11 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8766239B2 (en) 2008-12-27 2014-07-01 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8785913B2 (en) 2008-12-27 2014-07-22 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
TW201100480A (en) 2009-03-12 2011-01-01 Du Pont Electrically conductive polymer compositions for coating applications
JP5587980B2 (ja) 2009-04-21 2014-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物およびそれから作製されたフィルム
EP2421919A4 (en) 2009-04-24 2014-01-22 Du Pont ELECTRICALLY CONDUCTIVE POLYMER COMPOSITIONS AND FILMS MANUFACTURED THEREFROM
US20100270055A1 (en) 2009-04-27 2010-10-28 Air Products And Chemicals, Inc. Electrically Conductive Films Formed From Dispersions Comprising Conductive Polymers and Polyurethanes
US8470205B2 (en) 2009-06-05 2013-06-25 Air Products And Chemicals, Inc. Electrically conductive films formed from dispersions comprising conductive polymers and hyperbranched polymers
TW201104357A (en) 2009-07-27 2011-02-01 Du Pont Process and materials for making contained layers and devices made with same
US20150072192A1 (en) * 2011-04-29 2015-03-12 Homeland Technologies Research, Llc Spiral-wound convection battery and methods of operation
WO2016085902A1 (en) 2014-11-25 2016-06-02 E. I. Du Pont De Nemours And Company Low surface energy photoresist composition and process
JP6843889B2 (ja) 2016-05-27 2021-03-17 エルジー・ケム・リミテッド 電気導電性ポリマー組成物におけるジヘテロアミン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130491A (en) * 1976-04-27 1977-11-01 Toyo Soda Mfg Co Ltd Improvement of current efficiency of cation exchange membranes
US4433082A (en) * 1981-05-01 1984-02-21 E. I. Du Pont De Nemours And Company Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof
DE3631561A1 (de) * 1986-09-17 1988-03-31 Hoechst Ag Loesungen von fluorpolymeren und deren verwendung
JPH05262902A (ja) * 1992-03-23 1993-10-12 Tanaka Kikinzoku Kogyo Kk イオン交換膜の製造方法
US5916837A (en) * 1994-01-12 1999-06-29 E.I. Du Pont De Nemours And Company Porous microcomposite of metal cation exchanged perfluorinated ion-exchanged polymer and network of metal oxide, silica or metal oxide and silica
US5824622A (en) * 1994-01-12 1998-10-20 E. I. Du Pont De Nemours And Company Porous microcomposite of perfluorinated ion-exchange polymer and metal oxide, a network of silica, or a network of metal oxide and silica derived via a sol-gel process
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
EP0951591B1 (en) * 1997-01-09 2001-12-05 E.I. Du Pont De Nemours And Company Fibers flash-spun from fully halogenated polymers

Also Published As

Publication number Publication date
CA2449473A1 (en) 2003-01-23
CN100523062C (zh) 2009-08-05
JP4223393B2 (ja) 2009-02-12
AU2002320475B2 (en) 2008-04-03
DE60214418D1 (de) 2006-10-12
JP2004534898A (ja) 2004-11-18
US20030013787A1 (en) 2003-01-16
CA2449473C (en) 2010-06-08
WO2003006537A1 (en) 2003-01-23
EP1451245A1 (en) 2004-09-01
DE60214418T2 (de) 2007-05-03
EP1451245B1 (en) 2006-08-30
TW593461B (en) 2004-06-21

Similar Documents

Publication Publication Date Title
CN100523062C (zh) 高度氟化离子交换聚合物的溶解方法
AU2002320475A1 (en) Process for dissolution of highly fluorinated ion-exchange polymers
CA2490136C (en) Fluoropolymer dispersion and process for producing fluoropolymer dispersion
EP1091435B1 (en) Material for solid polyelectrolyte suitable for use in fuel cell
US6602968B1 (en) Free radical polymerization method for fluorinated copolymers
EP1126537A1 (en) Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
CN100410299C (zh) 增强的聚合物电解质膜
KR102333840B1 (ko) 전해질 재료, 그 제조 방법 및 그 사용
KR102465033B1 (ko) 전해질 재료, 액상 조성물 및 고체 고분자형 연료 전지용 막 전극 접합체
Thomas et al. Synthesis of 3, 6-dioxa-Δ7-4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide: bis [(perfluoroalkyl) sulfonyl] superacid monomer and polymer
CN1882642A (zh) 通过腈三聚合交联的聚合物电解质膜
EP2493940B1 (en) Process for the isolation of sulfonyl fluoride polymers and polymers obtained therefrom
CN101460549A (zh) 制备含氟聚合物分散体和膜的方法
EP1602687B1 (en) Liquid fluoropolymer composition, process for producing organosol, film, and fuel cell
KR20020091827A (ko) 이온 교환 중합체 분산액 및 이의 제조 방법
JP4792640B2 (ja) ブロックポリマー、重合体の製造方法及びブロックポリマーを含む液状組成物
JP2002216804A (ja) 固体高分子型燃料電池
US8604090B2 (en) Process for dissolution of highly fluorinated ion-exchange polymers
CN100336860C (zh) 纳米乳化含氟离子交换树脂制备方法和应用
EP1706444B1 (en) Process for making a solution of perfluorosulfonated ion exchange polymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090805

Termination date: 20160712

CF01 Termination of patent right due to non-payment of annual fee