CN1451166A - 稀土类永久磁铁材料 - Google Patents
稀土类永久磁铁材料 Download PDFInfo
- Publication number
- CN1451166A CN1451166A CN01815057A CN01815057A CN1451166A CN 1451166 A CN1451166 A CN 1451166A CN 01815057 A CN01815057 A CN 01815057A CN 01815057 A CN01815057 A CN 01815057A CN 1451166 A CN1451166 A CN 1451166A
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- rare earth
- earth element
- weight
- magnet material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明的目的在于提供具有高的保磁力和残留磁力线密度的稀土类永久磁铁材料。即,本发明的永久磁铁,是由从28~35重量%的钕Nd、镨Pr、镝Dy、铽Tb、钬Ho构成的群中选择的1种以上的稀土类元素、0.9~1.3重量%的硼B、0.25~3重量%的磷P、铁Fe以及不可避免的杂质构成的。还可以进一步含有0.1~3.6重量%的钴Co和0.02~0.25重量%的铜Cu。
Description
【技术领域】
本发明涉及显著地提高了磁气特性的稀土类永久磁铁材料。
【背景技术】
稀土类永久磁铁,以其优越的磁气特性和经济性,多用于电气和电子仪器领域,近年来,更加要求高性能化。在稀土类永久磁铁之中,R-Fe-B系稀土类永久磁铁,与稀土类钴磁铁相比,由于作为主要元素的Nd比Sm贮量丰富,同时不大量使用Co,所以原材料费便宜,磁气特性也远远超过稀土类钴磁铁,是极其优秀的永久磁体。
以前,为了提高该R-Fe-B系稀土类永久磁铁的磁气特性,进行了种种尝试。具体的讲,通过添加Co来提高居里温度的例子(参照特开昭59-64733号公报),为了得到稳定的保磁力,添加Ti、V、Ni、Bi等的例子(参照特开昭59-132104号公报),通过添加0.02~0.5原子%Cu来提高保磁力,同时扩大热处理的最适宜温度的幅度并改善制造效率的例子(参照特开平1-219143号公报),通过添加0.2~0.5原子%的Cr来提高耐腐蚀性的例子(参照特开平1-219142号公报)等均有报告。
在上述的报告中,无论哪一个都是通过在R-Fe-B系稀土类永久磁铁中添加新的元素来提高磁气特性。但是,当添加新的其他元素时,几乎都是增加了保磁力(iHc)降低了残留磁力线密度(Br)。因此,实际上难以提高磁气特性。
本发明的目的在于提供具有高的保磁力和残留磁力线密度的稀土类永久磁铁材料。
【发明内容】
专心研究从庞大的元素中新添加到R-Fe-B系稀土类永久磁铁中的元素的种类及其数量,结果发现:在添加了P的一定范围的组成中,保磁力和残留磁力线密度一起增加,从而完成了本发明。
即,本发明的第1永久磁铁材料,涉及含有:从由28~35重量%的钕Nd、镨Pr、镝Dy、铽Tb以及钬Ho构成的群中选择的1种以上的稀土类元素、含有0.9~1.3重量%的硼B、0.25~3重量%的磷P和铁Fe的稀土类永久磁铁材料。
本发明的第2永久磁铁材料,涉及在本发明的第1永久磁铁材料中还含有:0.1~3.6重量%的钴Co和0.02~0.25重量%的铜Cu的稀土类永久磁铁材料。
本发明的第3永久磁铁材料,涉及在本发明的第1永久磁铁材料中,磷P的含有量是0.3~2.5重量%的稀土类永久磁铁材料。
本发明的第4永久磁铁材料,涉及在本发明的第2永久磁铁材料中,磷P的含有量是0.3~2.5重量%的稀土类永久磁铁材料。
本发明的第5永久磁铁材料,涉及在本发明的第1永久磁铁材料中,主相是正方晶体结构的金属互化物的稀土类永久磁铁材料。
本发明的第6永久磁铁材料,涉及在本发明的第2永久磁铁材料中,主相是正方晶体构造的金属互化物的稀土类永久磁铁材料。
本发明的第7永久磁铁材料,涉及在本发明的第3永久磁铁材料中,主相是正方晶体构造的金属互化物的稀土类永久磁铁材料。
本发明的第8永久磁铁材料,涉及在本发明的第4永久磁铁材料中,主相是正方晶体构造的金属互化物的稀土类永久磁铁材料。
【附图说明】
图1是表示P含有量与保磁力(iHc)和残留磁力线密度(Br)的关系的图。
图2是本发明的实施例2中的稀土类永久磁铁材料的X射线衍射图。
【具体实施方式】
本发明的稀土类永久磁铁材料由稀土类元素、硼B、磷P、铁Fe和不可避免的杂质构成,可以用钴Co和铜Cu置换铁Fe的一部分。本发明的稀土类永久磁铁材由于有这样特定的组成,所以具有高的残留磁力线密度和保磁力。
本发明的稀土类磁铁含有从由钕Nd、镨Pr、镝Dy、铽Tb、钬Ho构成的群中选择出的一种以上的稀土类元素(以下也称为R),其含有量在28~35重量%的范围内。当R的含有量低于28重量%时,保磁力显著减少,而当R的含有量超过35重量%时,残留磁力线密度显著减少。优选R的含有量上限是35重量%,下限是30重量%。
构成本发明的永久磁铁的B的含有量在0.9~1.3重量%范围内。当低于0.9重量%时,保磁力显著减少,而超过1.3重量%时,残留磁力线密度显著减少。优选B的含有量上限是1.2重量%,下限是1.0重量%。
构成本发明的永久磁铁的P的含有量在0.25~3重量%范围内。当低于0.25重量%时,残留磁力线密度显著减少,而超过3重量%时,保磁力显著减少。再有,当含有量超过3重量%时,不能稳定地得到正方晶体构造,因正方晶体构造的比例减少而不优选,由于这些理由,最好添加0.3~2.5重量%。
构成本发明的永久磁铁的Fe的含有量最好是58~80重量%。在Fe的含有量低于58重量%时,有残留磁力线密度大量减少的倾向,当超过80重量%时,有保磁力显著减少的倾向。优选Fe的含有量上限是75重量%,特别是72重量%,下限是62重量%。在用Co和Cu置换Fe的一部分的情况下,Fe的含有量可以是54~78重量%。
当用Co置换构成本发明的永久磁铁的Fe的一部分时,发现有居里温度(Tc)的改善。在本发明中,Co的含有量可以在0.1~3.6重量%的范围内。当低于0.1重量%时,居里温度的改善效果不那么明显,而当超过3.6重量%时,对成本不利。优选Co的含有量上限是3.2重量%,下限是0.5重量%。
构成本发明的永久磁铁的Cu,如上所述,赋予R-Fe-B系稀土类永久磁铁高的磁气特性。在本发明中,Cu的含有量可以在0.02~0.25重量%范围内。当低于0.02重量%时,保磁力几乎不增加,而当超过0.25重量%时,残留磁力线密度大大减少。优选Cu的含有量的上限是0.2重量%,下限是0.06重量%。
含在本发明的永久磁铁中的正方晶体构造的比例优选是全体50重量%以上,特别是70重量%以上。当正方晶体构造的比例低于50重量%时,有保磁力变小的倾向,
通常,本发明的永久磁铁具有380~600℃的居里温度(Tc),在25℃时具有11~18kG的残留磁力线密度(Br)和14~21kOe的保磁力(iHc)。
为了制造本发明的稀土类磁铁材料,可以按照Nd系磁铁的一般的制造方法进行制造。下面表示其中的一个例子。
首先,把原料的Nd、Fe、B、P以及添加元素(Co、Cu等)以规定的比例配合,通过高频熔解来铸造合金。这时,用于制造的Co、Cu也可以是与用作原料的Fe的混合物。
然后,把得到的合金用颚式破碎机或布朗粉碎机等进行粗粉碎之后,由使用立式球磨机或球磨机等的有机溶剂的湿式法或用氮气的喷射粉碎机那样的干式法进行微粉碎。微粉的粒径没有特别地限制,优选平均为0.5~5μm。
得到的微粉末在大约10kOe左右的磁场中向磁场方向定向,在大约0.2~2吨/厘米2的压力下冲压成形,然后把冲压成形得到的成形体在高真空中或惰性气体中在1000~1400℃下烧结1~2小时,再在比烧结温度低的温度(800~1200℃左右)下进行热处理。由此得到本发明的稀土类永久磁铁材料。
然后,对上述稀土类永久磁铁材料再进行加工和表面处理,就能得到稀土类永久磁铁。
再有,在本发明的上述稀土类永久磁铁材料的制造中,作为包含在使用原料中的或者混入制造过程中的不可避免的杂质的占0.2重量%以下的微量的La、Ce、Sm、Ni、Mn、Si、Ca、Mg、S不损害本发明的效果。
下面根据实施例对本发明进行具体地说明,但是本发明也不局限于这些实施例。实施例1~3和比较例1~3
作为初始原料,使用了Nd、电解铁、硼铁合金、磷化铁。然后,在把这些原料以重量比(%)为30Nd-BAL.Fe-1B-XP(X为0~5的数值)的组成配合之后,在铝坩埚中进行高频熔解,注入水冷铜铸型之后得到各种组成的铸块(坯料)。接着,把这些铸块用布朗粉碎机进行粗粉碎,再用氮气流中的喷射粉碎机进行微粉碎,从而得到平均粒径为1μm左右的微粉末,把该微粉末和有润滑效果的硬脂酸用在0.07重量%的氮气中的V型搅拌器进行混合。
此后,把这些微粉末充填到成型装置的金属模型中,在10kOe的磁场中进行定向,在垂直于磁场的方向上以1.2吨/厘米2的压力冲压成形。把得到的成形体在Ar气中在1200℃的温度下烧结2个小时之后,进行冷却,再在800℃温度下在Ar气中热处理1个小时,就制作出了P含有量不同的各种组成的稀土类永久磁铁材料。
再有,在从铸块到烧结的工序之间,全都在氮气中进行移动,尽量降低氧含有量。
对于这些稀土类永久磁铁材料,测定其居里温度(Tc)、保磁力(iHc)和残留磁力线密度(Br),得到的结果表示在图1和表1中。其结果,如表1所示,由于用Co置换Fe的一部分,所以改善了居里温度(Tc)。另外,如图1和表1所示,P的含有量达到3重量%时,与不添加的相比,没有使残留磁力线密度降低,还可以使保磁力增加。当P的添加量超过3重量%时,与不添加P的相比,残留磁力线密度和保磁力双方都减少了。再有,当P的含有量为2重量%时,可以使残留磁力线密度增加3.6kG,使保磁力增加4.5kOe,磁气特性大幅度提高。
表1
组成 | 残留磁力线密度(kG) | 保磁力(kOe) | 居里温度(℃) | |
比较例1实施例1实施例2实施例3比较例2比较例3 | 30Nd-69Fe-1B30Nd-68Fe-1B-1P30Nd-67Fe-1B-2P30Nd-66Fe-1B-3P30Nd-65Fe-1B-4P30Nd-64Fe-1B-5P | 12.014.915.611.8-- | 14.818.419.316.62.2- | 305402425297-- |
另外,图2表示对得到的试料(P的含有量为2重量%)的结晶构造用CuKα射线进行X射线衍射的结果。由该衍射结果可以确认:主相是Na2Fe14B型正方晶体的结晶构造。实施例4
作为初始原料,使用了Nd、Dy、电解铁、Co、硼铁合金、磷化铁、Cu。然后,用与实施例1相同的方法把这些原料配合成重量比(%)为30Nd-1Dy-62.8Fe-3Co-1B-0.2Cu-2P的组成,制作出稀土类永久磁铁材料。
对该稀土类永久磁铁材料,测定居里温度(Tc),保磁力(iHc)和残留磁力线密度(Br),其结果是,居里温度是450℃,残留磁力线密度是16.2kG,保磁力是20.3kOe,大幅度地提高了磁气特性。
另外,把得到的试料的结晶构造用CuKα射线进行X射线衍射,结果确认:主相显示出Nd2F14B型正方晶体的结晶构造的衍射图。
产业上的利用可能性
根据本发明的第1~8的永久磁铁,可以得到具有高的保磁力和残留磁力线密度的稀土类永久磁铁材料。
Claims (8)
1.稀土类永久磁铁材料,含有从由28~35重量%的钕Nd、镨Pr、镝Dy、铽Tb、以及钬Ho构成的群中选择的1种以上的稀土类元素、0.9~1.3重量%的硼B、0.25~3重量%的磷P和铁Fe。
2.如权利要求1所述的稀土类永久磁铁材料,还含有0.1~3.6重量%的钴Co和0.02~0.25重量%的铜Cu。
3.如权利要求1所述的稀土类永久磁铁材料,磷P的含有量是0.3~2.5重量%。
4.如权利要求2所述的稀土类永久磁铁材料,磷P的含有量是0.3~2.5重量%。
5.如权利要求1所述的稀土类永久磁铁材料,主相是正方晶体结构的金属互化物。
6.如权利要求2所述的稀土类永久磁铁材料,主相是正方晶体构造的金属互化物。
7.如权利要求3所述的稀土类永久磁铁材料,主相是正方晶体构造的金属互化物。
8.如权利要求4所述的稀土类永久磁铁材料,主相是正方晶体构造的金属互化物。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/005202 WO2002103719A1 (fr) | 2001-06-19 | 2001-06-19 | Materiau magnetique durable en metal du groupe des terres rares |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1451166A true CN1451166A (zh) | 2003-10-22 |
CN1182547C CN1182547C (zh) | 2004-12-29 |
Family
ID=11737454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB018150578A Expired - Fee Related CN1182547C (zh) | 2001-06-19 | 2001-06-19 | 稀土类永久磁铁材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7175718B2 (zh) |
EP (1) | EP1398800B1 (zh) |
JP (1) | JPWO2002103719A1 (zh) |
CN (1) | CN1182547C (zh) |
DE (1) | DE60118982T2 (zh) |
WO (1) | WO2002103719A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258609A (zh) * | 2013-05-14 | 2013-08-21 | 深圳大学 | 各向异性纳米复相稀土永磁材料及其制备方法 |
CN105355413A (zh) * | 2015-12-07 | 2016-02-24 | 北京科技大学 | 一种降低烧结温度制备高磁性烧结钕铁硼的方法 |
CN111418034A (zh) * | 2017-12-05 | 2020-07-14 | 三菱电机株式会社 | 永磁铁、永磁铁的制造方法及旋转机 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60335331D1 (de) * | 2002-10-08 | 2011-01-27 | Hitachi Metals Ltd | R-Fe-B gesinterter Permanentmagnet und Verfahren zu dessen Herstellung |
US7462317B2 (en) | 2004-11-10 | 2008-12-09 | Enpirion, Inc. | Method of manufacturing an encapsulated package for a magnetic device |
US7426780B2 (en) | 2004-11-10 | 2008-09-23 | Enpirion, Inc. | Method of manufacturing a power module |
US7688172B2 (en) * | 2005-10-05 | 2010-03-30 | Enpirion, Inc. | Magnetic device having a conductive clip |
US8631560B2 (en) | 2005-10-05 | 2014-01-21 | Enpirion, Inc. | Method of forming a magnetic device having a conductive clip |
US8701272B2 (en) | 2005-10-05 | 2014-04-22 | Enpirion, Inc. | Method of forming a power module with a magnetic device having a conductive clip |
US8139362B2 (en) * | 2005-10-05 | 2012-03-20 | Enpirion, Inc. | Power module with a magnetic device having a conductive clip |
US7920042B2 (en) * | 2007-09-10 | 2011-04-05 | Enpirion, Inc. | Micromagnetic device and method of forming the same |
US8133529B2 (en) * | 2007-09-10 | 2012-03-13 | Enpirion, Inc. | Method of forming a micromagnetic device |
US7955868B2 (en) * | 2007-09-10 | 2011-06-07 | Enpirion, Inc. | Method of forming a micromagnetic device |
US8018315B2 (en) * | 2007-09-10 | 2011-09-13 | Enpirion, Inc. | Power converter employing a micromagnetic device |
US7952459B2 (en) * | 2007-09-10 | 2011-05-31 | Enpirion, Inc. | Micromagnetic device and method of forming the same |
US8541991B2 (en) | 2008-04-16 | 2013-09-24 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8686698B2 (en) | 2008-04-16 | 2014-04-01 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8692532B2 (en) | 2008-04-16 | 2014-04-08 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US9246390B2 (en) | 2008-04-16 | 2016-01-26 | Enpirion, Inc. | Power converter with controller operable in selected modes of operation |
US8266793B2 (en) | 2008-10-02 | 2012-09-18 | Enpirion, Inc. | Module having a stacked magnetic device and semiconductor device and method of forming the same |
US9054086B2 (en) * | 2008-10-02 | 2015-06-09 | Enpirion, Inc. | Module having a stacked passive element and method of forming the same |
US8153473B2 (en) * | 2008-10-02 | 2012-04-10 | Empirion, Inc. | Module having a stacked passive element and method of forming the same |
US8339802B2 (en) * | 2008-10-02 | 2012-12-25 | Enpirion, Inc. | Module having a stacked magnetic device and semiconductor device and method of forming the same |
US9548714B2 (en) * | 2008-12-29 | 2017-01-17 | Altera Corporation | Power converter with a dynamically configurable controller and output filter |
US8698463B2 (en) * | 2008-12-29 | 2014-04-15 | Enpirion, Inc. | Power converter with a dynamically configurable controller based on a power conversion mode |
US8867295B2 (en) | 2010-12-17 | 2014-10-21 | Enpirion, Inc. | Power converter for a memory module |
US9509217B2 (en) | 2015-04-20 | 2016-11-29 | Altera Corporation | Asymmetric power flow controller for a power converter and method of operating the same |
JP6813457B2 (ja) | 2017-08-30 | 2021-01-13 | 株式会社東芝 | 永久磁石、回転電機、及び車両 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59163803A (ja) * | 1983-03-08 | 1984-09-14 | Sumitomo Special Metals Co Ltd | 永久磁石用合金 |
US5466308A (en) * | 1982-08-21 | 1995-11-14 | Sumitomo Special Metals Co. Ltd. | Magnetic precursor materials for making permanent magnets |
JPS59132105A (ja) * | 1983-01-19 | 1984-07-30 | Sumitomo Special Metals Co Ltd | 永久磁石用合金 |
CA1316375C (en) * | 1982-08-21 | 1993-04-20 | Masato Sagawa | Magnetic materials and permanent magnets |
JPS62116756A (ja) * | 1985-11-15 | 1987-05-28 | Hitachi Metals Ltd | 永久磁石合金 |
JPS62165305A (ja) * | 1986-01-16 | 1987-07-21 | Hitachi Metals Ltd | 熱安定性良好な永久磁石およびその製造方法 |
JP2530641B2 (ja) * | 1986-03-20 | 1996-09-04 | 日立金属株式会社 | 磁気異方性ボンド磁石、それに用いる磁粉及びその製造方法 |
EP0258609B1 (en) * | 1986-07-23 | 1993-02-03 | Hitachi Metals, Ltd. | Permanent magnet with good thermal stability |
JPS6329908A (ja) * | 1986-07-23 | 1988-02-08 | Hitachi Metals Ltd | R−Fe−B系希土類磁石の製造方法 |
US4983232A (en) * | 1987-01-06 | 1991-01-08 | Hitachi Metals, Ltd. | Anisotropic magnetic powder and magnet thereof and method of producing same |
US5022939A (en) * | 1987-07-30 | 1991-06-11 | Tdk Corporation | Permanent magnets |
JPH023206A (ja) * | 1988-06-20 | 1990-01-08 | Seiko Epson Corp | 希土類−鉄系永久磁石 |
JPH024942A (ja) | 1989-02-10 | 1990-01-09 | Toshiba Corp | 永久磁石用原料合金 |
JP2739525B2 (ja) * | 1991-02-22 | 1998-04-15 | 同和鉱業株式会社 | 不可逆減磁の小さい熱安定性に優れたR−Fe−B−C系永久磁石合金 |
US5405455A (en) * | 1991-06-04 | 1995-04-11 | Shin-Etsu Chemical Co. Ltd. | Rare earth-based permanent magnet |
JP3254229B2 (ja) * | 1991-09-11 | 2002-02-04 | 信越化学工業株式会社 | 希土類永久磁石の製造方法 |
JP2684140B2 (ja) * | 1992-10-19 | 1997-12-03 | 住友特殊金属株式会社 | 希土類・鉄・コバルト・ボロン系正方晶化合物 |
JPH06283316A (ja) * | 1992-10-29 | 1994-10-07 | Hitachi Metals Ltd | 鉄−希土類系永久磁石材料およびその製造方法 |
JP4678741B2 (ja) * | 1998-05-19 | 2011-04-27 | 大同特殊鋼株式会社 | 異方性磁石素材 |
CN1169165C (zh) * | 1998-10-14 | 2004-09-29 | 日立金属株式会社 | R-t-b系烧结型永磁体 |
EP1014392B9 (en) * | 1998-12-15 | 2004-11-24 | Shin-Etsu Chemical Co., Ltd. | Rare earth/iron/boron-based permanent magnet alloy composition |
US6319335B1 (en) * | 1999-02-15 | 2001-11-20 | Shin-Etsu Chemical Co., Ltd. | Quenched thin ribbon of rare earth/iron/boron-based magnet alloy |
-
2001
- 2001-06-19 JP JP2003505947A patent/JPWO2002103719A1/ja active Pending
- 2001-06-19 DE DE60118982T patent/DE60118982T2/de not_active Expired - Fee Related
- 2001-06-19 US US10/415,273 patent/US7175718B2/en not_active Expired - Lifetime
- 2001-06-19 EP EP01938736A patent/EP1398800B1/en not_active Expired - Lifetime
- 2001-06-19 WO PCT/JP2001/005202 patent/WO2002103719A1/ja active IP Right Grant
- 2001-06-19 CN CNB018150578A patent/CN1182547C/zh not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258609A (zh) * | 2013-05-14 | 2013-08-21 | 深圳大学 | 各向异性纳米复相稀土永磁材料及其制备方法 |
CN105355413A (zh) * | 2015-12-07 | 2016-02-24 | 北京科技大学 | 一种降低烧结温度制备高磁性烧结钕铁硼的方法 |
CN111418034A (zh) * | 2017-12-05 | 2020-07-14 | 三菱电机株式会社 | 永磁铁、永磁铁的制造方法及旋转机 |
CN111418034B (zh) * | 2017-12-05 | 2021-08-13 | 三菱电机株式会社 | 永磁铁、永磁铁的制造方法及旋转机 |
Also Published As
Publication number | Publication date |
---|---|
EP1398800B1 (en) | 2006-04-19 |
CN1182547C (zh) | 2004-12-29 |
DE60118982T2 (de) | 2006-11-30 |
WO2002103719A1 (fr) | 2002-12-27 |
US20040025975A1 (en) | 2004-02-12 |
JPWO2002103719A1 (ja) | 2004-10-07 |
DE60118982D1 (de) | 2006-05-24 |
EP1398800A4 (en) | 2004-11-03 |
US7175718B2 (en) | 2007-02-13 |
EP1398800A1 (en) | 2004-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1182547C (zh) | 稀土类永久磁铁材料 | |
KR101227273B1 (ko) | Nd-Fe-B계 희토류 영구 자석 재료 | |
JP3891307B2 (ja) | Nd−Fe−B系希土類永久焼結磁石材料 | |
KR100449447B1 (ko) | 희토류/철/붕소계 영구자석 합금 조성물 | |
TWI401704B (zh) | R-Fe-B rare earth permanent magnet material | |
EP0304054B1 (en) | Rare earth-iron-boron magnet powder and process of producing same | |
EP0753867B1 (en) | Rare earth permanent magnet and method for producing the same | |
EP0302947B1 (en) | Rare earth element-iron base permanent magnet and process for its production | |
JP4605013B2 (ja) | R−t−b系焼結磁石および希土類合金 | |
CN1838343A (zh) | 稀土永磁体 | |
EP0561650B1 (en) | Process for making R-Fe-B permanent magnets | |
CN1111879C (zh) | 具有微晶结构的薄片磁体的制造方法 | |
CN1045498C (zh) | 稀土类-铁-钴-硼系各向异性磁体 | |
JP4821128B2 (ja) | R−Fe−B系希土類永久磁石 | |
CN1655294A (zh) | 稀土类烧结磁体与稀土类烧结磁体的机械强度以及耐蚀性的改善方法 | |
US20070240790A1 (en) | Rare-earth sintered magnet and method for producing the same | |
EP0362805B1 (en) | Permanent magnet and method for producing the same | |
KR960013029B1 (ko) | 내식성 희토류-천이금속계 자석 및 그 제조방법 | |
CN102909371A (zh) | 一种钕铁硼永磁材料及其制备方法 | |
CN113436821A (zh) | R-t-b系稀土类烧结磁铁及r-t-b系稀土类烧结磁铁的制造方法 | |
CN112562955A (zh) | 以Sm-Fe二元系合金为主成分的磁铁用原料及其制造方法以及磁铁 | |
CN112216461B (zh) | 一种含铈的钕铁硼磁体材料及其制备方法 | |
JP2643329B2 (ja) | 磁気特性および機械的強度に優れた希土類−コバルト系焼結磁石 | |
JP3202830B2 (ja) | 希土類焼結磁石およびその製造方法 | |
JPH11307330A (ja) | R−Fe−B系磁石の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20041229 Termination date: 20140619 |
|
EXPY | Termination of patent right or utility model |