CN1489135A - 电流垂直于膜面结构的磁阻元件 - Google Patents

电流垂直于膜面结构的磁阻元件 Download PDF

Info

Publication number
CN1489135A
CN1489135A CNA031591353A CN03159135A CN1489135A CN 1489135 A CN1489135 A CN 1489135A CN A031591353 A CNA031591353 A CN A031591353A CN 03159135 A CN03159135 A CN 03159135A CN 1489135 A CN1489135 A CN 1489135A
Authority
CN
China
Prior art keywords
magnetic
layer
spin valve
film
valve film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031591353A
Other languages
English (en)
Other versions
CN1228764C (zh
Inventor
F
菅原貴彥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1489135A publication Critical patent/CN1489135A/zh
Application granted granted Critical
Publication of CN1228764C publication Critical patent/CN1228764C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

电流垂直于膜面(CPP)结构的磁阻(MR)元件,包括由颗粒膜制成的被钉扎磁性层。颗粒膜含有导电磁晶粒和介电材料。介电材料用于使被钉扎磁性层中的检测电流路径变薄。此外,检测电流集中于磁晶粒。可以得到检测电流的电压的较大变化。由此可以增强CPP结构的MR元件的输出。

Description

电流垂直于膜面结构的磁阻元件
技术领域
本发明涉及利用磁阻(MR)膜比如所谓的自旋阀(spinvalve)膜的磁阻(MR)元件。具体地,本发明涉及电流垂直于膜面(CPP)结构的MR元件,允许检测电流具有垂直于接纳MR膜的基底表面的分量。
背景技术
常规的CPP结构的MR元件经常包括所谓的自旋阀膜。自旋阀膜包括自由(free)磁性层和被固定(钉扎,pinned)磁性层。非磁性中间层介于自由和被固定(钉扎)磁性层之间。非磁性中间层用于将自由磁性层的磁化与被钉扎磁性层隔开。响应于作用在自由磁化层上的磁场的极性的变化,自由磁性层中的磁化强度可以旋转。磁化强度的旋转使自旋阀膜的电阻改变。这种变化被引入到流过自旋阀膜的检测电流的电压中。
一般来说,自旋阀膜由导电材料制成。检测电流可以在自旋阀膜的整个剖面上流动。除非自旋阀膜进一步变小,否则不可能减小用于检测电流的路径剖面。如果用于检测电流的路径变薄,那么可以在检测电流中检测出较大的电压变化。从而可以增强CPP结构的MR元件的输出。
发明内容
因此本发明的一个目的是提供一种CPP结构的MR元件,能够增强输出而不过度减小。
根据本发明,提供一种电流垂直于膜面(CPP)结构的磁阻(MR)元件,包括:自由磁性层;被钉扎磁性层;以及介于自由和被钉扎磁性层之间的导电非磁性中间层,其中自由和被钉扎磁性层中的至少一个由包括导电磁性材料和介电材料的颗粒结构膜(granularfilm)制成。
当CPP结构的MR元件接收来自外部的磁场时,响应于磁极性的反转,自由磁性层的磁化可以旋转。自由磁性层中磁化的旋转引起自由和被钉扎磁性层中以及非磁性中间层中电阻的较大变化。当电流在所谓的垂直方向流过自由和被钉扎磁性层以及非磁性中间层时,响应于磁阻变化,在电流中出现如电压等任何参数值的变化。特别地,介电材料用于使被钉扎磁性层中的电流路径变薄。此外,电流的流动集中在导电磁性材料。在检测电流的电压中可以得到较大的变化。由此可以增强CPP结构的MR元件的输出。
这里,导电磁性材料优选含有由上界面或接合面渗透穿过颗粒膜到达下界面或接合面的晶粒。颗粒膜能够使导电磁性材料可靠地接触与上接合面和下接合面接触的导电材料层。由此导电磁性材料可以可靠地流动电流。CPP结构的MR元件的输出可以可靠地增强。
晶粒应该包括钴和铁原子中的至少一种。晶粒可以具有硬磁性或软磁性。介电材料可以包括氧化物、氟化物、碳化物以及氮化物中的至少一种。
附图说明
从下面结合附图对优选实施例的说明中,本发明的以上和其它目的、特点和优点将变得显而易见,其中:
图1的俯视图示意性地示出了硬盘驱动器(HDD)的结构;
图2示意性地示出了根据一个具体实施例的浮动磁头浮动块结构的放大立体示意图;
图3的正视图示意性地示出了在浮动磁头浮动块的空气支承面观察到的读出/写入电磁换能器;
图4示意性地示出了根据本发明的第一实施例电流垂直于膜面(CPP)结构的磁阻(MR)元件的结构的放大前视图;
图5示出了颗粒膜结构的自旋阀膜的部分放大剖面图;以及
图6示意性地示出了根据本发明的第二实施例CPP结构的MR元件的结构的放大前视图。
具体实施方式
图1示意性地示出了作为磁记录装置或存储器系统的一个例子的硬盘驱动器(HDD)11的内部结构。HDD 11包括限定了例如扁平平行六面体的内部空间的盒形主外壳12。至少一个磁记录盘13装在主外壳12的内部空间内。磁记录盘13安装在主轴电动机14的驱动轴上。主轴电动机14能驱动磁记录盘13以例如7,200rpm或10,000rpm的较高旋转速度旋转。未示出的盖连接到主外壳12以限定出主外壳12和它自身之间的封闭内部空间。
磁头致动器(head actuator)15也装到主外壳12的内部空间中。磁头致动器15包括支撑在用于旋转的垂直支撑轴16的致动器模块17。刚性的致动器臂限定在致动器模块17中。致动器臂18设计为从垂直支撑轴16在水平方向上延伸。致动器臂18分别与一个或多个磁记录盘的正面和背面相关联。致动器模块17可由铝制成。可以使用模塑工艺形成致动器模块17。
弹性磁头悬臂19固定到致动器臂18的顶端。各磁头悬臂19设计为从致动器臂18的对应顶端朝前延伸。现已公知,浮动磁头浮动块21支撑在各磁头悬臂19的前端。浮动磁头浮动块21与一个或多个磁记录盘13的表面相对。
磁头悬臂19用于将浮动磁头浮动块21压向磁记录盘13的表面。当磁记录盘13旋转时,浮动磁头浮动块21能接收沿旋转的磁记录盘13产生的空气流。空气流用于在浮动磁头浮动块21上产生浮力。由此,在磁记录盘13的旋转期间,通过浮力和磁头悬臂19偏压力之间的平衡,浮动磁头浮动块21能高稳定性地保持在磁记录盘13的表面上方浮动。
动力源22如音圈电机(VCM)连接到致动器模块17的尾部。动力源22驱动致动器模块17绕支撑轴16旋转。致动器模块17的旋转引起致动器臂18和磁头悬臂19的摆动。当浮动磁头浮动块21浮动期间驱动致动器臂18绕支撑轴16摆动时,浮动磁头浮动块21能在磁记录盘13的径向中跨越限定在磁记录盘13上的记录道。这种径向运动用于将浮动磁头浮动块21定位在磁记录盘13的目标记录磁道的正上方。现已公知,当两个或多个磁记录盘13装在主外壳12的内部空间时,一对弹性磁头悬臂19和致动器臂18设置在相邻的磁记录盘13之间。
图2示出了浮动磁头浮动块21的具体例子。浮动磁头浮动块21包括扁平平行六面体形的由Al2O3-TiC制成的浮动块本体23。由Al2O3(氧化铝)制成的磁头保护层24耦连到浮动块本体23的尾流端或尾端。读取/写入电磁换能器25含在磁头保护层24内。与介质相对的表面或底面26限定在浮动块本体23和磁头保护层24上,以一定的距离面对磁记录盘13。
前导轨(front rail)28和后导轨(rear rail)29形成在底面26上。前导轨28设计得沿浮动块本体23的迎流端或前端延伸。后导轨29位于浮动块本体23的尾流端或尾端附近。空气支承面(ABS)31,32分别限定在前和后导轨28,29的顶面上。空气支承面31,32的迎流端分别通过台阶(step)33,34连接到前和后导轨28,29的顶面。读取/写入电磁换能器25在空气支承面32露出顶端或前端。应该注意读取/写入电磁换能器25的前端可以用在空气支承面32上延伸的由类金刚石碳(DLC,diamond-like-carbon)制成的保护层覆盖。
浮动磁头浮动块21的底面26设计为接收沿旋转的磁记录盘13产生的气流35。台阶33,34用于在空气支承面31,32产生较大的正气压或升力。此外,在前导轨28的后面产生较大的负气压。负压用升力平衡,以稳定地建立浮动磁头浮动块21的浮动姿态。浮动磁头浮动块21可以采用除以上提到之外的任何形状或形式。
图3示出了在空气支承面32露出的读出/写入电磁换能器25的局部放大图。读出/写入电磁换能器25包括感应写元件或薄膜磁头36和电流垂直于膜面(CPP)结构的电磁换能器元件或CPP结构磁阻(MR)读取元件37。薄膜磁头36设计为利用例如在未示出的导电涡旋线圈图形中产生的磁场将磁位数据写入到磁记录盘13上。CPP结构MR读取元件37设计为利用响应于磁记录盘13作用的磁场中磁极性的反转的电阻变化检测磁位数据。薄膜磁头36和CPP结构MR读取元件37介于作为磁头保护层24或上覆盖膜的上半层的Al2O3(氧化铝)层38和作为磁头保护层24或下覆盖膜的下半层的Al2O3(氧化铝)层39之间。
薄膜磁头36包括在空气支承面32露出前端的上磁极层41和类似地在空气支承面32露出前端的下磁极层42。上和下磁极层41,42可以由例如FeN、NiFe或类似物制成。上和下磁极层41,42的组合形成了薄膜磁头的磁芯。
非磁性间隙层43介于上和下磁极层41,42之间。非磁性间隙层43可以例如由Al2O3(氧化铝)制成。当在导电涡旋线圈图形中产生磁场时,上和下磁极层41,42之间交换磁通量。非磁性间隙层43允许交换的磁通量从空气支承面32泄漏。这样泄漏的磁通量形成用于记录的磁场,即,写间隙磁场。
CPP结构MR读取元件37包括在作为基础绝缘层的氧化铝层39的上表面上扩展的下电极44。下电极44可以不仅具有电导体的性质,而且具有软磁性质。如果下电极44由软磁电导体如NiFe制成,那么下电极44也可用做CPP结构MR读取元件37的下屏蔽层。
在下电极44的上表面上形成平坦化表面45作为基底。磁阻(MR)膜或自旋阀膜46覆盖在平坦化表面45上。将自旋阀膜46构图成预定的轮廓。自旋阀膜46沿平坦化表面45从在空气支承面32露出的顶端或前端向后延伸。类似地,一对磁磁畴控制膜47覆盖在平坦化表面45上。磁畴控制膜47可沿空气支承面32延伸。自旋阀膜46介于沿空气支承面32的平坦化表面45上的磁畴控制膜47之间。磁畴控制膜47可以由金属材料制成,例如CoPt、CoCrPt或类似物制成。磁畴控制膜47用于平行于空气支承面32横越自旋阀膜46建立磁化。当通过磁畴控制膜47根据磁化建立偏置磁场(biasingmagnetic field)时,自旋阀膜46的自由层可具有单畴(singledomain)特性。下面将详细地介绍自旋阀膜46的结构。
用覆盖绝缘层48覆盖平坦化表面45。覆盖绝缘层48可以由绝缘材料制成,例如Al2O3、SiO2等。上电极49位于覆盖绝缘层48上。上电极49可以不仅具有电导体性质,还具有软磁性。如果上电极49由软磁电导体如NiFe制成,那么上电极49也能用做CPP结构MR读取元件37的上屏蔽层。以上提到的下电极44和上电极49之间的距离确定了沿磁记录盘13上记录道的记录的线性分辨率。
图4示出了CPP结构MR读取元件37的局部放大图。从图4中可以看出,覆盖绝缘层48覆盖在自旋阀膜46和磁畴控制膜47上。接触孔51限定在覆盖绝缘层48中。接触孔51设计为穿过覆盖绝缘层48达到自旋阀膜46的上表面。接触孔51位于空气支承面32附近。上电极49可以接触接触孔51内自旋阀膜46的上表面。以此方式可以在上电极49和自旋阀膜46之间建立电连接。同时,上电极49与磁畴控制膜47电隔离。
从图4中可以看出,根据本发明第一实施例的自旋阀膜46包括基础层52、被钉扎(固定)铁磁层53、导电非磁性中间层54、自由铁磁层55以及保护帽盖层56,它们以此顺序分布在平坦化表面45上。被钉扎铁磁层53的磁化方向例如根据它自身的硬磁特性固定在特定的横向方向中。基础层52可以包括例如覆盖在平坦化表面45上的Ta层、覆盖在Ta层上表面上的NiFe层。非磁性中间层54例如由Cu制成。自由铁磁层55例如可以由CoFeB层制成。保护帽盖层56可以由Cu层、Au层等制成。
被钉扎铁磁层53由包括导电铁磁原子和介质原子的颗粒膜制成。如图5所示,磁晶粒57形成在颗粒膜中。各磁晶粒57位于基础层52的上表面上。相邻的磁晶粒57之间的空间可由介电材料58填充。同时,磁晶粒57的顶端暴露在接触非磁性中间层54的界面处。以此方式各磁晶粒57从上界面或接合面穿过颗粒膜达到下界面或接合面。磁晶粒57用于建立非磁性中间层54和基础层52之间的电连接。
这里,磁晶粒57可以由硬磁材料如CoPt合金、FePt合金等制成。硬磁材料也可以包括含过渡元素的稀土元素合金。介电材料58可以由氧化物如Al2O3、SiO2、MgO、Bi2O3、氟化物如MgF2、CaF2、氮化物如AlN、碳化物以及其它类型的绝缘材料制成。
当CPP结构MR读取元件37与磁记录盘13的表面相对以读取磁信息数据时,响应于由磁记录盘13施加的磁极性的反转,自由铁磁层55中的磁化方向可在自旋阀膜46中旋转。自由铁磁层55中磁化方向的旋转引起自旋阀膜46中的电阻变化。当检测电流通过上和下电极49,44施加到自旋阀膜46时,相应于磁阻的变化,由上和下电极49,44输出的检测电流的任何参数如电压等的大小都发生变化。这种变化可用于检测记录在磁记录盘13上的磁位数据。
具体地,介电材料58用于使被钉扎铁磁层53中的检测电流路径变薄。此外,检测电流的流动集中于磁晶粒57。可以获得检测电流电压的较大变化。由此增强了CPP结构MR读取元件37的输出。
接下来,简要介绍CPP结构MR读取元件37的制造方法。以常规的方式在晶片上形成下电极44。例如使用镀敷形成下电极44。然后在下电极44的上表面上形成包括Ta和NiFe层的基础层52。例如使用溅射形成基础层52。
此后硬磁材料如CoPt合金或FePt合金层叠在基础层的上表面上。例如使用溅射。在这种情况下,控制溅射装置淀积约2.8nm预定厚度的硬磁材料。可以在基础层52的上表面上得到硬磁材料的离散或孤立岛。硬磁材料岛对应于分散在基础层52表面上直径约5.0nm的磁晶粒57。
然后在基础层52的上表面上淀积绝缘材料如SiO2。例如使用溅射。此时,控制溅射装置淀积约2.0nm预定厚度的绝缘材料。期望绝缘材料首先淀积在相邻的磁晶粒57之间的空间上。以此方式,基础层52的上表面在相邻磁晶粒57之间由绝缘材料覆盖。磁晶粒57可保持暴露在淀积的绝缘材料之外。以此方式形成了颗粒膜。
在颗粒膜的上表面上依次淀积导电非磁性材料如Cu、具有软磁性的铁磁材料如CoFe合金、导电材料如Cu或Au。从而形成层状物质。自旋阀膜46例如从层状物质上切出。例如使用离子铣削从所述层状物质中形成自旋阀膜46。可在层状物质上形成光致抗蚀剂膜以对自旋阀膜46构图。
当形成了自旋阀膜46时,在自旋阀膜46的周围淀积硬磁材料如CoCrPt。然后覆盖绝缘膜48形成在自旋阀膜46和淀积的硬磁材料的上表面上。接触孔51形成在覆盖绝缘膜48中。此后上电极49形成在覆盖绝缘膜48上。以上面提到的方式形成了CPP结构MR读取元件37。
图6示意性地示出了根据本发明的第二实施例的CPP结构的MR读取元件的结构。第二实施例的CPP结构的MR读取元件设计为使用软磁性材料如CoFe合金用作被钉扎铁磁层53中的磁晶粒57。一钉扎层(固定层,pinning layer)或反铁磁性层61介于被钉扎铁磁层53和基础层52之间。在反铁磁性层61的影响之下,被钉扎铁磁层53的磁化方向固定在特定的横向上。反铁磁性层61可以由反铁磁性材料如IrMn、PdPtMn等制成。与以上介绍的相同方式,第二实施例的自旋阀膜46a允许被钉扎铁磁层53中的介电材料58使检测电流的路径变薄。因此,可以在检测电流的电压中得到较大的变化。类似的附图标记表示等效于以上提到的CPP结构MR读取元件37的结构或部件的那些结构或部件。
具体地,倾斜表面62通常形成在自旋阀膜46a上。倾斜表面62相对于上电极或基底的上表面倾斜角度α。磁畴控制膜47分别接触倾斜表面62处的自旋阀膜46a。倾斜表面62使自旋阀膜46a朝上电极49方向渐缩。这种渐缩的形状实现了具有较高电阻的反铁磁性层61中检测电流的更大或更宽路径。电阻可在反铁磁性层61处充分地减小。
此外,以上提到的颗粒膜可用于自旋阀膜46,46a中的自由铁磁层55。此时,例如,软磁性材料如CoFe合金可用作结合到自由铁磁层55中的磁晶粒57。颗粒膜可以应用于自由和被钉扎铁磁层55,53中的至少一个。此外,CPP结构MR读取元件37不仅可以使用其中自由铁磁层55位于被钉扎铁磁层53之上的自旋阀膜46,46a,而且可以使用其中自由铁磁层55位于被钉扎铁磁层53之下的自旋阀膜。在后一种情况中,自由铁磁层、非磁性中间层、被钉扎铁磁层、反铁磁性层或保护帽盖层以常规的方式依次层叠在基础层52上。在任何一种情况中,以上提到的颗粒膜可以应用于被钉扎和自由铁磁层中的至少一个。

Claims (4)

1.一种电流垂直于膜面结构的磁阻元件,包括:
自由磁性层;
被钉扎磁性层;以及
介于自由和被钉扎磁性层之间的导电非磁性中间层,其中
自由和被钉扎磁性层中的至少一个由包括导电磁性材料和介电材料的颗粒膜制成。
2.根据权利要求1的电流垂直于膜面结构的磁阻元件,其中所述导电磁性材料含有从上接合面穿过颗粒膜达到下接合面的晶粒。
3.根据权利要求2的电流垂直于膜面结构的磁阻元件,其中所述晶粒包括钴和铁原子之中的至少一种。
4.根据权利要求3的电流垂直于膜面结构的磁阻元件,其中所述介电材料包括氧化物、氟化物、碳化物和氮化物中的至少一种。
CNB031591353A 2002-09-09 2003-09-09 电流垂直于膜面结构的磁阻元件 Expired - Fee Related CN1228764C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002262529A JP2004103769A (ja) 2002-09-09 2002-09-09 Cpp構造磁気抵抗効果素子
JP262529/2002 2002-09-09

Publications (2)

Publication Number Publication Date
CN1489135A true CN1489135A (zh) 2004-04-14
CN1228764C CN1228764C (zh) 2005-11-23

Family

ID=31986411

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031591353A Expired - Fee Related CN1228764C (zh) 2002-09-09 2003-09-09 电流垂直于膜面结构的磁阻元件

Country Status (5)

Country Link
US (1) US7002781B2 (zh)
EP (1) EP1406273A3 (zh)
JP (1) JP2004103769A (zh)
KR (1) KR20040023524A (zh)
CN (1) CN1228764C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890598A (zh) * 2011-10-17 2014-06-25 株式会社电装 磁性传感器

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198004A (ja) * 2001-12-27 2003-07-11 Fujitsu Ltd 磁気抵抗効果素子
JP2004031545A (ja) * 2002-06-25 2004-01-29 Alps Electric Co Ltd 磁気検出素子及びその製造方法
JP2005086112A (ja) * 2003-09-10 2005-03-31 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド、ヘッドサスペンションアッセンブリ、および磁気再生装置
US7423851B2 (en) * 2003-09-30 2008-09-09 Tdk Corporation Magneto-resistive element and device being provided with magneto-resistive element having magnetic nano-contact
US7236335B2 (en) * 2003-09-30 2007-06-26 Tdk Corporation Magnetoresistive head
JP3699716B2 (ja) * 2003-09-30 2005-09-28 Tdk株式会社 磁気ヘッド及びその製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
JP3993175B2 (ja) 2004-02-26 2007-10-17 株式会社東芝 電流狭窄型垂直通電gmrヘッドアセンブリ、磁気記録再生装置、電流狭窄型垂直通電gmrヘッドの適正センス電流方向の特定方法
US7672086B1 (en) * 2004-04-28 2010-03-02 Western Digital (Fremont), Llc Method and system for providing a magnetic element having a current confined layer
JP5095076B2 (ja) * 2004-11-09 2012-12-12 株式会社東芝 磁気抵抗効果素子
US20060114620A1 (en) * 2004-11-30 2006-06-01 Tdk Corporation Granular type free layer and magnetic head
US7450350B2 (en) * 2005-08-30 2008-11-11 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-pinned structure having segregated grains of a ferromagnetic material and additive Cu, Au or Ag
JP2007096105A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気記憶装置、および磁気メモリ
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US20070253245A1 (en) * 2006-04-27 2007-11-01 Yadav Technology High Capacity Low Cost Multi-Stacked Cross-Line Magnetic Memory
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
JP4768488B2 (ja) 2006-03-27 2011-09-07 株式会社東芝 磁気抵抗効果素子,磁気ヘッド,および磁気ディスク装置
JP2007273561A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 磁気抵抗効果素子、磁気ヘッドおよび磁気再生装置
WO2007119748A1 (ja) * 2006-04-11 2007-10-25 Nec Corporation 磁気ランダムアクセスメモリ及びその製造方法
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
JP2007299880A (ja) * 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
JP5044157B2 (ja) * 2006-07-11 2012-10-10 株式会社東芝 磁気抵抗効果素子,磁気ヘッド,および磁気再生装置
JP2008034689A (ja) 2006-07-31 2008-02-14 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリ、磁気ディスク装置、磁気センサおよび磁気メモリ
JP2008152835A (ja) * 2006-12-15 2008-07-03 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置及び磁気ヘッドの製造方法
US8542524B2 (en) * 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7869266B2 (en) * 2007-10-31 2011-01-11 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
JP4388093B2 (ja) * 2007-03-27 2009-12-24 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置
JP2008311373A (ja) * 2007-06-13 2008-12-25 Toshiba Corp 磁性多層膜通電素子
US20090086384A1 (en) * 2007-10-02 2009-04-02 Kei Hirata Magneto-resistance effect element including ferromagnetic layer having granular structure
KR100974603B1 (ko) * 2007-12-21 2010-08-06 연세대학교 산학협력단 자성 패턴 형성 방법 및 자성 패턴 형성을 통한 패턴드 미디어 제조방법
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
JP5032429B2 (ja) * 2008-09-26 2012-09-26 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5039007B2 (ja) * 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5032430B2 (ja) * 2008-09-26 2012-09-26 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5039006B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
US8233248B1 (en) * 2009-09-16 2012-07-31 Western Digital (Fremont), Llc Method and system for providing a magnetic recording transducer using a line hard mask
JP5799312B2 (ja) * 2010-09-24 2015-10-21 公益財団法人電磁材料研究所 薄膜誘電体
US8871102B2 (en) 2011-05-25 2014-10-28 Western Digital (Fremont), Llc Method and system for fabricating a narrow line structure in a magnetic recording head
US9034564B1 (en) 2013-07-26 2015-05-19 Western Digital (Fremont), Llc Reader fabrication method employing developable bottom anti-reflective coating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064552A (en) * 1997-03-18 2000-05-16 Kabushiki Kaisha Toshiba Magnetoresistive head having magnetic yoke and giant magnetoresistive element such that a first electrode is formed on the giant magnetoresistive element which in turn is formed on the magnetic yoke which acts as a second electrode
US6365286B1 (en) * 1998-09-11 2002-04-02 Kabushiki Kaisha Toshiba Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
JP2001084526A (ja) 1999-09-14 2001-03-30 Fujitsu Ltd 磁気センサ
US6611405B1 (en) * 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
JP2004022614A (ja) * 2002-06-13 2004-01-22 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US6686068B2 (en) * 2001-02-21 2004-02-03 International Business Machines Corporation Heterogeneous spacers for CPP GMR stacks
US6707649B2 (en) * 2001-03-22 2004-03-16 Alps Electric Co., Ltd. Magnetic sensing element permitting decrease in effective element size while maintaining large optical element size
JP2003152239A (ja) * 2001-11-12 2003-05-23 Fujitsu Ltd 磁気抵抗効果素子、及び、それを有する読み取りヘッド並びにドライブ
JP2003198004A (ja) * 2001-12-27 2003-07-11 Fujitsu Ltd 磁気抵抗効果素子
JP2004095110A (ja) * 2002-09-03 2004-03-25 Hitachi Ltd 部分的な電流絞込層を備えたスピンバルブ型磁気ヘッド及びその製造方法、ならびにその電流絞込方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890598A (zh) * 2011-10-17 2014-06-25 株式会社电装 磁性传感器
CN103890598B (zh) * 2011-10-17 2016-05-04 株式会社电装 磁性传感器

Also Published As

Publication number Publication date
EP1406273A3 (en) 2006-08-02
EP1406273A2 (en) 2004-04-07
KR20040023524A (ko) 2004-03-18
US20040052008A1 (en) 2004-03-18
JP2004103769A (ja) 2004-04-02
US7002781B2 (en) 2006-02-21
CN1228764C (zh) 2005-11-23

Similar Documents

Publication Publication Date Title
CN1228764C (zh) 电流垂直于膜面结构的磁阻元件
CN1208757C (zh) 电流垂直于平面结构的磁阻磁头
US9396742B1 (en) Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
US8611054B1 (en) Antiferromagnetically-coupled soft bias magnetoresistive read head, and fabrication method therefore
US6947264B2 (en) Self-pinned in-stack bias structure for magnetoresistive read heads
JP4841112B2 (ja) Mtjセンサ及びディスク・ドライブ・システム
US11615809B2 (en) SOT differential reader and method of making same
US8472146B2 (en) Current perpendicular magnetoresistive sensor with a dummy shield for capacitance balancing
US7355825B2 (en) Current-perpendicular-to-the-plane structure magnetoresistive element and head slider
CN1767001A (zh) 磁阻效应元件、磁头及磁记录装置
US6788502B1 (en) Co-Fe supermalloy free layer for magnetic tunnel junction heads
US7623325B2 (en) Method for providing an endpoint layer for ion milling of top of read sensor having top lead connection and sensor formed thereby
US20130164549A1 (en) Half Metal Trilayer TMR Reader with Negative Interlayer Coupling
US7245463B2 (en) Apparatus for extended self-pinned layer for a current perpendicular to plane head
US7171741B2 (en) Method for extended self-pinned layer for a current perpendicular to plane head
US9830935B1 (en) Read sensor capable of providing multiple effective read widths
US7408749B2 (en) CPP GMR/TMR structure providing higher dR
US9196273B2 (en) Magnetoresistive element with three terminals, magnetic head, and magnetic recording and reproducing apparatus
US7116528B2 (en) Magnetoresistive element having current-perpendicular-to-the-plane structure and having improved magnetic domain control
US6785099B2 (en) Read gap improvements through high resistance magnetic shield layers
CN1299257C (zh) 电流垂直于平面结构的磁电阻元件
US6756648B2 (en) System and method for stabilizing a magnetic tunnel junction sensor
US20050099737A1 (en) Current-perpendicular-to-the-plane structure magnetoresistive element and head slider including the same
US20080074808A1 (en) Magnetoresistive element, manufacturing method thereof, and magnetic storage device utilizing the same magnetoresistive element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051123