CN1451861A - 蒸气燃料排放控制系统 - Google Patents

蒸气燃料排放控制系统 Download PDF

Info

Publication number
CN1451861A
CN1451861A CN03122520A CN03122520A CN1451861A CN 1451861 A CN1451861 A CN 1451861A CN 03122520 A CN03122520 A CN 03122520A CN 03122520 A CN03122520 A CN 03122520A CN 1451861 A CN1451861 A CN 1451861A
Authority
CN
China
Prior art keywords
fuel
gas
filter tank
concentration
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03122520A
Other languages
English (en)
Other versions
CN100510372C (zh
Inventor
小岛进
蓝川嗣史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002115337A external-priority patent/JP3876753B2/ja
Priority claimed from JP2002121902A external-priority patent/JP2003314340A/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1451861A publication Critical patent/CN1451861A/zh
Application granted granted Critical
Publication of CN100510372C publication Critical patent/CN100510372C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0881Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir with means to heat or cool the canister

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

一种内燃机的蒸气燃料排放控制系统,包括:吸附燃料箱(10)产生的燃料蒸气的滤罐(20);使滤罐流出气体从滤罐(20)流出的滤罐流出气体产生装置(32);蒸气冷凝装置(34,44),将滤罐流出气体冷凝,产生所含燃料蒸气浓度高于滤罐流出气体的处理气体;将处理气体输送到燃料箱(10)的处理气体通道(42)。系统工作时,在处理气体的燃料蒸气浓度低于或预计低于预定水平时限制处理气体流入燃料箱。

Description

蒸气燃料排放控制系统
发明领域
本发明涉及蒸气燃料排放控制系统,特别涉及用于处理内燃机燃料箱中产生的燃料蒸气而不让燃料蒸气释放到空气中的蒸气燃料排放控制系统。
现有技术
传统上,公知的蒸气燃料排放控制系统包括一个吸附燃料箱中产生的燃料蒸气的滤罐,例如,日本特开平10-274106中披露的。此公开中披露的系统包括利用空气流动清除吸附在滤罐中的燃料蒸气的机构,以及将燃料蒸气与清除气体(purge gas)分离或隔离的分离膜。该系统还包括将分离膜所隔离的燃料蒸气冷凝的的冷凝单元,以及将冷凝的燃料返回燃料箱的返回通道。这种结构的蒸气燃料排放控制系统可以在一个包括滤罐的密闭系统中处理燃料箱中产生的燃料蒸气。这样,公知的系统能有效地防止燃料蒸气释放到空气中,而不需要复杂的控制,如内燃机燃料喷射量的校正。
但是,上述公知的系统仅利用分离膜不能充分地冷凝燃料蒸气。因此,公知的系统包括冷凝单元,进一步冷凝和液化由于分离膜冷凝产生的蒸气燃料气体。如果仅使用分离膜能提供足够高的冷凝能力,另一方面,系统的结构可以使分离膜冷凝产生的蒸气燃料气体原样流到燃料箱。在这种不需要任何冷凝单元的结构中,可以简化系统,降低系统的生产成本。
同时,当滤罐中没有燃料蒸气清除时,即,当没有清除气体流过系统时,不含燃料蒸气但主要由空气组成的气体将在分离膜的上游一侧积累。因此,即使分离膜表现出优异的冷凝能力,在清除气体刚开始流过系统后,可以在分离膜的下游一侧产生燃料浓度没有充分增大的处理气体。
如果具有如此低浓度燃料的处理气体直接流入燃料箱,则气体中所含的空气不可能充分溶解在燃料中。那么,未溶解空气的存在可以引起问题,如供油泵的气阻或在待喷射到内燃机的燃料中引入气泡。
还需要注意的是,在上述公知的系统中,分离膜需要保持在适当的条件下才能处理含有燃料蒸气的气体。这样,就需要即时探测分离膜的异常状况,从而保证系统的预期功能。
发明概述
因此,本发明的目的是提供一种蒸气燃料排放控制系统,该系统具有利用分离膜冷凝燃料蒸气的功能,并且能防止在清除气体刚开始流动后大量空气流入燃料箱。
为了达到上述目的,根据本发明的第一方面,提供一种蒸气燃料排放控制系统,包括:(a)吸附燃料箱中产生的燃料蒸气的滤罐,(b)使滤罐流出气体从滤罐流出的滤罐流出气体产生装置,(c)蒸气冷凝装置,用于冷凝滤罐流出气体以提供所含燃料蒸气浓度高于滤罐流出气体的处理气体,(d)使处理气体流入燃料箱的处理气体通道,以及(e)燃料收集限制装置,当处理气体中的燃料蒸气浓度低于或预计低于预定水平时,限制处理气体流入燃料箱。
在上述结构的控制系统中,当处理气体中的燃料浓度低于预定水平或者预计低于预定水平时,限制处理气体流入燃料箱。这样,可以避免燃料蒸气浓度低的处理气体回收到燃料箱中出现的问题。
根据本发明的第二方面,提供一种蒸气燃料排放控制系统,包括:(a)吸附燃料箱中产生的燃料蒸气的滤罐,(b)使滤罐流出气体从滤罐流出的滤罐流出气体产生装置,(c)蒸气冷凝装置,用于冷凝滤罐流出气体形成燃料蒸气浓度高于滤罐流出气体的处理气体,(d)使处理气体流入燃料箱的处理气体通道,(e)使蒸气冷凝装置上游侧与燃料箱相通的旁路通道,(f)切换阀,当处于打开状态时旁路通道使蒸气冷凝装置上游侧与燃料箱相通,当处于关闭状态时切断旁路通道,以及(g)控制切换阀的切换阀控制装置,在滤罐流出气体产生装置停止过程中使切换阀处于打开状态,而在滤罐流出气体产生装置工作过程中使切换阀处于关闭状态。
在上述控制系统中,燃料箱中的燃料蒸气在滤罐流出气体产生装置停止过程中通过旁路通道被引入蒸气冷凝装置上游侧。这样,甚至在没有滤罐流出气体流过系统的状态下,高燃料浓度的蒸气燃料气体也能填充到蒸气冷凝装置上游侧的部分系统。因此,可以在系统刚开始工作后立刻产生燃料浓度足够高的处理气体。
根据本发明的第三方面,提供一种蒸气燃料排放控制系统,包括:(a)吸附燃料箱中产生的燃料蒸气的滤罐,(b)使滤罐流出气体从滤罐流出的滤罐流出气体产生装置,(c)蒸气冷凝装置,用于冷凝滤罐流出气体以提供所含燃料蒸气浓度高于滤罐流出气体的处理气体,(d)使处理气体流入燃料箱的处理气体通道,以及(e)加热滤罐的滤罐加热装置。在这种结构中,滤罐被滤罐加热装置加热,从而以更高的效率将燃料蒸气从滤罐中清除掉。
附图简述
从下面参考附图对典型实施例的描述,本发明的上述和/或其它目的、特征和优点将变得更加清楚,附图中相似的数字用于代表相似的元件,在附图中:
图1是表示根据本发明第一实施例的蒸气燃料排放控制系统的结构的示意图;
图2用于解释第一实施例系统中的分离膜的工作原理;
图3是第一实施例系统执行的控制程序的流程图;
图4是根据本发明第二实施例的蒸气燃料排放系统执行的第一控制程序的流程图;
图5是第二实施例系统执行的第二控制程序的流程图;
图6示意性表示根据本发明第三实施例的蒸气燃料排放控制系统的结构;
图7示意性表示根据本发明第四实施例的蒸气燃料排放控制系统的结构;
图8示意性表示根据本发明第五实施例的蒸气燃料排放控制系统的结构;
图9是第五实施例系统执行的控制程序的流程图;
图10是根据本发明第六实施例的蒸气燃料排放控制系统执行的控制程序的流程图;
图11示意性表示根据本发明第七实施例的蒸气燃料排放控制系统的结构;
图12是第七实施例系统中执行的、用于估计滤罐流入气体燃料浓度的控制程序的流程图;以及
图13是第七实施例系统中执行的、用于判断分离膜条件的控制程序的流程图。
实施例详述 第一实施例
图1是根据本发明第一实施例的蒸气燃料排放控制系统的结构的示意图。如图1所示,第一实施例的系统包括燃料箱10。低压给油泵12(下面简称为油泵12)放置在燃料箱10中。油泵12与吸管14相通,用于从燃料箱10中吸入燃料,并且还与燃料管16相通,燃料由此输送到内燃机,在图1中未图示。
燃料箱10通过蒸气通道18与滤罐20相通。滤罐20含有活性碳。燃料箱10中产生的燃料蒸气通过蒸气通道18流入滤罐20,并被滤罐20中的活性碳吸附。
加热22与活性碳一起放在滤罐20内。加热器22用于把活性碳加热到适当的温度。滤罐20还包括空气端口24。空气端口24设有防止过压阀26,用于防止滤罐20内形成过高的压力。防止过压阀26是单向阀,仅允许流体从滤罐20流出,并通过空气滤清器(未图示)与大气相通。
清除通道28与滤罐20相通。清除通道28设有负压控制阀30,并在控制阀30的下游位置连接到清除气体循环泵32的入口。负压控制阀30是单向阀,仅允许流体从滤罐20流向清除气体循环泵32,并且当泵32工作时,在清除气体循环泵32吸入口周围产生一定的负压。
高浓度气体分离单元34连接到清除气体循环泵32的出口。高浓度气体分离单元34设有第一分离膜36,并包括第一室38和第二室40,二者通过第一分离膜36彼此分开或隔开。上述的清除气体循环泵32与高浓度气体分离单元34的第一室38相通。另一方面,高浓度气体分离单元34的第二室40通过切换阀41与处理气体通道42和处理气体循环通道43相连通。
切换阀41用于将高浓度气体分离单元34的第二室40与处理气体通道42和处理气体循环通道43中的一个接通。处理气体通道42与吸管14,即,燃料箱10内的油泵12的吸入口相通。另一方面,处理气体循环通道43在负压控制阀30的下游位置与清除通道28相通。这样,处理气体循环通道43与清除气体循环泵32的入口相通。
中浓度气体分离单元44位于高浓度气体分离单元31的上方。中浓度气体分离单元44设有第二分离膜46,并且包括第一室48和第二室50,二者通过第二分离膜46彼此分开或隔开。中浓度气体分离单元44的第一室48与高浓度气体分离单元34的第一室38相通。
中浓度气体分离单元44的第一室48与滤罐进入气体通道54相通。滤罐进入气体通道54与上述滤罐20相通,并允许气体流出中浓度气体分离单元44,循环并流入滤罐20。而且,滤罐流入气体通道54设有压力调节阀56,位于通道54在中浓度气体分离单元44一侧的末端附近,以及负压防止阀58,位于通道54在滤罐20一侧的另一末端附近。
压力调节阀56是单向阀,仅允许流体从中浓度气体分离单元44流向滤罐20,并起到在其上游部分形成一定正压的功能,更具体地,是从清除气体循环泵32延伸到压力调节阀56的路径中形成一定正压。另一方面,负压防止阀58通过空气滤清器(未图示)与大气相通,并且是单向阀,仅允许环境空气流入滤罐流入气体通道54。负压防止阀58用于防止滤罐气体通道54或滤罐20内形成太大的负压。
循环气体通道60与中浓度气体分离单元44的第二室50相通。循环气体通道60在负压控制阀30下游的位置与清除通道28相通。以这种结构,循环气体通道60允许中浓度气体分离单元44的第二室50与清除气体循环泵32的入口流通。
如图1所示,本实施例的蒸气燃料排放控制系统包括浓度传感器61,用于测量高浓度气体分离单元34的第二室中产生的处理气体中的燃料浓度。而且,此实施例的系统包括蒸气燃料排放控制计算机62,此后称之为ECU(电子控制单元)。ECU 62根据浓度传感器61的输出信号检测处理气体中的燃料浓度。并且,上述的加热器22、清除气体循环泵32和其它元件也受ECU 62控制。
第一实施例的蒸气燃料排放控制系统包括燃料补给(给油)检测单元63。更具体地,燃料补给检测单元63具有燃料剩余数量传感器,用于检测燃料箱10中的燃料剩余数量,或者打开探测器或传感器,用于检测开盖器的打开状态或关闭状态。ECU 62可以根据燃料补给检测单元63的输出信号判断是否进行燃料补给。
下面参看图2描述第一分离膜36和第二分离膜46的特性。
第一分离膜36和第二分离膜46都是由高分子材料制成的薄膜,例如聚酰亚胺。当分离膜36、46暴露在含有空气和燃料的气体中时,膜36、46能利用空气和燃料相对于膜的溶解度差将空气与燃料彼此分离。
图2示意性表示与第一和第二分离膜36、46结构相同的分离膜64冷凝燃料蒸气的原理。更具体地,图2表示含有15%燃料蒸气的气体在30kPa压力下进入分离膜64的上游空间66(即,图2中左上侧),而膜64的下游空间68(即图2中的右下侧)的压力为100kPa。
理想状态下,分离膜64允许燃料蒸气自由地通过膜64,而阻止空气从此通过。在这种情况,在分离膜64的相反一侧建立起相同分压的燃料蒸气。在图2所示的状态下,空气的分压为170kPa,在分离膜64上游空间66(200kPa,15%)燃料蒸气的分压为30kPa。假定燃料蒸气在分离膜64相反两侧的分压相同,则在下游空间68中空气的分压变为70kPa,而燃料的分压为30kPa。在这种情况下,由于分离膜64的作用,燃料蒸气的浓度由15%提高到30%。
如上所述,当高压气体进入分离膜64的上游侧,而膜64下游侧的压力保持在较低值时,本发明实施例中使用的分离膜64能提高气体中所含燃料蒸气的浓度。分离膜64冷凝燃料蒸气的能力随分离膜64相反两侧形成的压力差的增大而增强,即,随着分离膜64下游侧压力的减小而增强。这样,当向膜36、46上游侧(即第一室38、48)施加高压,向膜36、46下游侧(即第一室40、50)施加低压时,第一分离膜36和第二分离膜46表现出增强的冷凝燃料蒸气的能力。
再次参看图1,下面描述第一实施例的蒸气燃料排放控制系统的工作。
在第一实施例中,当达到一定的清除条件时,ECU 62启动清除气体循环泵32。在此实施例中,清除条件仅仅是在滤罐流出气体中的燃料浓度等于或高于预定值,更具体地,等于或高于15%时建立。这样,仅仅在滤罐流出气体中的燃料浓度等于或高于15%时清除气体循环泵32才工作。
随着清除气体循环泵32的启动,泵32入口处形成的负压作用在滤罐20上,从而滤罐流出气体从滤罐20流到清除通道28。清除气体循环泵32形成的负压也作用在中浓度气体分离单元44的第二室50上。结果,清除气体循环泵32以稳定的状态工作,将由清除通道28输送的滤罐流出气体与从循环气体通道60输送的循环气体的混合气体压缩,并将压缩的混合气体输送到高浓度气体分离单元34的第一室38。在本发明实施例中,清除气体循环泵32形成的负压也作用在处理气体循环通道43上。
当清除气体循环泵32在上述状态下工作时,泵32的输送压力作用在从泵32出口延伸到压力调节阀56的系统上。另一方面,根据切换阀41的选择状态,高浓度气体分离单元34的第二室40受到燃料箱的压力或者受到泵32形成的负压。而且,泵32形成的负压作用在中浓度气体分离单元44的第二室50。在这种情况下,在第一分离膜36相反的两侧以及在第二分离膜46的相反两侧形成适合冷凝蒸气燃料气体的压差。因此,在清除气体循环泵32工作期间,高浓度气体分离单元34和中浓度气体分离单元44执行冷凝蒸气燃料气体的功能。
更具体地,当清除气体循环泵32开始将混合气体输送到高浓度气体分离单元34的第一室38时,混合气体中的燃料蒸气被第一分离膜36冷凝,在单元34的第二室40产生高浓度的处理气体(有高的燃料蒸气浓度)。这样产生的处理气体通过切换阀41输送到处理气体通道42或处理气体循环通道43。
经过第一分离膜36执行的冷却过程,减小了进入高浓度气体分离单元34第一室38的混合气体中的燃料浓度。以这种方式减小了燃料浓度的混合气体此后被称为中浓度气体。中浓度气体流出高浓度气体分离单元34的第一室38,接着流入中浓度气体分离单元44的第一室48。当中浓度气体流入中浓度气体分离单元44的第一室48时,气体中的燃料蒸气被第二分离膜46冷凝,并在单元44的第二室50中产生燃料浓度高于中浓度气体的循环气体。这样产生的循环气体通过循环气体通道60输送到清除气体循环泵32的入口。
第一实施例的蒸气燃料排放控制系统在稳定状态下工作,从而流过循环气体通道60的循环气体中的燃料浓度等于65%,而滤罐流出气体中的燃料浓度为15%。在这种情况下,流出泵32的混合气体中的燃料浓度等于60%。所设计的高浓度气体分离单元34将燃料蒸气浓度为65%的混合气体分离成燃料蒸气浓度为95%或更高的处理气体和燃料蒸气浓度为40%的中浓度气体。并且,所设计的中浓度气体分离单元44将输入的燃料蒸气为40%的中浓度气体分离成燃料蒸气浓度为65%的循环气体和燃料蒸气浓度小于5%的滤罐流入气体。当此实施例的系统在稳定状态下工作时,最终生成燃料蒸气浓度为95%或更高的处理气体和燃料蒸气浓度小于5%的滤罐流入气体。
油泵12能将燃料的压力提高到约300kPa。当如此高的压力作用到进入油泵12的处理气体时,处理气体中的燃料蒸气变成液体燃料。如果处理的气体中含有大量空气,油泵12可以产生某些问题,如气阻和有害噪音。另一方面,如果处理气体中仅含有少量空气,由于空气在处理气体增压时溶解到燃料中,则不出现这些问题。
不引起气阻或有害噪音的空燃比根据油泵12的燃料输送能力,即,油泵12输送的燃料的流量和压力来确定。如果处理气体中的空气浓度小于5%,即,处理气体中的燃料浓度等于或大于95%,一般安装在车辆上的油泵(例如,油泵12)不会产生气阻和有害噪音的问题。因此,在本发明实施例中,蒸气燃料排放控制系统,当与装在车辆上的普通油泵12一起使用时,能将处理气体循环到燃料箱10中,而不引起气阻和有害噪音的问题。
在第一实施例的系统中,滤罐流入气体重复用于清除积存在滤罐20中的燃料蒸气。将燃料浓度非常低的气体通过滤罐20内部,清除了积存在滤罐20中的燃料蒸气。在此实施例的系统中,滤罐流入气体中的燃料浓度限制在等于或小于5%。并且,系统在清除燃料蒸气期间使用加热器22加热滤罐20。以这种方式,当滤罐20的温度升高时,积存在滤罐20中的燃料蒸气容易从滤罐20中解吸或释放。因此,使用本发明实施例的系统,可以有效地利用滤罐流入气体清除燃料蒸气。
在第一实施例的蒸气燃料排放控制系统中,当系统处于稳定状态,其中混合气体中的燃料浓度为60%左右时,处理气体中的燃料浓度可以等于或高于95%。在其它情况下,例如清除气体循环泵32刚开始工作后,但是,燃料浓度明显低于60%的低燃料浓度混合气体可以流入高浓度气体分离单元34。在这种情况下,在高浓度气体分离单元34的第二室40中产生燃料浓度低于95%的处理气体。
如果燃料浓度低于95%的处理气体流过处理气体通道42并输送到油泵12,则油泵12可能出现问题,例如气阻和有害噪音,另外,由于待喷射的燃料中存在气泡,可以增大燃料喷射数量的误差。考虑到这些问题,本发明实施例的系统适合根据浓度传感器61的输出信号检测处理气体中的燃料浓度,并且切换切换阀43,从而当检测的燃料浓度低于目标值(例如95%)时,处理气体流入处理气体循环通道43。
图3是第一实施例中ECU 62执行的控制程序的流程图。图3所示的程序与内燃机的启动同时开始,并且重复执行直到内燃机停止。
在图3所示的程序的步骤80,切换阀41切换到循环侧,从而高浓度气体分离单元34的第二室40与处理气体循环通道43相通,清除气体循环泵32和加热器22接通。
当清除气体循环泵32在执行步骤80时开始工作,燃料蒸气气体开始流过系统的内部。结果,冷凝混合气体得到的处理气体在高浓度气体分离单元34的第二室40中产生。这样产生的处理气体输送到处理气体循环通道43,但不输送到处理气体通道42。这样,在本发明实施例的系统中,甚至在刚开始启动清除气体循环泵32后,如果在第二室40中产生低燃料浓度的处理气体,也可以保证防止该处理气体供应到油泵12。
在图3所示程序的步骤82中,根据浓度传感器61的输出信号,判断处理气体中的燃料浓度是否等于或高于目标值,例如95%。
如果在步骤82中判断处理气体中的燃料浓度不高于目标值,则在步骤84中把切换阀41控制到循环侧,使第二室40与处理气体循环通道43相通。因此,根据图3所示的程序,确保燃料浓度低的处理气体不流入油泵12。
如果在步骤82中判断处理气体中的燃料浓度高于目标值,则在步骤86中切换阀41切换到燃料箱10一侧,使高浓度气体分离单元34的第二室40与油泵12的入口相通。在这种工作下,当处理气体中的燃料浓度增大到允许收集燃料的水平时,立刻开始收集或回收处理气体作为燃料。
根据上面解释的图3所示的程序,保证燃料浓度低于目标值的处理气体不流入油泵12,并且当燃料浓度达到目标值时立即启动油泵12开始收集燃料蒸气。这样,本发明实施例的系统能提供高的燃料收集或回收能力,同时避免诸如气阻和有害噪音的问题出现。
在上述第一实施例中,处理气体中的燃料浓度由浓度传感器61直接测量,并根据所测量的浓度控制切换阀41的工作状态或位置。但是,用于判断切换阀41是切换到循环侧还是切换到燃料箱10一侧的基本数据并不限于处理气体本身的燃料浓度,而可以是与处理气体燃料浓度相关的任何特性值。
更具体地,上述的基本数据可以是滤罐流出气体或滤罐流入气体的流量。当流入高浓度气体分离单元34的混合气体具有较高的燃料浓度并且产生了相当大数量的循环气体时,滤罐流出气体或滤罐流入气体的流量较小。另一方面,当流入高浓度气体分离单元34的混合气体具有较低的燃料浓度并且产生了较少数量的循环气体时,滤罐流出气体或滤罐流入气体的流量较大。即,当混合气体具有较高的燃料浓度以及处理气体具有较高的燃料浓度时,滤罐流出气体或滤罐流入气体的流量较小;当混合气体具有低的燃料浓度并且循环气体具有较低的燃料浓度时,滤罐流出气体或滤罐流入气体的流量较大。因此,滤罐流出气体或滤罐流入气体的流量可被用作处理气体中燃料浓度的特征值,并且根据此特征值来控制切换阀41。
在上述第一实施例中,根据对处理气体中的燃料浓度是否达到目标值的判断结果控制切换阀41。但是,控制切换阀41的方法并不限于这种方法。例如,并且从清除气体循环泵32开始工作起算持续一定的时间周期(例如,一段预定的周期,或者直到累积的清除流量达到预定值的时间周期),假设处理气体中的燃料浓度在此时间周期内低于目标值,可以将切换阀41切换到循环侧。经过这段时间周期后,切换阀41切换到燃料箱10一侧。
在上述第一实施例中,当处理气体中的燃料浓度较低时,处理气体循环到清除气体循环泵32的上游侧。但是,处理燃料浓度低的处理气体的方法并不限于这种方法,而可以从其它方法中选择,只要低浓度的处理气体不被燃料箱10收集。例如,燃料浓度低的的处理气体可以简单地限制在高浓度气体分离单元34的第二室40中,而不循环到泵32的上游侧。
在上述第一实施例中,当处理气体中的燃料浓度低时,完全阻止处理气体流入燃料箱10。但是,本发明并不限于这种处理处理气体的方法,而是根据本发明可以使用任何方法,只要限制或抑制低燃料浓度的处理气体流入燃料箱10。
在上述第一实施例中,清除气体循环泵32对应于“滤罐流出气体产生装置”,高浓度气体分离单元34和中浓度气体分离单元44对应于“蒸气冷凝装置”,而切换阀41对应于“燃料收集限制装置”。
在上述第一实施例中,切换阀41和处理气体循环通道43对应于“处理气体循环装置”。
在上述第一实施例中,处理气体的浓度本身对应于“特征值”,浓度传感器61对应于“浓度特征值检测装置”,而一部分ECU 62执行步骤82和84实现“第一限制单元”。
在上述第一实施例中,一部分ECU 62通过在启动清除气体循环泵32后的一定时间周期内,假定处理气体在此时间周期内的燃料浓度低,把切换阀41控制在循环侧,而实现“第二限制单元”。第二实施例
下面参考图1、图4和图5描述本发明第二实施例。本实施例所提供的蒸气燃料排放控制系统是在图1所示结构的系统中使ECU 62执行图4所示的程序。
如上所述的第一实施例的蒸气燃料排放控制系统,甚至当处理气体中的燃料浓度低时也继续运转清除气体循环泵32和加热器22。因此,在第一实施例的系统中,甚至当完全清除滤罐20储存的燃料蒸气使处理气体中的燃料浓度减小时,清除气体循环泵32和加热器22的工作仍继续进行。但是,在清除完成后希望停止泵32和加热器22,以避免能源浪费。因此,在第二实施例的系统中,当处理气体中的燃料浓度由于清除完成而减小时,停止泵32和加热器22。
图4是在第二实施例中为实现上述功能ECU 62执行的控制程序的流程图。在图4中,与图3流程图中相同的步骤数字代表与图3所示的步骤相同的步骤,因此省略其描述,或仅作简单描述。
与图3所示的上述程序相似,图4所示的程序也在内燃机启动的时刻开始。在图4所示的程序中,在执行步骤80后,即,切换阀41控制到循环侧开始清除操作的过程执行后,在步骤90将计时器复位为零。这里,计时器用于计录低浓度周期,即,处理气体中的燃料浓度低于目标值的时间周期。通过另一个程序使计时器的数值递增。
在图4所示的程序中,步骤90后执行步骤82,判断处理气体中的燃料浓度是否高于目标值。在本发明实施例的系统中,可以确定在刚开始清除燃料蒸气后或者在刚结束清除燃料蒸气后处理气体中的燃料浓度不高于目标值。因此,如果在刚开始清除后执行当前的控制循环,在步骤82可以确定处理气体中的燃料浓度不高于目标值。
在图4所示的程序中,如果在步骤82确定处理气体中的燃料浓度不高于目标值,则执行步骤84,控制切换阀41到循环侧,接着在步骤92判断计时器的数值是否达到预定的停止判断时间T1。
停止判断时间T1定义为,在待清除的燃料蒸气存在或积存在滤罐20中的条件下开始清除时,处理气体中的燃料浓度达到目标值所需的时间周期。因此,如果在刚开始清除后执行当前的控制循环,在步骤92可以确定计时器的数值未达到停止判断时间T1。
在这种情况下,在步骤94判断处理气体中的燃料浓度是否具有下降的趋势或者基本维持在相同水平的趋势。
当待清除的燃料蒸气积存在滤罐20时,在刚开始清除后处理气体中的燃料浓度可以暂时低于目标值,如上所述。但在这种情况下,在开始清除时,滤罐流出气体开始流过系统,并且处理气体中的燃料浓度表现出增大的趋势而不是下降。因此,如果在待清除的蒸气燃料蒸气被积存在滤罐20的条件下,执行当前的循环,则在步骤94确定处理气体中的燃料浓度没有下降的趋势或者保持在基本相同的水平。在这种情况下,重复步骤82以及随后步骤(步骤84、92和94)的操作。
当在待清除的燃料蒸气被积存在滤罐20的条件下,开始清除时,重复地执行上述的一系列操作,直到在步骤82确定处理气体中的燃料浓度超过目标值。如果确定处理气体中的燃料浓度超过目标值,则执行步骤86,将切换阀41切换到燃料箱侧。结果,开始把燃料浓度高于目标值的处理气体回收在燃料箱10中。
在图4所示的程序中,只要处理气体中的燃料浓度超过目标值就重复执行步骤90、82和86。在重复执行这些步骤的操作同时,积存在滤罐20中的燃料蒸气被连续清除。结果,燃料蒸气的清除持续进行,直到滤罐20中没有剩余待清除的燃料蒸气。
如果滤罐20中存在待清除的燃料蒸气,则处理气体中的燃料浓度将小于目标值,并且再次不满足步骤82的条件。结果,在步骤84切换阀41切换到循环侧,高浓度气体分离单元34中产生的处理气体开始循环到清除气体循环泵32的上游侧。
在图4所示的程序中,步骤84之后是步骤92,在步骤92再次判断计时器的数值是否达到停止判断时间T1。
如上所述,停止判断时间T1是在滤罐20存储待清除的燃料蒸气时使处理气体中的燃料浓度增大到目标值所需要的时间。因此,仅滤罐20中不存在待清除的燃料蒸气时,步骤92中才确定计时器的数值达到停止判断时间T1。这样,在图4所示的程序中,当满足步骤92的条件时确定蒸气燃料蒸气的清除结束。
另一方面,如果在步骤92确定计时器的数值未达到停止判断时间T1,则由此事实不能明确地确定清除结束。在这种情况下,在步骤94再次判断处理气体中的燃料浓度是否有下降的趋势或者维持在基本相同的水平。
如果滤罐20中存在待清除的任何燃料蒸气,则处理气体中的燃料浓度表现出增大的趋势,如上所述。因此,当在步骤94确定处理气体中的燃料浓度有下降的趋势或者维持在基本相同的水平,则可以明确地确定:甚至在停止判断时间T1终止之前滤罐20中不存在待清除的燃料蒸气。
另一方面,如果在步骤94确定未满足上述条件,则再次执行步骤82。如果滤罐20中不存在待清除的燃料蒸气,处理气体中的燃料浓度未超过目标值,则重复上述的步骤82、84、92和94,直到满足步骤92或步骤94的条件。因此,当滤罐20中不存在待清除的燃料蒸气时,迟早将满足步骤92或步骤94的条件。
在图4所示的程序中,如果满足步骤92或步骤94的条件,则执行步骤96,将清除气体循环泵32和加热器22关闭,从而停止蒸气燃料排放控制系统的工作。这样,根据图4所示的程序,当滤罐20中不存在待清除的燃料蒸气时,停止泵32和加热器22。
在图4所示的程序中,在步骤98将计时器复位为零。在执行步骤98后,计时器用于该计蒸气燃料排放控制系统停止的时间段。
在下一个步骤100中,判断计时器的数值是否达到重新启动判断时间T2(这在下面描述)。当蒸气燃料排放控制系统停止时,燃料箱10中新产生的燃料蒸气被滤罐20吸附。因此,如果系统保持在停止状态的时间太长,则燃料蒸气可以流过滤罐20并泄露到大气中。上述的重新启动判断时间T2定义为,蒸气燃料排放控制系统能够保持在停止状态而不引起燃料蒸气泄露的标准时间周期。下面参考图5详细描述设置重新启动判断时间的方法。
如果在步骤100确定计时器的数值已经达到重新启动判断时间T2,则可以确定现在应重新启动蒸气燃料排放控制系统。在这种情况下,在执行步骤100后立即执行步骤80和随后的步骤,并重新启动燃料蒸气的清除。
如果在步骤100确定计时器的数值未达到重新启动判断时间T2,则通常确定系统保持在停止状态。在这种情况下,在步骤102根据燃料补给检测单元63的输出信号判断是否进行补给燃料。
当进行补给燃料时,燃料箱10的排空空间内存在的大量燃料蒸气从箱10流向滤罐20。这样,当进行燃料补给时,甚至系统停止的时间未达到重新启动判断时间T2也需要重新启动燃料蒸气的清除。
在图4所示的程序中,如果在步骤102没有检测到燃料补给,则再次执行步骤100。这样,蒸气燃料排放控制系统保持停止,直到达到重新启动判断时间T2,或直到检测到燃料补给。
另一方面,如果在步骤102检测到燃料补给,则在执行步骤102后立刻再次执行步骤80和随后的步骤。结果,把清除气体循环泵32和加热器22打开并进入工作状态,并且重新启动燃料蒸气的清除。
根据图4所示的程序,当处理气体中的燃料浓度未达到目标值时,处理气体循环到清除气体循环泵32的入口,从而防止低浓度气体流入燃料箱10,如上所述。
当处理气体中的燃料浓度低于目标值的状态持续到停止判断时间T1时,在时间T1结束时确定燃料蒸气的清除完成,停止清除气体循环泵32和加热器22。
如果处理气体中的燃料浓度有下降的趋势,或保持在基本相同的水平,则在此时确定:甚至在停止判断时间T1结束之前燃料蒸气的清除已经结束,并停止清除气体循环泵32和加热器22。
当蒸气燃料排放控制系统停止后,重新启动判断时间T2结束时,重新启动燃料蒸气的清除,防止燃料蒸气的泄露或排放到大气中。
另外,如果在系统停止后进行燃料补给,即使重新启动判断时间T2没有结束也立即重新启动燃料蒸气的清除,从而防止燃料蒸气泄露到大气中。
这样,第二实施例的蒸气燃料排放控制系统能有效地防止蒸气燃料蒸气泄露到大气中,同时充分地抑制了能源浪费。
图5是ECU2执行的控制程序的流程图,用以确定在图4所示的上述程序的步骤100中使用的重新启动判断时间T2。
在图5所示的程序中,首先执行步骤110,根据设在内燃机中的吸入空气温度传感器(未图示)的输出信号检测吸入空气的温度。
在下一个步骤112,检测内燃机的工作状态。内燃机的工作状态可以用以下参数表示,例如,内燃机转速、吸入空气的流量、燃料喷射量,等等。内燃机转速和吸入空气的流量可以分别根据内燃机转速传感器(未图示)和空气流量计(未图示)的输出信号进行检测,这些都装在内燃机中。燃料喷射量可以通过读取控制内燃机的控制单元(未图示)计算的数值进行检测。
在下一个步骤114,根据步骤110中检测的吸入空气温度以及步骤112中检测的内燃机的工作状态估计燃料箱10中燃料的温度。燃料温度随着环境空气温度(或吸入空气的温度)的升高而升高。而且,燃料温度随着内燃机工作负载的增大,即余热生成量的增大而升高。这样,燃料温度和吸入空气的温度彼此相关,并且燃料温度与内燃机的工作状态彼此相关。在本发明的实施例中,ECU 62中存储了根据这些关系得出的关系图。在图5的步骤114中,参考这个关系图估计与吸入空气温度和内燃机工作状态相应的燃料温度。
在图5所示的程序中,步骤114之后是步骤116,在步骤116根据估计的燃料温度计算重新启动判断时间T2。重新启动判断时间T2是蒸气燃料排放控制系统保持停止的同时防止燃料蒸气泄露到大气中的一段时间。这样,当燃料箱10中产生的燃料蒸气数量较大时需要将重新启动判断时间T2设置成较短时间,而当燃料箱10中产生的燃料蒸气数量较少时将T2设置成较长时间。
燃料箱10中产生的燃料蒸气的量随着燃料温度的升高而增大,随着燃料温度的下降而减少。这样,当燃料温度较高时要把重新启动判断时间T2设置成较短时间,而燃料温度较低时设置成较长时间。在本发明实施例中,ECU 62存储着定义燃料温度和重新启动判断时间T2之间关系的图,用以满足上述需要。在图5的步骤116中,参考这个图计算重新启动判断时间T2。
根据图5所示的程序,根据燃料箱10中产生的燃料蒸气的状况,将重新启动判断时间T2设置为适当的时间。因此,在本发明实施例的系统中,根据燃料蒸气产生的条件可以将系统保持停止的周期设置为适当的时间,同时保证避免燃料蒸气泄露到大气中,同时减少不必要的能源消耗(即将系统工作引起的能源消耗降到最低)。
在上述第二实施例中,一部分ECU 62执行步骤90和增加计时器的过程而实现“低浓度期计数装置”,一部分ECU 62执行步骤92和96而实现“第一清除停止装置”。
在上述第二实施例中,一部分ECU 62执行步骤94而实现“浓度变化趋势检测装置”,一部分ECU 62执行步骤94后面的步骤96而实现“第二清除停止装置”。
在上述第二实施例中,一部分ECU 62执行步骤98和增加计时器的过程而实现“逝去时间计数装置”,一部分ECU 62执行步骤100和步骤80而实现“第一清除重新启动装置”。
在上述第二实施例中,燃料温度与“燃料蒸气产生条件”对应,一部分ECU 62执行步骤110-114而实现“燃料蒸气产生估计装置”,而一部分ECU 62执行步骤116而实现“重新启动判断期间设定装置”。
在上述第二实施例中,一部分ECU 62执行步骤110而实现“大气温度检测装置”,一部分ECU 62执行步骤112而实现“内燃机状态检测装置”。
在上述第二实施例中,一部分ECU 62执行步骤102而实现“燃料补给检测装置”,一部分ECU 62执行步骤102后面的步骤80而实现“第二清除重新启动装置”。第三实施例
接着参看图6,下面描述本发明第三实施例。此实施例的蒸气燃料排放控制系统,除了图1所示第一实施例的结构外,包括使系统在某个点上与内燃机的吸气管相通的真空-压力导管120,控制通道120打开/关闭状态的控制阀122,以及检测系统压力的压力传感器124。
在图6所示的实施例中,真空-压力导管120与连接管52连接,连接管52使高浓度气体分离单元34与中浓度气体分离单元44相连通,压力传感器124位于清除气体循环泵32和高浓度气体分离单元34之间。
在第三实施例中,ECU 62在正常工作期间,执行与第一和第二实施例相似的控制。在正常工作期间,控制阀122一直保持关闭。在这种情况下,本实施例的蒸气燃料排放控制系统按与第一实施例或第二实施例相同的方式工作。
在本发明实施例中,ECU 62在某些时间执行异常检测过程。在异常检测过程,切换阀41首先切换到循环侧,控制阀122进入打开状态。在控制阀122打开时,内燃机吸入空气的真空压力通过真空一压力导管120被引导或施加到连接管52。真空压力通过连接管52,作用在高浓度气体分离单元34的第一室38和中浓度气体分离单元44的第一室48。
传递到高浓度气体分离单元34第一室38的真空压力通过停止的清除气体循环泵32达到清除通道28。可以理解的是,泵32设计成当其停止时允许真空压力的通过。到达清除通道28的真空压力接着通过循环气体通道60被引导到中浓度气体分离单元44的第二室50,也通过处理气体循环通道43和切换阀41被引导到高浓度气体分离单元34的第二室40。并且,到达清除通道28的真空压力通过负压控制阀30作用在滤罐20上。作用在滤罐20上的真空压力接着被引导到滤罐流入气体通道54,并通过蒸气通道18被引导到燃料箱10。
以这种方式,一旦启动异常检测过程,吸入空气的真空压力作用在蒸气燃料排放控制系统的整个区域。随后,当系统内的压力减小到预定初始压力时,ECU 62通过关闭控制阀122停止真空压力的进入。接着根据系统内压力的后续变化,判断系统是否发生异常即燃料蒸气泄露。
如上所述,本发明实施例的蒸气燃料排放控制系统,通过将真空压力引入系统中并监视真空压力引入后系统中任何的压力变化,能以高的精确度容易地判断系统的任何位置是否发生任何的燃料蒸气泄露。因此,使用本发明实施例的系统,可以容易或快速地检测导致燃料蒸气泄露的任何异常的存在。
在如上所述的第三实施例中,虽然根据真空引入系统后的压力变化能确定存在导致燃料蒸气泄露的异常,但检测异常的方法并不限于这种方法。例如,可以根据系统引入真空压力期间的压力变化速率来确定导致燃料蒸气泄露的异常的存在。
虽然在上述第三实施例中,真空压力导管120连接到连接管52,但通道120可以连接到系统中除连接管52以外的任何位置,只要真空压力能作用在系统的整个区域。
虽然在上述第三实施例中,压力传感器124位于清除气体循环泵32和高浓度气体分离单元34之间,但压力传感器124的位置并不限于这个特定位置。即,只要能检测系统内的压力,压力传感器124可以位于任何位置。
在上述第三实施例中,控制阀122对应于“吸气真空控制阀”,压力传感器124对应于“压力检测装置”。在第三实施例中,在检测异常时一部分ECU 62操作打开控制阀122而实现“真空引入装置”,一部分ECU 62根据引入真空压力后压力的变化检测导致燃料蒸气泄露的异常的存在而实现“第一泄露检测装置”。第四实施例
下面参看图7,描述本发明的第四实施例。除了如图1所示的结构外,本发明实施例的蒸气燃料排放控制系统包括吸入空气切换阀130,绕过负压控制阀30的旁路通道132,控制旁路通道132打开/关闭状态的旁路控制阀134,以及检测系统内压力的压力传感器136。吸入空气切换阀130适于将清除气体循环泵32的入口连接到清除通道28和大气二者之一。
在第四实施例中,ECU 62在正常工作期间执行与第一和第二实施例相似的控制。在正常工作期间,吸入空气切换阀130允许清除气体循环泵32的入口与清除通道28相通。而且,旁路控制阀134保持在关闭状态。在这种条件下,本实施例的蒸气燃料排放控制系统按与第一实施例和第二实施例相同的方式工作。
在本实施例中,ECU 62在某些时间执行异常检测过程。在异常检测过程,切换阀41首先切换到循环侧,吸入空气切换阀130切换到大气一侧,从而清除气体循环泵32的入口与大气相通。并且,旁路控制阀134处于打开状态,从而流体可以流过旁路通道132。在这种条件下,启动清除气体循环泵32的工作。
在异常检测过程期间,清除气体循环泵32将从大气进入的空气增压,并将增压的空气输送到高浓度气体分离单元34的第一室38。增压的空气通过中浓度气体分离单元44的第一室48到达压力调节阀56,并进一步通过压力调节阀56和滤罐流入气体通道54流入滤罐20。流入滤罐20的空气通过清除通道28导入旁路通道132,并通过蒸气通道18导入燃料箱10。并且,已经通过旁路通道132的空气通过循环气体通道60导入到中浓度气体分离单元44的第二室50,也通过处理气体循环通道43导入到高浓度气体分离单元34的第二室40。
以这种方式,一旦开始异常检测过程,从清除气体循环泵32输送的空气被引导到蒸气燃料排放控制系统的整个区域。结果,系统的整个区域进入增压状态。当系统内的压力增大到预定的初始压力时,ECU 62操作切换吸入空气切换阀130,使泵32的入口与清除通道28相通,并停止泵32的工作。接着,根据切换切换阀130和停止泵32后系统内的压力变化,ECU 62判断系统中是否发生导致燃料蒸气泄露的异常。
如上所述,通过将系统内的压力上升到某个水平并监视压力增大后系统内的压力变化,本发明实施例的蒸气燃料排放控制系统能以高的精确度容易地判断系统内的任何位置是否发生泄露。因此,使用本发明实施例的系统,可以容易或快速地检测导致燃料泄露的任何异常的存在。
如上所述,在第四实施例中,虽然根据系统内压力升高到某个水平后的压力变化能确定存在导致燃料蒸气泄露的异常,但检测异常的方法并不限于这种方法。例如,可以根据系统内压力升高期间的压力变化速率确定导致燃料蒸气泄露的异常的存在。
虽然在上述第四实施例中,压力传感器136位于清除气体循环泵32和高浓度气体分离单元34之间,但压力传感器136的位置并不限于这个特定位置。即,只要能检测系统内的压力,压力传感器136可以位于任何位置。
在上述第四实施例中,清除气体循环泵32和吸入空气切换阀130的组合对应于“清除泵”,压力传感器136对应于“压力检测装置”。在第四实施例中,在检测异常时一部分ECU 62使清除气体循环泵32将系统内压力升高而实现“系统增压装置”,一部分ECU 62根据系统内压力升高后压力变化检测导致燃料蒸气泄露的异常而实现“第二泄露检测装置”。第五实施例
下面参看图8和图9描述本发明第五实施例。图8示意性地表示本实施例的蒸气燃料排放控制系统的结构。在图8中,与图1中使用的参考数字相同的参考数字用于表示与图1所示的那些元件和部分相同,这里不再描述或仅给出其简要描述。
如图8所示,第五实施例的蒸气燃料排放控制系统包括旁路通道140和切换阀142,切换阀142用于在打开状态和关闭状态之间切换旁路通道140。旁路通道140绕过高浓度气体分离单元34,并允许位于清除气体循环泵32下游的空间与燃料箱10的内部空气相通。切换阀142是使旁路通道140处于打开状态和关闭或切断状态二者之一的阀机构。
在图8所示结构的第五实施例的蒸气燃料排放控制系统中,ECU62执行图9所示的控制程序。图9是表示ECU 62执行的程序的流程图,用于控制切换阀142的打开/关闭状态。
在图9的程序中,首先执行步骤150,判断燃料蒸气的清除是否停止,更具体地,清除气体循环泵32是否停止。
如果步骤150确定燃料蒸气的清除停止,则在步骤152将切换阀142置于打开状态。当切换阀142打开时,泵32的下游空间与燃料箱10的内部空间相通。在这种条件下,燃料箱10中产生的燃料蒸气流入泵32的下游空间。因此,使用本发明实施例的系统,甚至当清除停止(即泵32停止)并且没有滤罐流出气体流过系统时,泵32下游空间的燃料浓度可以保持在足够高的水平。
在图9所示的程序中,如果在步骤150中确定燃料蒸气的清除没有停止,即,清除气体循环泵32在工作,则在步骤154将切换阀142置于关闭状态。当切换阀142处于关闭状态时,泵32输送的混合气体不流入旁路通道140,但到达高浓度气体分离单元34。在这种情况下,高浓度气体分离单元34和中浓度气体分离单元44可以执行与第一实施例相似的冷凝过程。
如上所述,当进行燃料蒸气的清除时,本发明实施例的蒸气燃料排放控制系统能执行与第一或第二实施例相似的燃料蒸气冷凝功能,也能在清除操作停止期间用高燃料浓度的燃料蒸气气体填充泵32的下游空间。通过在清除停止期间用高燃料浓度的燃料蒸气气体填充泵32的下游空间,高浓度气体分离单元34可以在开始清除后立刻产生高燃料浓度的处理气体。这样,本发明实施例的蒸气燃料排放控制系统可以保证防止低燃料浓度的处理气体流入燃料箱10,而不必采取相反措施,例如将刚开始清除后产生的处理气体循环到泵32的上游侧。
在上述第五实施例中,清除气体循环泵32对应“滤罐流出气体产生装置”,高浓度气体分离单元34对应于“蒸气冷凝装置”,而一部分ECU 62执行步骤150到154实现“切换阀控制装置”。第六实施例
下面参看图1、图6-8和图10描述本发明的第六实施例。本实施例的蒸气燃料排放控制系统可以是图1和图6-8中任一个中表示的结构。在根据第一到第五实施例中任一个实施例制造的系统中,根据第六实施例ECU 62执行图10所示的程序。
执行图10所示的程序是用于在清除气体循环泵32的开/关时刻与加热器22的开/关时刻之间产生所需的时间差。
在图10所示的程序中,首先执行步骤160,判断是否请求开始燃料蒸气的清除。如果确定请求了开始清除,则在步骤162中使加热器22处于打开状态,从而开始加热滤罐20。
在步骤162后面的步骤164中,等待状态保持一段预定的时间,直到滤罐20达到所需的加热状态。如果在步骤164确定已过预定的等待时间,则在步骤166中清除气体循环泵32此时处理打开状态。
通过上述的过程,滤罐20在清除气体循环泵32开始工作之前处于所需的加热状态,从而在泵32启动时燃料蒸气易被清除。因此,使用本发明实施例的系统,在刚开始实际清除燃料蒸气后,将燃料浓度足够高的混合气体供给高浓度气体分离单元34,用以产生燃料浓度足够高的处理气体。因此,本实施例的系统能有效地防止在刚开始清除后燃料浓度低的处理气体流入燃料箱10。
在图10所示程序中,如果在步骤160确定没有请求开始清除燃料蒸气,那么在步骤168中判断是否请求停止清除。如果确定没有请求停止清除,则立即中止当前控制循环。另一方面,如果确定请求了停止清除,则在步骤170将加热器22关闭,从而停止加热滤罐20。
在步骤170后面的步骤172中,当加热器22处于关断状态时继续清除一段预定的时间,直到滤罐20冷却到所需的状态。如果在步骤172确定已过预定的等待时间,则在步骤174中在此时间点关断清除气体循环泵32。
通过上述过程,在清除气体循环泵32停止之前滤罐20可以冷却到一定程度。随着滤罐20的温度下降,滤罐20表现出较大的吸附能力,即较高的吸附燃料蒸气的能力,因此,使用本实施例的系统,在清除停止时滤罐20能提供优异的燃料蒸气吸附能力。
如上所述,根据图10的程序,在开始清除时,在清除气体循环泵32打开之前,可以打开加热器22,并且在停止清除时,在泵32停止前关闭加热器22。因此,在本实施例的系统中燃料浓度相当高的处理气体在刚开始清除后燃料浓度相当高的处理气体可以被燃料箱10回收,并且在停止清除期间滤罐20可以吸附大量的燃料蒸气。
虽然在上述第六实施例中,在清除开始时清除气体循环泵32开始工作之前启动加热器22,但加热器22和泵32在清除开始时的操作并不限于本实施例的这些。例如,清除气体循环泵32和加热器22可以在开始清除的相同时间启动。在这种情况下,由于加热器22的加热功能,燃料蒸气更容易从滤罐20中释放出来,因此可以从刚开始清除后的时间起产生燃料浓度较高的滤罐流出气体。
在上述第六实施例中,清除气体循环泵32对应于“滤罐流出气体产生装置”,高浓度气体分离单元34对应于“蒸气冷凝装置”,而加热器22对应于“滤罐加热装置”。
而且,在第六实施例中,一部分ECU 62执行步骤160到166而实现“启动滤罐加热装置操作的装置”,一部分ECU 62执行步骤168到174而实现“停止滤罐加热装置操作的装置”。第七实施例
图11示意性表示根据本发明第七实施例的蒸气燃料排放系统的结构。图11的系统与图1所示的第一实施例的结构相似,但还包括低浓度气体清除通道150和控制阀152,如下所述。另外,图11的系统包括ECU(电子控制单元)154,与第一实施例的ECU 62相比执行另外的功能。
更具体地,低浓度气体清除通道150连接到滤罐流入气体通道54位于中浓度气体分离单元44和压力调节阀56之间的部分上,用于输送流体。低浓度气体清除通道150包括控制阀152,用于控制通道150的开/关状态,并在其远离滤罐流入气体通道54的一个末端部分(未图示)与内燃机的吸气通道相通。
在本发明实施例中,作为控制计算机的上述ECU 154用于控制,例如加热器22和清除气体循环泵32。如图11所示,燃料喷射阀156连接到ECU 154。每个燃料喷射阀156位于内燃机每个汽缸的吸气口,用于将从燃料管16输送的燃料喷射到内燃机的汽缸中。在ECU 154还连接有传感器,用于检测计算燃料喷射量所需的各种数据,燃料喷射量是通过燃料喷射阀156喷射的燃料量。
更具体地,空气流量计158、内燃机转速传感器160、节气门传感器162、废气O2传感器164和其它传感器都连接到ECU 154。空气流量计158适于检测内燃机吸气通道吸入的进入空气的流量GA。内燃机转速传感器160适于检测内燃机转速NE,节气门传感器162适于检测装在吸气通道中的节气门阀的打开角度。废气O2传感器164位于内燃机的排气管中,适于判断废气/燃料比是富还是贫。清除操作
下面描述第七实施例的系统清除滤罐20中储存的燃料蒸气的操作。
在第七实施例中,当清除条件成立时,ECU 154启动清除气体循环泵32。在此实施例中,仅当滤罐流出气体中的燃料浓度等于或高于预定值,例如,等于或高于15%时才满足清除条件。这样,仅当滤罐流出气体中的燃料浓度等于或高于15%时清除气体循环泵32才工作。
清除气体循环泵32启动时,在泵32入口产生的负压作用到滤罐20上,从而滤罐流出气体从滤罐20流入清除通道28。清除气体循环泵32形成的负压还通过循环气体通道60作用到中浓度气体分离单元44的第二室50。结果,清除气体循环泵32以稳定状态工作,将清除通道28输送的滤罐流出气体与循环气体通道60输送的循环气体的混合气体压缩,并将压缩的混合气体输送到高浓度气体分离单元34的第一室38。在此实施例中,清除气体循环泵32产生的负压还作用到处理气体循环通道43。
当清除气体循环泵32按上述方式工作时,泵32的输送压力作用在系统从泵32的出口到压力调节阀56之间的部分。另一方面,根据切换阀41的选择状态,高浓度气体分离单元34的第二室40受到燃料箱压力和泵32产生的负压二者之一。而且,泵32产生的负压作用在中浓度气体分离单元44的第二室50。在这种情况下,高浓度气体分离单元34的第一分离膜36的相反两侧以及中浓度气体分离单元44的第二分离膜46的相反两侧形成压力差,从而第一室38、48的压力分别高于第二室40、50的压力。
第一分离膜36和第二分离膜46中的每一个是由高分子材料,例如聚酰亚胺制成的薄膜。当分离膜36、46暴露在含有空气和燃料的气体中时,膜36、46能利用空气和燃料相对于膜的溶解度差别将空气和燃料彼此分离。更具体地,当含有燃料蒸气的气体输送到分离膜36、46相反表面的一侧,同时作用在膜36、46相反两侧的压力不同,其中较高的压力作用在膜36、46输入气体的上述一个表面,分离膜36、46允许燃料蒸气浓度升高的冷凝气体从其中通过流向膜36、46的低压一侧。
当清除气体循环泵32开始将上述混合气体输送到高浓度气体分离单元34的第一室38,同时在第一分离膜36相反两侧形成压力差,使第一室38的压力高于第二室40,当通过第一分离膜36时混合气体中的燃料蒸气冷凝,得到的气体进入第二室40。结果,与混合气体进入第一室38时的测量值相比,第一室38中的燃料浓度减小,从而在第一室38中形成“中浓度气体”,由此在第二室40中得到高燃料蒸气浓度的处理气体。
中浓度气体流出高浓度气体分离单元34的第一室38,接着流入中浓度气体分离单元44的第一室48。当中浓度气体流入中浓度气体分离单元44的第一室48时,在通过第二分离膜46时中浓度气体中的燃料蒸气被冷凝,从而在第二室50中产生燃料浓度高于中浓度气体的循环气体。所产生的循环气体通过循环气体通道60进入清除气体循环泵32的入口。
第七实施例的蒸气燃料排放控制系统在稳定状态下工作,从而在滤罐流出气体中的燃料浓度为15%时,循环气体中的燃料浓度变为65%左右。在这种情况下,混合气体中的燃料浓度变为等于60%。所设计的高浓度气体分离单元34将燃料蒸气浓度为60%的混合气体分离为含燃料蒸气95%或更高的处理气体以及含燃料蒸气40%的中浓度气体。并且,所设计的中浓度气体分离单元44将输入的含燃料蒸气约40%的中浓度气体分离为含燃料蒸气约65%的循环气体和燃料蒸气少于5%的滤罐流入气体。当本实施例的系统在稳定状态下工作时,最终可以得到含95%或更多的燃料蒸气的处理气体以及燃料蒸气少于5%的滤罐流入气体。
油泵12能将燃料的压力提高到300kPa。当如此高的压力作用在输入油泵12中的处理气体时,处理气体中的燃料蒸气变为液态燃料。如果处理气体中含有大量空气,油泵12将产生某些问题,例如气阻和有害噪音。另一方面,如果处理气体中仅含有少量空气,则不产生这些问题,因为当处理气体增压时空气溶解到燃料中。
不引起气阻或有害噪音的空/燃比是根据油泵12的燃料输送能力,即,油泵12输送燃料的流量和压力确定的。如果处理气体中的空气浓度少于5%,即如果处理气体中燃料浓度等于或高于95%,一般安装在车辆上的油泵(即油泵12)将不产生气阻或有害噪音的问题。因此,在本发明实施例中,蒸气燃料排放控制系统,当与装在车辆上的一般油泵12一起使用时,能将处理气体循环到燃料箱10中,而不引起气阻和有害噪音的问题。
在第七实施例的系统中,滤罐流入气体被重新用于清除滤罐20中所积存的燃料蒸气。将燃料浓度非常低的气体通过滤罐20内部,能清除滤罐20中积存的燃料蒸气。在本实施例的系统中,滤罐流入气体中的燃料浓度被限制在等于或低于5%。并且,系统在清除燃料蒸气期间使加热器22加热滤罐20。以这种方式,随着滤罐20的温度升高,积存在滤罐20中的燃料蒸气容易从滤罐20中解吸或释放。因此,使用本发明实施例的系统,可以用滤罐流入气体有效地清除燃料蒸气。
在第七实施例的蒸气燃料排放控制系统中,当系统处于稳定状态,其中混合气体中的燃料浓度为60%左右时,处理气体中的燃料浓度可以达到等于或高于95%。但是,在其它情况下,例如刚开始启动清除气体循环泵32后,燃料浓度明显低于60%的低燃料浓度的混合气体可以流入高浓度气体分离单元34。在这种情况下,高浓度气体分离单元34的第二室40中产生燃料浓度低于95%的处理气体。
如果燃料浓度低于95%的处理气体流过处理气体通道42并输送到油泵12,则油泵12将产生诸如气阻和有害噪音的问题,另外,由于待喷射的燃料中存在气泡将增大燃料喷射量的误差。考虑到这些问题,本发明实施例的系统适于根据浓度传感器61的输出信号检测处理气体中的燃料浓度,并切换切换阀41,从而当检测的燃料浓度低于目标值(如95%)时处理气体流入处理气体循环通道43。这样,如上所述,即使流入高浓度气体分离单元34的混合气体中的燃料浓度明显低于系统处于稳定状态时建立的燃料浓度时,本实施例的系统也能有效避免或抑制气阻和有害噪音。燃料喷射量的控制
下面描述第七实施例的系统控制燃料喷射量的方法。
在第七实施例中,ECU 154根据空气流量计158和内燃机转速传感器160的输出信号确定每转吸入空气Ga/NE的数量。接着,ECU 154计算达到与吸入空气量Ga/NE相关的所需空/燃比(例如化学计量的空/燃比)的燃料喷射量,作为基本的燃料喷射量。接着ECU 154通过将所计算出的基本燃料喷射量进行各种校正,计算出最终燃料喷射量。
ECU 154根据废气O2传感器164的输出信号执行空/燃比反馈控制,作为校正燃料喷射量的控制。在空/燃比反馈控制中,计算空/燃比反馈因子FAF作为校正基本燃料喷射量的校正因子。当废气O2传感器164检测的废气空/燃比是富燃料时,沿减小的方向更新空/燃比反馈因子FAF;而检测的废气空/燃比是贫燃料时则沿增大的方向更新。如果使用这样更新的FAF校正基本燃料喷射量,当废气的空燃比是富时逐渐减小燃料喷射量,而当废气空/燃比是贫时逐渐增大燃料喷射量。这样,根据空/燃比反馈控制,燃料喷射量可以增大或减小,从而把废气的空/燃比保持在化学计量的空/燃比附近。清除滤罐流入气体和清除的影响
本实施例的系统包括低浓度气体清除通道150,使滤罐流入气体通道54与内燃机的吸气通道相通,如上所述。在滤罐流入气体通道54中生成与压力调节阀56的设定压力对应的正压。另一方面,内燃机的吸气通道中生成吸入空气的真空压力。因此,通过打开控制阀152,能通过低浓度气体清除通道150把滤罐流入气体清除到内燃机的吸气通道。
滤罐流入气体至少含有5%的燃料蒸气。因此,如果滤罐流入气体被清除到吸气通道,则内燃机中待燃烧的空气一燃料混合物的空/燃比将比清除滤罐流入气体之前测量的富。如果在空/燃比反馈控制期间空/燃比变化,空/燃比反馈因子FAF沿减小的方向更新,从而使空/燃比接近化学计量的空/燃比。结果,空/燃比反馈校正因子FAF仅变化ΔFAF,对应于清除时供应内燃机的燃料蒸气量。根据变化量ΔFAF计算滤罐流入气体燃料浓度的方法
在上述本实施例的系统中,当滤罐流入气体被清除到吸气通道后,如上所述,空/燃比反馈校正因子FAF仅变化了ΔFAF,对应于清除时供应内燃机的燃料蒸气量。在这种情况下,ECU 154根据变化量ΔFAF检测清除时供应内燃机的燃料量。
同时,根据低浓度气体清除通道150相反两侧生成的压力差以及通道150的流阻,确定清除到吸气通道的滤罐流入气体的流量。由于滤罐流入气体通道54的压力可以认为是固定值(即压力调节阀56的设定压力),则根据内燃机吸气真空,检测低浓度气体清除通道150相反两侧的压力差。吸气真空压力可以用公知的方法检测,例如,使用吸气压力传感器(未图示)的实际测量,或根据吸入空气流量Ga进行估计。这样,ECU 154能利用公知的方法检测低浓度气体清除通道150相反两侧产生的压力差。低浓度气体清除通道150的流阻是根据控制阀152的选择状态或位置唯一确定的数值。这样,根据公知方法检测的压力差以及由控制阀152选择状态确定的流阻,ECU 154能计算清除到内燃机的滤罐流入气体的流量。
一旦确定了清除时供应的燃料量以及清除到内燃机的气体流量,就可以计算清除气体中的燃料浓度。这样,根据开始清除后出现的空/燃比反馈因子FAF的变化量ΔFAF,ECU 154能计算(或估计)滤罐流入气体中的燃料浓度。
图12是ECU 154执行的控制程序的流程图,用于根据上述方法估计滤罐流入气体。
在图12所示的程序中,首先执行步骤200,判断是否满足估计滤罐流入气体中的燃料浓度的条件。为了按上述方法估计滤罐流入气体中的燃料浓度,需要将滤罐流入气体输送到内燃机的吸气通道。因此,仅当吸气通道中形成适合的吸入真空时才进行估计。而且,在清除滤罐流入气体期间,需要减小燃料喷射量,以便抵消清除到吸气通道中的燃料蒸气量,从而避免空/燃比的起伏。因此,仅仅在如上所述减小后的燃料喷射量仍大于燃料喷射阀156的可控最小燃料喷射量时才可以估计滤罐流入气体中的燃料浓度。基于这些原因,作为估计燃料浓度的典型条件,在步骤200判断吸气通道是否形成适合的吸气真空,以及减小后测量的燃料喷射量是否等于或大于最小燃料喷射量。
当内燃机具有执行分层进气燃烧和平均充气燃烧二者之一的功能时,执行分层进气燃烧期间清除滤罐流入气体可以导致在汽缸中不能形成由两层组成的燃料进气的状况,并且不能达到预期的燃烧性能。考虑到内燃机的类型,在步骤200待判断的估计条件中,应当包括“内燃机处于平均充气燃烧的工作模式”的条件。
重复执行上述步骤200,直到满足估计滤罐流入气体中的燃料浓度的条件。如果满足条件,则在步骤202中打开控制阀152。
接着,在步骤204中判断是否已过空/燃比的确定周期。当在步骤202中打开控制阀152时,滤罐流入气体开始以一定的流量被清除到内燃机的吸气通道,其流量是根据低浓度气体清除通道150的流阻以及吸气真空的大小确定的。一旦滤罐流入气体开始被清除,空/燃比反馈因子FAF开始更新,从而减小空/燃比偏离目标值。当透过适合的时间周期时,反馈因子FAF更新到一个抵消了清除影响的数值。上述确定的周期是以这种方式将FAF值所需的时间确定为适合的。如果在步骤204确定没有经过确定周期,可能是清除的影响没有完全被反馈因子FAF反映。另一方面,如果在步骤204确定已过确定周期,则确定清除的影响完全被反馈因子FAF反映。
在图12的程序中,重复执行步骤204,直到确定已过确定周期。如果确定已过了确定周期,则在步骤206中检测开始清除后空/燃比的某些特征值出现的变化量,更具体地,空/燃比反馈因子FAF的变化量ΔFAF。
开始清除后出现的变化量ΔFAF与清除时供应内燃机的燃料蒸气量之间具有关系,如上所述。在本发明实施例中,根据变化量ΔFAF,ECU 154能估计滤罐流入气体中的燃料浓度。在图12的程序中,步骤206之后是步骤208,在步骤208估计滤罐流入气体中的燃料浓度。
如上所述,根据图12的程序,中浓度气体分离单元44中产生的低浓度滤罐流入气体中的燃料浓度可以根据与燃料浓度相关的ΔFAF,被高精确度地估计。需要注意的是,内燃机原始就设有废气O2传感器,用于检测废气的空/燃比,为计算空/燃比反馈因子FAF提供基本数据。这样,本发明实施例的系统能容易和高精确度地估计滤罐流入气体中的燃料浓度,而不明显增大系统的制造成本。
虽然布置在排气管中的传感器是废气O2传感器164(即,判断废气是富燃料还是贫燃料的传感器),但本发明并不限于这种结构。例如,排气管中的传感器可以是废气空/燃比传感器,适于产生表示废气空/燃比值的输出信号。
在第七实施例中,在清除滤罐流入气体期间执行空/燃比反馈控制,并且根据反馈控制期间出现的空/燃比反馈因子FAF的变化量ΔFAF,估计滤罐流入气体中的燃料浓度。但是,估计方法并限于这种方法。例如,当使用废气空/燃比传感器时,如果执行清除操作而不执行空/燃比反馈控制,可以直接测量由清除影响引起的废气空/燃比的变化量ΔA/F。在这种条件下,根据变化量ΔA/F可以估计滤罐流入气体中的燃料浓度,因为ΔA/F值与滤罐流入气体中的燃料浓度相关。
虽然在上述第七实施例中假定内燃机吸气通道内未设置燃料浓度传感器,但本发明不限于这种结构。如果内燃机的吸气通道设有燃料浓度传感器(例如空/燃比传感器或HC传感器),用于检测流过吸气通道的气体中的燃料浓度,根据燃料浓度浓度传感器检测的吸气通道中的空/燃比(或燃料浓度),可以估计(或计算)清除到内燃机的滤罐流入气体中的燃料浓度。分离膜状况的判断
如上所述,第七实施例的系统包括检测高浓度气体分离单元34产生的处理气体中的燃料浓度的浓度传感器61。这样,本实施例的系统能估计流出中浓度气体分离单元44的滤罐流入气体中的燃料浓度,并且还能实际测量高浓度气体分离单元34产生的处理气体中的燃料浓度。
当系统正常工作时,滤罐流入气体中的燃料浓度和处理气体中的燃料浓度之间形成某种关系。如果系统中出现任何异常,特别是,如有异常,例如第一分离膜36或第二分离膜46退化或破裂,上述关系可以偏离适当值。这样,通过判断滤罐流入气体燃料浓度的估计值与处理气体燃料浓度的实际测量值之间是否确立适当的关系,本实施例的系统能高精确度地确定第一分离膜36和第二分离膜46的状况。
图13是ECU 154执行的控制程序的流程图,用于实现上述功能。
在图13的程序中,首先执行步骤210,判断滤罐流入气体中的燃料浓度的估计是否已经结束。重复执行步骤210,直到确定燃料浓度的估计结束。如果满足条件,根据浓度传感器61的输出信号,在步骤212实际测量处理气体中的燃料浓度。
在图13的程序中,接着在步骤214中判断在根据图12所示程序估计的滤罐流入气体中的燃料浓度与上述步骤212中实际测量的处理气体中的燃料浓度之间是否确立适当的关系。
更具体地,判断燃料浓度之差是否落在适当的范围内,此范围表示第一分离膜36和第二分离膜46都是正常的。ECU 154储存用于判断上述差别是否适当的判断值(固定值),或者定义判断值与处理气体中的燃料浓度(或滤罐流入气体燃料浓度)之间关系的图。在步骤214,根据上述固定值或从上述图中读出的判断值,判断滤罐流入气体中的燃料浓度与处理气体中的燃料浓度之间是否形成适当关系。
在图13的程序中,当在步骤214中确定两个浓度之间的关系是适当的,则在步骤216中判断分离膜,即第一分离膜36和第二分离膜46是否正常。
如果在步骤214中确定两个浓度之间的关系不适当,则在步骤218中确定分离膜异常,即第一分离膜36和第二分离膜46中至少一个膜出现异常,例如退化或撕裂或破损。
如上所述,根据图13的程序,根据由变化量ΔFAF估计的滤罐流入气体中的燃料浓度以及浓度传感器61实际测量的处理气体中的燃料浓度,高精确度地判断第一分离膜36和第二分离膜46其中之一或二者是否出现异常。这样,本实施例的系统能及时地检测分离膜36、46中的异常。
在第七实施例的蒸气燃料排放控制系统中,中浓度气体分离单元44流出的低浓度气体,即用于清除滤罐20的燃料蒸气的滤罐流入气体,被抽到内燃机的吸气通道。当滤罐流入气体被抽入吸气通道时,与滤罐流出气体相比,滤罐流入气体的短缺增大,大量的空气通过负压防止阀58流入滤罐。
为了有效地释放滤罐20中所吸附的燃料蒸气,需要流入滤罐20的气体具有低的燃料浓度。如果滤罐流入气体的量减少,流入滤罐20的环境空气的量就增大,则流过滤罐20的气体中的燃料浓度进一步减小。因此,使用本实施例的系统,滤罐20中的大量燃料蒸气可以释放,同时滤罐流入气体被清除到内燃机的吸气通道,这样保证优异的清除性能。
在上述第七实施例中,通过对比根据变化量ΔFAF估计的滤罐流入气体中的燃料浓度与浓度传感器61实际测量的处理气体中的燃料浓度,可以判断第一分离膜36和第二分离膜46的状况。但是,判断的方法并限于这个方法。例如,当第一分离膜36和第二分离膜46都退化时,滤罐流入气体可以具有非常高的燃料浓度。在这种情况下,仅仅根据由ΔFAF估计的燃料浓度就可以检测这些膜36、46的异常,而不必如上所述将两个浓度进行对比。这样,仅根据由ΔFAF估计的燃料浓度就可以确定第一和第二分离膜36、46的状况。
虽然在上述第七实施例中处理气体中的燃料浓度是实际测量的,并且滤罐流入气体中的燃料浓度是估计的,但是判断第一和第二分离膜36、46的状况的方法不限于这种方法。例如,可以根据都由浓度传感器实际测量的处理气体和滤罐流入气体中的燃料浓度作出判断。在另一个实例中,可以根据估计的处理气体燃料浓度以及实际测量的滤罐流入气体燃料浓度作出判断。在另一实例中,使用切换阀将处理气体和滤罐流入气体之一吸到低浓度气体清除通道150,并可以根据处理气体和滤罐流入气体中的燃料浓度作出上述判断,其中的两个浓度都是估计的。
在上述第七实施例中,为了确定第一分离膜36和第二分离膜46的状况,需要高浓度气体分离单元34的第二室40的燃料浓度(即,处理气体中的燃料浓度)以及流过滤罐流入气体通道54的气体中的燃料浓度。但是,本发明不限于这个方法。例如,可以获取高浓度气体分离单元34的第一室38的燃料浓度和相同单元34第二室40的燃料浓度,用于确定仅是第一分离膜36的状况。在另一个实例中,可以获取中浓度气体分离单元44的第一室48的燃料浓度和相同单元44的第二室50的燃料浓度,用于确定仅是第二分离膜46的状况。在又一个实例中,可以获取高浓度气体分离单元34的第一室38的燃料浓度(或者中浓度气体分离单元44的第一室48的燃料浓度),高浓度气体分离单元34的第二室40的燃料浓度,以及中浓度气体分离单元44的第二室50的燃料浓度,用于相互独立的确定第一分离膜36和第二分离膜46的状况。
在上述第七实施例中,为了仅是估计燃料浓度,其燃料浓度待估计的气体(如,滤罐流入气体)被清除到内燃机的吸气通道。但是,本发明不限于此结构。例如,除了应该估计气体中的燃料浓度的情况外,当内燃机在适于清除燃料蒸气的状态下工作时,为了加工或处理燃料蒸气,可把其燃料浓度待估计的气体(如,滤罐流入气体)清除到内燃机的吸气通道。
在上述第七实施例中,第一分离膜36和第二分离膜46对应于“分离膜”,滤罐流入气体对应于“第一气体”,而低浓度气体清除通道150和控制阀152对应于“第一气体供应装置”。废气空/燃比传感器检测的空/燃比反馈因子FAF、废气空/燃比(在修改实例中),或者燃料浓度传感器检测的吸气通道的空/燃比(或燃料浓度)对应于“空/燃比特征值”,一部分ECU 154通过计算或检测这些值实现“空/燃比特征值检测装置”。并且,在上述第七实施例中,滤罐流入气体中的燃料浓度对应于“第一浓度”,一部分ECU 154执行步骤202到步骤208实现“第一浓度估计装置”,而一部分ECU 154执行步骤214到218实现“分离膜状况判断装置”。
在上述第七实施例中,处理气体对应于“第二气体”,处理气体中的燃料浓度对应于“第二浓度”,而浓度传感器61对应于“第二浓度获取装置”和“第二浓度探测器”。
在上述第七实施例中,“第二气体供应装置”是通过将处理气体而不是滤罐流入气体引入低浓度气体清除通道150的机构而实现的,“第二浓度估计装置”是通过在处理气体被抽入到吸气通道的同时由一部分ECU 154执行步骤202到208而实现的。
并且,在上述第七实施例中,空气端口24和负压防止阀58对应于“空气供应装置”。
虽然参考典型的实施例描述了本发明,但应该理解的是,本发明并不局限于典型的实施例或结构。相反,本发明覆盖各种修改和等价结构。另外,虽然以示例性的不同组合和结构图示了典型实施例的各种元件,但其它的组合和结构,包括多、少或仅有一个元件,也在本发明的精神和范围内。

Claims (21)

1.一种内燃机的蒸气燃料排放控制系统,其特征在于,包括:
滤罐(20),用于吸附燃料箱(10)产生的燃料蒸气;
滤罐流出气体产生装置(32),用于使滤罐流出气体从滤罐(20)流出;
蒸气冷凝装置(34,44),用于将滤罐流出气体冷凝,以提供所含燃料蒸气浓度高于滤罐流出气体的处理气体;
处理气体通道(42),用于将处理气体输送到燃料箱(10);以及
燃料收集限制装置(41,43,61,62),用于当处理气体中的燃料蒸气浓度低于或预计低于预定水平时,限制处理气体流入燃料箱。
2.如权利要求1所述的蒸气燃料排放控制系统,其特征在于,燃料收集限制装置包括处理气体循环装置(41,43),用于当处理气体中的燃料蒸气浓度低于或预计低于预定水平时,将处理气体引导到蒸气冷凝装置(34,44)的上游侧。
3.如权利要求1所述的蒸气燃料排放控制系统,其特征在于,燃料收集限制装置包括:
浓度特征值检测装置(61),用于检测指示处理气体中燃料蒸气浓度的特征值;以及
第一限制装置(62,82,84),用于当根据特征值确定处理气体中的燃料蒸气浓度低于预定水平时,限制处理气体流入燃料箱。
4.如权利要求1或2所述的蒸气燃料排放控制系统,其特征在于,燃料收集限制装置包括第二限制装置(62),用于从滤罐流出气体流出滤罐的时刻算起,在一段预定时间周期内,限制处理气体流入燃料箱。
5.如权利要求3所述的蒸气燃料排放控制系统,其特征在于,燃料收集限制装置还包括:
低浓度期计数装置(62,90),用于根据特征值,统计处理气体中的燃料蒸气浓度低于预定水平的低浓度期;以及
第一清除停止装置(62,92,96),用于停止滤罐流出气体产生装置(32),从而在低浓度期达到预定的停止判断期时,让滤罐流出气体停止从滤罐中流出。
6.如权利要求3所述的蒸气燃料排放控制系统,其特征在于还包括:
浓度变化趋势检测装置(62,94),用于在根据特征值确定处理气体中的燃料蒸气浓度低于预定水平时,检测处理气体中的燃料蒸气浓度的变化趋势;以及
第二清除停止装置(62,96),用于停止滤罐流出气体产生装置(32),从而在处理气体中的燃料蒸气浓度具有减小的趋势或者具有保持基本相同水平的趋势时,停止滤罐流出气体从滤罐中流出。
7.如权利要求5或6所述的蒸气燃料排放控制系统,其特征在于还包括:
逝去时间计数装置(62,98),当滤罐流出气体产生装置(32)停止后,统计逝去的时间;以及
第一清除重新启动装置(62,100,80),当停止后的逝去时间达到预定的重新启动判断时间时,重新启动滤罐流出气体产生装置(32)。
8.如权利要求7所述的蒸气燃料排放控制系统,其特征在于还包括:
燃料蒸气产生估计装置(62,110,112,114),用于估计燃料箱(10)中燃料蒸气产生的状态;以及
重新启动判断时间设定装置(62,116),用于根据燃料蒸气的产生状态设定重新启动判断时间。
9.如权利要求8所述的蒸气燃料排放控制系统,其特征在于,燃料蒸气产生估计装置包括至少一个用于检测大气温度的大气温度检测装置(62,110),和用于检测内燃机工作状态的内燃机状态检测装置(62,112)。
10.如权利要求5或6所述的蒸气燃料排放控制系统,其特征在于还包括:
燃料补给检测装置(62),用于检测燃料箱(10)的燃料补给;
第二清除重新启动装置(62,102,80),用于在滤罐流出气体产生装置停止期间检测到燃料补给时,重新启动滤罐流出气体产生装置(32)。
11.如权利要求1-3,5,6,8和9中任一项所述的蒸气燃料排放控制系统,其特征在于还包括:
吸气真空控制阀(122),处于打开状态时,包括滤罐(20)、燃料箱(10)和蒸气冷凝装置(34,44)的系统与内燃机的吸气通道相通,而处于关闭状态时,系统与吸气通道之间切断;
真空引入装置(62),用于通过吸气真空控制阀将吸气真空引入系统中;
压力检测装置(124),用于检测系统内的压力;以及
第一泄露检测装置(62),用于根据吸气真空引入系统后系统内压力的变化检测系统的泄露。
12.如权利要求1-3,5,6,8和9中任一项所述的蒸气燃料排放控制系统,其特征在于滤罐流出气体产生装置包括清除泵(32),清除泵(32)从滤罐(20)和大气二者之一接收气体并输送气体,控制系统还包括:
系统增压装置(62),用于通过使清除泵输送从大气抽取的气体,增大包括滤罐(20)、燃料箱(10)和蒸气冷凝装置(34,44)的系统内的压力;
压力检测装置(136),用于检测系统内的压力;以及
第二泄露检测装置,用于根据系统增压后系统内的压力变化检测系统的泄露。
13.一种内燃机的蒸气燃料排放控制系统,其特征在于包括:
滤罐(20),用于吸附燃料箱(10)产生的燃料蒸气;
滤罐流出气体产生装置(32),用于使滤罐流出气体从滤罐(20)流出;
蒸气冷凝装置(34,44),用于将滤罐流出气体冷凝,以提供所含燃料蒸气浓度高于滤罐流出气体的处理气体;
处理气体通道(42),用于将处理气体输送到燃料箱(10);
旁路通道(140),使蒸气冷凝装置(34)的上游侧与燃料箱(10)相通;
切换阀(142),处于打开状态时,旁路通道(140)使蒸气冷凝装置(34)的上游侧与燃料箱连通,而处于关闭状态时切断旁路通道(140);以及
切换阀控制装置(62,150,152,154),用于控制切换阀(142),使得切换阀在滤罐流出气体产生装置(32)停止期间处于打开状态,而在滤罐流出气体产生装置工作期间处于关闭状态。
14.一种内燃机的蒸气燃料排放控制系统,其特征在于包括:
滤罐(20),用于吸附燃料箱(10)产生的燃料蒸气;
滤罐流出气体产生装置(32),用于使滤罐流出气体从滤罐(20)流出;
蒸气冷凝装置(34,44),用于将滤罐流出气体冷凝,以提供所含燃料蒸气浓度高于滤罐流出气体的处理气体;
处理气体通道(42),用于将处理气体输送到燃料箱(10);以及
滤罐加热装置(22),用于加热滤罐(20)。
15.如权利要求14所述的蒸气燃料排放控制系统,其特征在于,还包括装置(62,160,162,164,166),用于在启动滤罐流出气体产生装置(32)之前,启动滤罐加热装置(22)的工作。
16.如权利要求14或15所述的蒸气燃料排放控制系统,其特征在于,还包括装置(62,168,170,172,174),用于在停止滤罐流出气体产生装置(32)之前,停止滤罐加热装置(22)的工作。
17.如权利要求1-3,5,6,8,9,13-15中任一项所述的蒸气燃料排放控制系统,其特征在于,蒸气冷凝装置包括分离膜(36,46),将流出滤罐(20)的滤罐流出气体分离成含高浓度燃料蒸气的高浓度处理气体和含低浓度燃料蒸气的低浓度处理气体,蒸气燃料排放控制系统还包括:
第一气体供应装置(150,152),用于将高浓度处理气体和低浓度处理气体二者之一供应到内燃机的吸气系统;
空/燃比特征值检测装置(154),用于检测下面三者之中的至少一个作为空/燃比特征值:流过内燃机吸气通道的吸入气体中的燃料浓度;供应内燃机进行燃烧的空气一燃料混合物的空/燃比;以及用于校正燃料喷射量使空/燃比保持在所需值的校正因子;
第一浓度估计装置(154,202,204,206,208),用于根据在将所述高浓度处理气体和低浓度处理气体之一供应到吸气系统期间检测的空/燃比特征值,估计所述二种气体之一的燃料浓度作为第一浓度;以及
分离膜状况判断装置(154,214,216,218),用于根据作为第一浓度的燃料浓度的估计值,判断分离膜的状况。
18.如权利要求17所述的蒸气燃料排放控制系统,其特征在于,还包括第二浓度获取装置(61),用于获取高浓度处理气体和低浓度处理气体中的另一种气体中的燃料浓度作为第二浓度,其中
分离膜状况判断装置,根据第一浓度和第二浓度,判断分离膜的状况。
19.如权利要求18所述的蒸气燃料排放控制系统,其特征在于,第二浓度获取装置包括检测另一种气体中的燃料浓度的第二浓度探测器。
20.如权利要求18所述的蒸气燃料排放控制系统,其特征在于,第二浓度获取装置包括:
第二气体供应装置,用于在所述一种气体没有供应到吸气系统的条件下,向吸气系统供应另一种气体;以及
第二浓度估计装置,用于根据在将另一种气体供应到吸气系统期间检测的空/燃比特征值,估计另一种气体中的燃料浓度作为第二浓度。
21.如权利要求17所述的蒸气燃料排放控制系统,其特征在于,还包括:
滤罐流入气体通道(54),低浓度处理气体通过其返回到滤罐(20),作为清除积存在滤罐中的燃料蒸气的气体;以及
空气供应装置,用于使空气流入滤罐(20),流入的量对应于滤罐流出气体量和滤罐流入气体量之差,其中
所述低浓度处理气体和高浓度处理气体中之一是低浓度处理气体。
CNB031225209A 2002-04-17 2003-04-17 蒸气燃料排放控制系统 Expired - Fee Related CN100510372C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP115337/2002 2002-04-17
JP2002115337A JP3876753B2 (ja) 2002-04-17 2002-04-17 蒸発燃料処理装置
JP2002121902A JP2003314340A (ja) 2002-04-24 2002-04-24 蒸発燃料処理装置
JP121902/2002 2002-04-24

Publications (2)

Publication Number Publication Date
CN1451861A true CN1451861A (zh) 2003-10-29
CN100510372C CN100510372C (zh) 2009-07-08

Family

ID=29217978

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031225209A Expired - Fee Related CN100510372C (zh) 2002-04-17 2003-04-17 蒸气燃料排放控制系统

Country Status (6)

Country Link
US (1) US6786207B2 (zh)
EP (1) EP1359311B1 (zh)
KR (1) KR100579066B1 (zh)
CN (1) CN100510372C (zh)
DE (1) DE60331499D1 (zh)
ES (1) ES2341323T3 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963117A (zh) * 2009-07-22 2011-02-02 罗伯特·博世有限公司 用于输送流体的装置
CN102220910A (zh) * 2010-04-15 2011-10-19 福特环球技术公司 机动车辆压缩空气储存系统的冷凝物管理
CN103748349A (zh) * 2011-08-25 2014-04-23 英瑞杰汽车系统研究公司 用于处理混合动力车辆中的燃料蒸气的方法
CN109932270A (zh) * 2019-03-30 2019-06-25 廊坊华安汽车装备有限公司 一种碳罐吸附性试验设备
CN113358362A (zh) * 2021-06-22 2021-09-07 浙江吉利控股集团有限公司 一种负压检测装置、方法和含该装置的车辆
CN113417765A (zh) * 2021-06-22 2021-09-21 浙江吉利控股集团有限公司 一种正压检测装置、方法和含该装置的车辆

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959696B2 (en) 2002-04-12 2005-11-01 Briggs & Stratton Corporation Internal combustion engine evaporative emission control system
JP3932963B2 (ja) * 2002-04-17 2007-06-20 トヨタ自動車株式会社 蒸発燃料処理装置
JP2005248895A (ja) * 2004-03-05 2005-09-15 Toyota Motor Corp 内燃機関の制御装置
US20060053868A1 (en) * 2004-09-16 2006-03-16 Jae Chung Fuel vapor detection system for vehicles
US7185640B2 (en) * 2004-11-05 2007-03-06 Briggs & Stratton Corporation Integrated fuel tank and vapor containment system
US7086390B2 (en) * 2004-11-05 2006-08-08 Briggs & Stratton Corporation Integrated fuel tank and vapor containment system
JP4471370B2 (ja) * 2004-12-07 2010-06-02 株式会社デンソー 燃料蒸気処理装置
US20080041226A1 (en) * 2005-09-23 2008-02-21 Hiltzik Laurence H Selective heating in adsorbent systems
US20070266997A1 (en) * 2005-09-23 2007-11-22 Clontz Clarence R Jr Evaporative emission control using selective heating in an adsorbent canister
US7435289B2 (en) * 2005-09-27 2008-10-14 Briggs & Stratton Corporation Integrated air cleaner and vapor containment system
JP4704266B2 (ja) * 2006-04-18 2011-06-15 本田技研工業株式会社 燃料蒸気処理システム
US7527045B2 (en) * 2007-08-03 2009-05-05 Honda Motor Co., Ltd. Evaporative emission control system and method for internal combustion engine having a microcondenser device
US20100024781A1 (en) * 2008-07-30 2010-02-04 Jerry Wegendt Compressed Fuel Supply System
DE102008046514B4 (de) * 2008-09-10 2017-12-28 Continental Automotive Gmbh Verfahren, Vorrichtung und System zum Betreiben einer Brennkraftmaschine
US8388743B2 (en) * 2008-10-30 2013-03-05 Aisan Kogyo Kabyshiki Kaisha Separation membrane module and fuel vapor processing apparatus incorporating the same
DE102008060248A1 (de) * 2008-12-04 2010-06-17 Continental Automotive Gmbh Tankentlüftungssystem
JP5290730B2 (ja) * 2008-12-18 2013-09-18 株式会社マーレ フィルターシステムズ 蒸発燃料処理装置
JP5154507B2 (ja) * 2009-05-18 2013-02-27 愛三工業株式会社 蒸発燃料処理装置
US8474439B2 (en) * 2009-05-21 2013-07-02 Aisan Kogyo Kabushiki Kaisha Fuel vapor processors
JP2011111920A (ja) * 2009-11-24 2011-06-09 Toyota Motor Corp 蒸発燃料処理装置
US8757132B2 (en) * 2010-03-08 2014-06-24 Aisan Kogyo Kabushiki Kaisha Fuel vapor processors
US20110303197A1 (en) 2010-06-09 2011-12-15 Honda Motor Co., Ltd. Microcondenser device
JP5524018B2 (ja) * 2010-10-12 2014-06-18 愛三工業株式会社 蒸発燃料処理装置
DE102011002021A1 (de) * 2011-04-13 2012-10-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftstoffanlage
US8843265B2 (en) * 2012-04-23 2014-09-23 Chrysler Group Llc Turbo-charged engine purge flow monitor diagnostic
JP5582367B2 (ja) * 2012-07-25 2014-09-03 株式会社デンソー 蒸発燃料処理装置
KR102003405B1 (ko) * 2012-12-27 2019-07-24 대우조선해양 주식회사 연료가스를 이용한 퍼징 시스템
US9341148B2 (en) * 2013-02-04 2016-05-17 Briggs & Stratton Corporation Evaporative emissions fuel system
JP6040962B2 (ja) * 2014-06-03 2016-12-07 株式会社デンソー 蒸発燃料処理装置
KR101486892B1 (ko) 2014-10-10 2015-01-29 사단법인 한국선급 유증기 처리 시스템 및 이를 이용한 유증기 처리방법
US10312536B2 (en) 2016-05-10 2019-06-04 Hamilton Sundstrand Corporation On-board aircraft electrochemical system
US9879623B2 (en) * 2016-05-25 2018-01-30 Fca Us Llc Evaporative emissions control system including a purge pump and hydrocarbon sensor
US10300431B2 (en) 2016-05-31 2019-05-28 Hamilton Sundstrant Corporation On-board vehicle inert gas generation system
US10307708B2 (en) * 2016-06-24 2019-06-04 Hamilton Sundstrand Corporation Fuel tank system and method
CN109906164B (zh) * 2016-09-28 2023-03-10 伊顿智能动力有限公司 蒸发排放物隔离模块凸轮系统
US10427800B2 (en) 2016-10-31 2019-10-01 Hamilton Sundstrand Corporation Air separation system for fuel stabilization
US10150571B2 (en) 2016-11-10 2018-12-11 Hamilton Sundstrand Corporation On-board aircraft reactive inerting dried gas system
KR20200104020A (ko) * 2019-02-26 2020-09-03 현대자동차주식회사 액티브 퍼지 시스템 작동시 퍼지 잔류 가스 제거 방법
US11703001B2 (en) * 2021-04-19 2023-07-18 Ford Global Technologies, Llc Systems and methods for passive purging of a fuel vapor canister
LU501816B1 (fr) * 2022-04-07 2023-10-09 Plastic Omnium Advanced Innovation & Res Dispositif de stockage de carburant comprenant un dispositif de gestion de gaz issus d’un canister

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117123A (en) * 1977-03-22 1978-10-13 Toyota Motor Corp Engine fuel supply system device
JPS62279825A (ja) 1986-05-27 1987-12-04 Nippon Kokan Kk <Nkk> 混合ガスから炭化水素蒸気回収方法
JPS63270524A (ja) 1987-04-28 1988-11-08 Nkk Corp 炭化水素蒸気の2段ガス分離方法
JP3032595B2 (ja) 1991-03-16 2000-04-17 日東電工株式会社 ガス分離方法
JPH06147037A (ja) 1992-11-17 1994-05-27 Nissan Motor Co Ltd エンジンの蒸発燃料排出防止装置
JP2910607B2 (ja) * 1995-02-24 1999-06-23 トヨタ自動車株式会社 車両用蒸発燃料処理装置
US5957113A (en) 1997-03-31 1999-09-28 Nok Corporation Fuel vapor recovery apparatus
JPH10274106A (ja) 1997-03-31 1998-10-13 Nok Corp 燃料蒸気回収装置
JP3363342B2 (ja) * 1997-05-14 2003-01-08 本田技研工業株式会社 車両用燃料タンクのベント装置
SE512575C2 (sv) * 1998-08-21 2000-04-03 Volvo Ab Ventilationssystem för bränsletankar
US6174351B1 (en) * 1999-03-26 2001-01-16 Delaware Capital Formation, Inc. Pressure management and vapor recovery system for filling stations
EP1124053A3 (en) 2000-02-09 2003-01-08 Nissan Motor Co., Ltd. Fuel vapor treatment system
US6230693B1 (en) * 2000-03-08 2001-05-15 Delphi Technologies, Inc. Evaporative emission canister with heated adsorber
JP3659482B2 (ja) 2000-06-08 2005-06-15 日産自動車株式会社 燃料蒸気処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963117A (zh) * 2009-07-22 2011-02-02 罗伯特·博世有限公司 用于输送流体的装置
CN101963117B (zh) * 2009-07-22 2015-06-24 罗伯特·博世有限公司 用于输送流体的装置
CN102220910A (zh) * 2010-04-15 2011-10-19 福特环球技术公司 机动车辆压缩空气储存系统的冷凝物管理
CN102220910B (zh) * 2010-04-15 2016-07-06 福特环球技术公司 机动车辆压缩空气储存系统的冷凝物管理
CN103748349A (zh) * 2011-08-25 2014-04-23 英瑞杰汽车系统研究公司 用于处理混合动力车辆中的燃料蒸气的方法
CN103748349B (zh) * 2011-08-25 2016-07-06 英瑞杰汽车系统研究公司 用于处理混合动力车辆中的燃料蒸气的方法
CN109932270A (zh) * 2019-03-30 2019-06-25 廊坊华安汽车装备有限公司 一种碳罐吸附性试验设备
CN113358362A (zh) * 2021-06-22 2021-09-07 浙江吉利控股集团有限公司 一种负压检测装置、方法和含该装置的车辆
CN113417765A (zh) * 2021-06-22 2021-09-21 浙江吉利控股集团有限公司 一种正压检测装置、方法和含该装置的车辆

Also Published As

Publication number Publication date
EP1359311B1 (en) 2010-03-03
EP1359311A3 (en) 2004-03-03
US6786207B2 (en) 2004-09-07
CN100510372C (zh) 2009-07-08
KR20030082470A (ko) 2003-10-22
US20030196645A1 (en) 2003-10-23
EP1359311A2 (en) 2003-11-05
KR100579066B1 (ko) 2006-05-12
ES2341323T3 (es) 2010-06-18
DE60331499D1 (de) 2010-04-15

Similar Documents

Publication Publication Date Title
CN1451861A (zh) 蒸气燃料排放控制系统
CN1311153C (zh) 内燃机再循环废气温度推定装置
CN1403696A (zh) Egr控制装置及egr控制方法
CN1673505A (zh) 内燃机的燃料蒸汽处理系统
CN1918382A (zh) 内燃机的异常检测装置
CN1303312C (zh) 用于内燃机的增压器
US8109259B2 (en) Positive-pressure crankcase ventilation
CN1254605C (zh) 废气净化装置
US8132560B2 (en) Bidirectional adsorbent-canister purging
CN1225976A (zh) 液压泵控制装置和方法
CN1526938A (zh) 用于蒸发燃料净化系统的泄漏检查装置
CN1844652A (zh) 燃料蒸气处理设备
CN1526937A (zh) 用于燃油蒸气清除系统的泄漏检查装置
CN1892006A (zh) 发动机的控制装置
CN1317497C (zh) 内燃机用排气净化系统
CN1966959A (zh) 内燃机的控制装置以及控制方法
CN1704577A (zh) 用于燃料蒸汽处理单元的泄漏检测装置
CN1828031A (zh) 用于具有增压器的内燃机的控制器
US20190271271A1 (en) Evaporated-fuel treating apparatus and fuel injection control apparatus for engine provided with the same
CN1476512A (zh) 向内燃机供应经过调节的燃烧气体的方法 ,实施此方法的设备 ,确定内燃机废气中有害物数量的方法以及实施此方法的设备
KR102633947B1 (ko) 연료 증발가스 퍼지 시스템
CN1300455C (zh) 燃料供给系统
CN100339578C (zh) 使用虚拟排气传感器的空燃比控制装置及其方法
CN103998759A (zh) 用于排放系统的炭罐的调节排气加热以减少剩余物的方法和系统
JP4710712B2 (ja) 蒸発燃料処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20120417