CN1433843A - 固定均相催化剂的方法和催化材料 - Google Patents

固定均相催化剂的方法和催化材料 Download PDF

Info

Publication number
CN1433843A
CN1433843A CN03103383A CN03103383A CN1433843A CN 1433843 A CN1433843 A CN 1433843A CN 03103383 A CN03103383 A CN 03103383A CN 03103383 A CN03103383 A CN 03103383A CN 1433843 A CN1433843 A CN 1433843A
Authority
CN
China
Prior art keywords
catalyst
mesopore
zeolite
zeolite type
catalysis material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03103383A
Other languages
English (en)
Other versions
CN1276791C (zh
Inventor
K·赫布斯特
M·布鲁尔森
I·施密特
C·J·H·雅各布森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN1433843A publication Critical patent/CN1433843A/zh
Application granted granted Critical
Publication of CN1276791C publication Critical patent/CN1276791C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及固定均相催化剂的方法,其包括在沸石型晶体中固定所述均相催化剂,该沸石型晶体具有非结晶学中孔系统和所述沸石型晶体的中孔体积高于0.25ml/g。本发明还涉及通过所述固定方法制备的催化材料。

Description

固定均相催化剂的方法和催化材料
技术领域
本发明涉及沸石晶体作为用于均相催化剂、所谓的“瓶子中的船(ship-in-the-bottle)”催化剂的基质的应用,以及涉及催化材料和其制备方法。
在本发明中,沸石基质是中孔沸石,其中导致中孔性的沸石形态结构改性,主要地在沸石结晶期间被引入单独的沸石单一晶体,而不通过通常结晶的沸石材料的后处理。
背景技术
为了许多有机官能团的转化,已经开发了具有高活性和选择性的均相催化剂。均相催化反应通常在温和的反应条件下在适当的溶剂中进行,其中不仅起始材料和金属催化剂被溶解,而且反应产物也被溶解。从这些复杂的混合物,通常难以分离反应产物或者为了重复使用而分离催化剂。为此,进行了努力,以结合均相催化与非均相催化的优点,其中催化剂分离,例如从液相,可以通过简单的过滤实现。
该结合可以通过将催化活性金属配合物固定在适当的惰性载体材料上而实现。在文献中描述了固定催化活性金属配合物的各种方法,例如接枝、物理吸附、形成离子对和截留。这些描述在D.E.De Vos,I.F.J.Vankelecom,P.A.Jacobs(编辑),手性催化剂固定和循环(Chiral Catalyst Immobilisation and Recycling),Wiley-VCH Weinheim,德国,2000,在此引入作为参考。许多这些方法包括活性金属配合物的小的化学改性,以在载体表面固定所述分子,其通常不利地影响催化性能。
固定未改性的金属配合物的一种方法是在无机多孔载体材料的孔隙系统内部包封它们。用于这一目的的适当的材料是具有结晶学定义尺寸的微孔系统和连接所述孔隙的通路系统的沸石。对于某些沸石,笼结构也是所述微孔系统的要素。通过逐步引入配位体部件进入所述孔隙系统,可以在微孔内合成金属配合物,其大于所述通路系统(所谓的“瓶子中的船”合成)。在这类系统中,均相催化剂被称为“客体”和沸石载体被称为“基质”。
在所述微孔内,金属配合物可以与能够通过所述载体的通路系统的有机分子反应。因为金属配合物大于孔道直径,几乎可以完全地避免金属配合物浸出到溶液中。这类“瓶子中的船”催化剂的制备已经描述在DE专利申请号19913395和19913396中。所述申请描述了各种化合物在沸石中孔中的合成,所述中孔仅仅被微孔围绕。
然而,常规沸石作为载体材料用于“瓶子中的船”催化剂的使用是限制的,因为许多催化活性金属配合物大于沸石微孔。含铝沸石通过蒸汽或者无机酸的处理导致沸石脱铝并形成足够大的中孔,其能够包封许多催化活性金属配合物。然而,这一脱铝过程涉及相当多的实验工作。
此外,因为“瓶子中的船”催化剂中的均相催化剂位于基质材料的孔隙系统中,它部分地封阻所述微孔并因此限制往返于所述活性部位的传质。有时,客体分子也远离基质晶体的表面,这也意味着传质限制反应速率。
因此,希望在基质材料的外表面最大化可使用的客体分子的量。同时,希望最大化基质材料的外表面面积。原则上,这可以通过利用晶体尺寸在0.1nm和100nm之间的微细的、纳米尺寸的基质晶体来实现。然而,使用这类小晶体将妨碍或者严重限制通过过滤从反应混合物分离催化剂的可能性。同时,微细晶体在有关的反应条件下可能不是足够稳定的。
最近,已经显示,中孔可以例如通过在炭黑材料内进行水热结晶而被引入沸石晶体(美国专利申请号9/899,245,2001年7月6日,其是申请号9/730,462,2000年12月5日,的部分延续,以及C.J.H.Jacobsen,C.Madsen,J.
Figure A0310338300041
I.Schmidt,A.Carlsson,J.Am.Chem.Soc.2000,122,7116,所有这些在此引入作为参考)。炭黑模板的可控燃烧导致具有炭黑粒子的中孔尺寸的中孔沸石单一晶体。这显著地减少了形成中孔的实验工作,但是更重要的是它显著地提高了沸石晶体的最大限度有效的中孔体积(C.J.H.Jacobsen,J.
Figure A0310338300042
A.Carlsson,I.Schmidt,Stud.Surf.Sci.Catal.2001,135,167,在此引入作为参考)。
这类具有非结晶学中孔系统的、由在沸石结晶之后去除中孔模板产生的中孔沸石是有用的基质材料。
首先,它们具有(结晶学)微孔系统,其为有关沸石所特有。由于(非结晶学)中孔系统,它们与常规沸石晶体相比具有高的外比表面积,并且最后它们具有对于通过过滤分离晶体足够大的结晶尺寸。这使得中孔沸石比其他已知沸石材料更适合作为载体材料用于固定催化活性金属配合物。
发明内容
因此,本发明的目的是提供催化材料,其包括在沸石型(zeotype)晶体内固定的均相催化剂,所述沸石型晶体具有非结晶学中孔系统并且所述沸石型晶体的中孔体积高于0.25ml/g。
本发明的目的还在于提供制备本发明催化材料的方法。
所述均相催化剂被固定在沸石型晶体中,该沸石型晶体具有非结晶学中孔系统并且中孔体积高于0.25ml/g。所述中孔具有从20-50的直径,并且它们通过去除在结晶期间引入的中孔模板而被引入单独的沸石晶体。所述中孔模板可以通过燃烧、溶解、升华或者熔化除去。得到的中孔系统是非结晶学的,因为它由沸石材料围绕模板的增长产生。该方法更详细地描述于美国专利申请号9/899,245,2001年7月6日和9/730,462,2000年12月5日,如上所述。
存在于沸石型之中的微孔提供结晶学孔隙系统,其中每个单元泡孔具有规则的晶格,其表现泡孔中单个原子的位置。由所述单个原子互相的位置产生的通道由结晶学决定。所述中孔不由微孔围绕,并且这是有利的,因为所述中孔得到直接到表面的入口。这最小化扩散限制。
所述例子举例说明均相催化剂的固定:
-Jacobsen催化剂(N,N′-双(3,5-二-叔丁基-亚水杨基)-1,2-环己烷-二氨基-锰氯化物(L.Frunza,H.Kosslick,H.Landmesser,E.Hft,R.Fricke,J.Mol.Catal.A:Chemical 1997,123,179)),
-CoMn2(μ3-O)(MeCO2)6(py)3(S.A.Chavan,D.Srinivas,P.Ratnasamy,Chem.Commun.2001,1124)。
在这一公开中应用的金属配合物催化剂和催化反应是文献中众所周知的。
沸石型由沸石作为例子,并且可用于本发明方法的一般的MFI型沸石是ZSM-5、沸石Y和β。然而,本发明的方法不局限于这些,而是可以被用于其他沸石型。
在本发明方法中,所述均相催化剂可以从金属离子和适合的配位体或者配位体前体合成,其被顺序地引入所述中孔的沸石型。当使用金属配合物例如上述的那些时,它们可以包含一种或多种元素的一个或多个金属原子。
通过在所述沸石型晶体中固定所述均相催化剂得到的催化材料因此是非均一化形式的均相催化剂。
本发明的催化材料可用于连续和间歇过程两者,其中它可以被安装在例如固定床反应器中。它还可以用于浆液相反应,在反应之后所述催化材料可以通过过滤回收。另一个优点是它可用于气相反应。
本发明的催化材料可以应用在许多方法中,在它们中间可以有烯烃环氧化和对二甲苯氧化。
均相催化剂在所述沸石型中的固定可以通过IR和UV-VIS光谱学证明。
结晶学微孔系统的存在可以通过X射线衍射(XRD)鉴别。非结晶学中孔系统的孔隙体积可以通过例如Hg侵入或者通过BJH方法使用N2解吸等温线于77K下测定。
具体实施方式对比实施例1
将2.0g常规非中孔MFI类型沸石用1.0g Mn(CH3COO)2·4H2O的水溶液在室温下离子交换24h。在过滤和干燥之后,将所述沸石材料悬浮在CH2Cl2/甲醇(1∶1)中。向该浆液中加入0.10ml二氨基环己烷。将混合物搅拌24h。在加入200mg的3,5-二(叔丁基)水杨醛和100mg的LiCl之后,将混合物在空气中搅拌另外的48h。
将得到的浅棕色材料,固定在非中孔的MFI类型沸石中的Jacobsen催化剂,过滤,用CH2Cl2洗涤若干次和在空气中于50℃干燥。对比实施例2
将2.0g常规非中孔的MFI类型沸石用0.50g Co(CH3COO)2·4H2O和0.98gMn(CH3COO)2·4H2O(摩尔比Co∶Mn 1∶2)的水溶液于65℃离子交换4h。在过滤和干燥之后,将所述沸石材料悬浮在冰醋酸中(18ml)。向该浆液中加入吡啶(3.6ml)、NaBr(0.60g)和H2O2(35%,7.7ml)。将该混合物于室温搅拌,同时使空气流通过所述溶液2h。
在产品,固定在非中孔的MFI类型沸石中的Chavan等的催化剂,过滤之后,用CH3COOH洗涤和在真空中干燥。
实施例3
将2.0g中孔MFI类型沸石用1.0g Mn(CH3COO)2·4H2O的水溶液在室温下离子交换24h。在过滤和干燥之后,将所述沸石材料悬浮在CH2Cl2/甲醇(1∶1)中。向该浆液中加入0.10ml二氨基环己烷。将混合物搅拌24h。在加入200mg的3,5-二(叔丁基)水杨醛和100mg的LiCl之后,将混合物在空气中搅拌另外的48h。
将得到的浅棕色材料,固定在中孔的MFI类型沸石中的Jacobsen催化剂,过滤,用CH2Cl2洗涤若干次和在空气中于50℃干燥。
实施例4
将2.0g中孔的MFI类型沸石用0.50g的Co(CH3COO)2·4H2O和0.98gMn(CH3COO)2·4H2O(摩尔比Co∶Mn 1∶2)的水溶液于65℃离子交换4h。在过滤和干燥之后,将所述沸石材料悬浮在冰醋酸中(18ml)。向该浆液中加入吡啶(3.6ml)、NaBr(0.60g)和H2O2(35%,7.7ml)。将该混合物于室温搅拌,同时使空气流通过所述溶液2h。
在产品,固定在中孔的MFI类型沸石中的Chavan等的催化剂,过滤之后,用CH3COOH洗涤和在真空中干燥。
对比实施例1的催化剂具有1315ppm Mn的金属负载量。实施例3的催化剂具有5970ppm Mn的金属负载量。
两种催化剂的红外光谱不能互相区别,并且与无载体的Jacobsen催化剂N,N′-双(3,5-二-叔丁基-亚水杨基)-1,2-环己烷-二氨基-锰氯化物的红外光谱几乎相同。
对比实施例2的催化剂具有500ppm Co和920ppm Mn的金属负载量。
实施例4的催化剂具有1750ppm Co和2960ppm Mn的金属负载量。
两种催化剂的UV/可见光谱(190-900nm)不能互相区分并且与无载体的簇形[CoMn23-O)(MeCO2)6(PY)3]的UV/可见光谱几乎相同。
实施例5
将次氯酸钠的水溶液与Na2HPO4的溶液混合,并将pH值调节到11.3。将来自对比实施例1(908mg)或者来自实施例3(200mg,对于两种催化剂提供相同量的Mn)的催化剂加入冷却溶液(0℃)。然后在搅拌下加入10毫摩尔苯乙烯溶于10ml二氯甲烷的溶液。将二相混合物在室温下搅拌总共5h。每20min间断搅拌,并从分离的有机相取样,用水洗涤,在Na2SO4上干燥和通过GC-MS分析。来自实施例3的中孔催化剂与来自对比实施例1的非中孔催化剂相比,显示较快的苯乙烯向氧化苯乙烯的转化。
实施例6
向38ml乙酸、5.6ml水、86mgNaBr和2.0ml对二甲苯的混合物中加入来自对比实施例2(1327mg)或者来自实施例4(400mg,对于两种催化剂提供相同的金属量)的催化剂。在搅拌若干分钟之后,将3.0ml的混合物用移液管加入小玻璃瓶中,其安装有聚四氟乙烯搅拌器。将该小瓶放进高压釜,其用20巴合成空气加压并加热到195℃,4h,其引起压力上升到大约29巴。每20min间断搅拌并取样,将样品溶于DMF、过滤并通过GC-MS分析。
来自实施例4的中孔催化剂,与来自对比实施例2的非中孔催化剂相比,显示较快的对二甲苯向对苯二甲酸的转化。
实施例7
将用于实施例5描述的反应的催化剂通过在G4过滤器上过滤进行分离,用甲醇和二氯甲烷洗涤,并于110℃干燥4h。99%(198mg)的催化剂得到回收。回收的催化剂在新的催化实验中重复使用,其按照实施例5中描述的过程进行。重复使用的催化剂与实施例5中描述的新鲜催化剂相比显示未改变的活性。
实施例8
将用于实施例6描述的反应的催化剂通过在G4过滤器上过滤进行分离,用甲醇和二氯甲烷洗涤,并于110℃干燥4h。99%(396mg)的催化剂得到回收。回收的催化剂在新的催化实验中重复使用,其按照实施例6中描述的过程进行。重复使用的催化剂与实施例6中描述的新鲜催化剂相比显示未改变的活性。

Claims (6)

1.催化材料,其包含在沸石型晶体内固定的均相催化剂,该沸石型晶体具有非结晶学中孔系统和该沸石型晶体的中孔体积高于0.25ml/g。
2.权利要求1的催化材料,其包含由金属离子和适合的配位体或者配位体前体得到的催化材料。
3.权利要求2和3的催化材料,其包含金属配合物,该金属配合物包含一种或多种元素的一个或多个金属原子。
4.制备权利要求1-3的催化材料的方法,其包括在沸石型晶体中固定均相催化材料,该沸石型晶体具有非结晶学中孔系统和该沸石型晶体的中孔体积高于0.25ml/g。
5.权利要求4的方法,其包括固定催化活性均相金属配合物。
6.权利要求1和2的方法,其包括固定被顺序地引入所述中孔沸石型中的催化活性均相金属配合物前体。
CNB031033830A 2002-01-24 2003-01-23 固定均相催化剂的方法和催化材料 Expired - Fee Related CN1276791C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200200127 2002-01-24
DKPA200200127 2002-01-24

Publications (2)

Publication Number Publication Date
CN1433843A true CN1433843A (zh) 2003-08-06
CN1276791C CN1276791C (zh) 2006-09-27

Family

ID=8161062

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031033830A Expired - Fee Related CN1276791C (zh) 2002-01-24 2003-01-23 固定均相催化剂的方法和催化材料

Country Status (8)

Country Link
US (1) US6887814B2 (zh)
EP (1) EP1331032B1 (zh)
JP (1) JP4459535B2 (zh)
CN (1) CN1276791C (zh)
AT (1) ATE389451T1 (zh)
DE (1) DE60225663T2 (zh)
ES (1) ES2302512T3 (zh)
ZA (1) ZA200300559B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718855A (zh) * 2018-12-22 2019-05-07 中国科学院山西煤炭化学研究所 一种封装金属配合物于材料表面的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430949B1 (en) * 2002-12-10 2008-03-26 Haldor Topsoe A/S Process for catalytic dehydrogenation and catalyst therefore
JP4518242B2 (ja) * 2004-03-10 2010-08-04 株式会社豊田中央研究所 錯体複合材料及びその製造方法
US7211239B2 (en) 2005-04-22 2007-05-01 Basf Aktiengesellschaft Process for preparing a nanosized zeolitic material
JP4691661B2 (ja) * 2006-01-25 2011-06-01 国立大学法人 名古屋工業大学 錯体内包ゼオライト材料およびその利用
JP4644812B2 (ja) * 2006-01-25 2011-03-09 国立大学法人 名古屋工業大学 ゼオライトを用いた抗菌剤
JP4691660B2 (ja) * 2006-01-25 2011-06-01 国立大学法人 名古屋工業大学 ゼオライト材料およびその利用
WO2008076566A1 (en) * 2006-12-20 2008-06-26 Anchor Bay Technologies, Inc. Noise cancellation
KR102156875B1 (ko) * 2013-04-22 2020-09-16 에스케이이노베이션 주식회사 구조 붕괴된 제올라이트 내에 금속 클러스터가 함유된 촉매 및 이의 용도
WO2015001122A1 (en) * 2013-07-05 2015-01-08 Danmarks Tekniske Universitet Method of producing zeolite encapsulated nanoparticles
EP3016741B1 (en) * 2013-07-05 2020-07-01 Danmarks Tekniske Universitet Method for producing zeolites and zeotypes
JP7323115B2 (ja) * 2017-05-31 2023-08-08 国立大学法人北海道大学 機能性構造体およびその製造方法
JP7337318B2 (ja) * 2017-05-31 2023-09-04 国立大学法人北海道大学 機能性構造体及びその製造方法
JP7366431B2 (ja) * 2018-12-03 2023-10-23 古河電気工業株式会社 触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4508842A (en) 1983-03-29 1985-04-02 Union Carbide Corporation Ethylene polymerization using supported vanadium catalyst
SG48109A1 (en) 1993-04-23 1998-04-17 Exxon Chemical Ltd Molecular sieve layers and processes for their manufacture
FR2719238B1 (fr) 1994-04-29 1996-05-31 Centre Nat Rech Scient Matériau inorganique composite poreux, notamment sous forme de membrane, et procédé d'obtention d'un tel matériau.
US5990039A (en) * 1996-01-11 1999-11-23 Southwest Research Institute Metal complex derived catalyst and method of forming
US5849258A (en) 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
KR100199445B1 (ko) 1996-06-11 1999-06-15 이서봉 복합분자체 화합물의 제조방법
SE512222C2 (sv) 1998-06-29 2000-02-14 Johan Sterte Förfarande för framställning av makrostrukturer av mikroporösa material
US6908604B2 (en) 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
DK173486B1 (da) 1998-11-18 2000-12-18 Topsoe Haldor As Fremgangsmåde til fremstilling af små, zeotype krystaller
DE19913396A1 (de) 1999-03-24 2000-09-28 Wolfgang Hoelderich Chirale Heterogenkatalysatoren, Verfahren zu deren Herstellung und deren Einsatz bei stereoselektiven Oxidationen und stereoselektiven Hydrierungen
DE19913395A1 (de) 1999-03-24 2000-09-28 Wolfgang Hoelderich Einschlußverbindungen mit zeolithischem Wirtsgitter, deren Herstellung und Einsatz
US6087513A (en) * 1999-05-21 2000-07-11 The Dow Chemical Company Epoxidation process for aryl allyl ethers
US6287645B1 (en) * 1999-05-21 2001-09-11 Board Of Regents, The University Of Texas System Preparation of laser deposited oriented films and membranes
ES2223372T3 (es) 1999-12-06 2005-03-01 Haldor Topsoe A/S Procedimiento depreparacion de monocristales de zeolita.
US6620402B2 (en) 1999-12-06 2003-09-16 Haldor Topsoe A.S Method of preparing zeolite single crystals with straight mesopores
FR2802120B1 (fr) 1999-12-14 2002-02-01 Inst Francais Du Petrole Solide silicoaluminate micro et mesoporeux, procede de preparation, utilisation comme catalyseur et en conversion d'hydrocarbures
US7078364B2 (en) * 2001-04-20 2006-07-18 University Of Southern California Ship-in-a-bottle catalysts
US20030008770A1 (en) * 2001-06-28 2003-01-09 Council Of Scientific & Industrial Research Encapsulated oxo-bridged organometallic cluster catalyst and a process for the preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718855A (zh) * 2018-12-22 2019-05-07 中国科学院山西煤炭化学研究所 一种封装金属配合物于材料表面的方法

Also Published As

Publication number Publication date
DE60225663T2 (de) 2009-04-16
CN1276791C (zh) 2006-09-27
US20030139283A1 (en) 2003-07-24
EP1331032A2 (en) 2003-07-30
ES2302512T3 (es) 2008-07-16
JP2003210994A (ja) 2003-07-29
EP1331032A3 (en) 2003-10-15
EP1331032B1 (en) 2008-03-19
US6887814B2 (en) 2005-05-03
ZA200300559B (en) 2004-02-23
JP4459535B2 (ja) 2010-04-28
DE60225663D1 (de) 2008-04-30
ATE389451T1 (de) 2008-04-15

Similar Documents

Publication Publication Date Title
CN1276791C (zh) 固定均相催化剂的方法和催化材料
Thomas Design, synthesis, and in situ characterization of new solid catalysts
RU2283277C2 (ru) Способ замещения гетероатома кристаллической решетки в боросиликатных цеолитах с большими и сверхбольшими порами
Naeimi et al. Encapsulation of copper (I)-Schiff base complex in NaY nanoporosity: An efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling (aldehyde-amine-alkyne) reactions
CN103896302B (zh) 一种硅分子筛及其制备方法
Clark et al. The application of modified mesoporous silicas in liquid phase catalysis
Wei et al. Synthesis and catalytic application of SAPO-5 by dry-gel conversion for the epoxidation of styrene with air
CN104709920A (zh) 一种含锡杂原子功能性分子筛及其合成和应用
US10695757B2 (en) Zeolitic materials including paired Lewis acid catalytic sites
US5906954A (en) Removal of titanium atoms from titanium silicate molecular sieves
CN111286035B (zh) 基于4,4’-二羧酸二甲基偶氮苯和腺嘌呤的Zn(II)配合物及其合成方法和应用
CN104310524B (zh) 一种罗丹明b和靛蓝有机污染物的降解方法
CN101590423B (zh) 一种沸石催化剂的择形改性方法
CN104512906A (zh) 一种钛硅分子筛及其制备方法
CN110872126B (zh) 一种zsm-5分子筛外表面的修饰方法
CN109928428B (zh) 一种大孔氧化铁及其制备方法
CN108393090B (zh) 一种使用淀粉改性催化剂的蒽氧化法制备蒽醌的方法
CN111644206A (zh) 负载CQDs的Fe-MIL-101材料、其制备方法及在催化氧化环己烷的用途
CN113461955B (zh) 一种高稳定性的金属有机骨架材料、其制备方法及应用
CN109928433B (zh) 一种大孔氧化铁及其合成方法
CN111137903A (zh) 一种ecnu-25分子筛及其制备方法和应用
Vassylyev et al. Modification of zeolite surfaces by Grignard reagent
Matsumoto et al. Selective Inclusion of Cyclohexanone from a Mixture with Cyclohexanol Using 1, 3-Diaminocalix [4] arene Crystals
Salavati-Niasari et al. Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (zeolite-Y)/guest (nickel (II) complexes of R 2 [12] 1, 3-dieneN 2 O 2 and R 2 [13] 1, 4-dieneN 2 O 2; R= H, Me, Ph) nanocatalyst (HGN)
Benevelli et al. Ligand‐Directed Structural Modification of Imidotin (ii) Cubanes: The Mixed Oxidation State Double‐Cubanes [Sn7 {2‐NR} 8]⋅ n THF (R= Pyrimidinyl, 5‐Methylpyridinyl)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060927

Termination date: 20160123

EXPY Termination of patent right or utility model