CN1318337C - 光纤的制造方法 - Google Patents

光纤的制造方法 Download PDF

Info

Publication number
CN1318337C
CN1318337C CNB038012537A CN03801253A CN1318337C CN 1318337 C CN1318337 C CN 1318337C CN B038012537 A CNB038012537 A CN B038012537A CN 03801253 A CN03801253 A CN 03801253A CN 1318337 C CN1318337 C CN 1318337C
Authority
CN
China
Prior art keywords
optical fiber
heat treatment
mentioned
treatment furnace
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB038012537A
Other languages
English (en)
Other versions
CN1630621A (zh
Inventor
永山胜也
森田圭省
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1630621A publication Critical patent/CN1630621A/zh
Application granted granted Critical
Publication of CN1318337C publication Critical patent/CN1318337C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02276Dispersion shifted fibres, i.e. zero dispersion at 1550 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

准备用相对纯SiO2的%表示的相对折射率差[Ge]满足条件[Ge]≥0.3%的添加量添加进了Ge的光纤母材2,在用拉线炉11加热拉制成线变成为光纤3后,在拉线炉11的后边的热处理炉21中,在冷却速度变成为2000℃/秒以下,退火时间变成为在缓和时间以上的条件下使光纤3退火。然后,使退火后的光纤3在700℃以上的温度下向冷却装置31送线,借助于冷却装置31使光纤3强制冷却。借助于此,就可以实现生产性良好地制造可以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤、及其制造方法。

Description

光纤的制造方法
技术领域
本发明涉及以低传送损耗传送光的光纤及其制造方法。
背景技术
在使用光纤的光的传送中,由在光纤内产生的瑞利散射产生的瑞利散射损耗,或因光纤内的构造的紊乱而产生的构造不规则损耗等的传送损耗,将成为问题。对此,人们提出了可以降低传送损耗的光纤或其制造方法的方案。
例如,在文献“坂口,电子信息通信学会论文集2000/1 Vol.J83-CNo.1,pp.30-36”中,记载了借助于拉制成线后的光纤的缓慢冷却,来降低在光纤中产生的瑞利散射损耗。就是说,在玻璃内产生的瑞利散射强度,依赖于本身为表明玻璃内的原子的排列状态的杂乱度的假想的温度的假想温度Tf(fictive Temperature)而不是一成不变地由材料决定。具体地说,当玻璃内的假想温度Tf增高(杂乱度增大)时,瑞利散射强度就会增大。
相对于此,在把光纤母材加热拉制成线时,采用在拉线炉的后边预先设置热处理炉,在拉制成线后的光纤通过热处理炉时,使变成在规定的温度范围内那样地进行加热,对光纤进行退火。借助于这样的光纤的退火,就可以防止拉制成线后的光纤的急剧冷却,可以使光纤缓慢冷却。这时,借助于由原子的重新排列产生的玻璃的构造缓和,就可以降低光纤内的假想温度Tf,因而可以抑制光纤内的瑞利散射强度。
如上所述,通过采用设置在拉线炉的后边的热处理炉使光纤退火,就可以降低在光纤内产生的瑞利散射损耗。另一方面,人们还知道在该瑞利散射损耗之外还有在已向纤芯内添加进Ge(锗)的光纤中,在波长0.63μm处的宽度宽的损耗峰值会因起因于Ge的缺陷而增大。
这样的在波长0.63μm处的损耗,会起因于Si-O缺陷或非架桥空穴中心(NBOHC)等的在光纤内产生的缺陷而产生(例如,参看文献“花房,陶瓷21(1986)No.9,pp.860-868”)。此外,这些在光纤内产生的缺陷,由于在氢气氛中将变成为Si-O-H,故将成为在起因于OH基的波长1.38μm处产生的损耗峰值增大的原因。此外,在特开昭60-186430号公报中,记载了采用在600℃以上使拉制成线后的光纤退火,来降低在上边所说的波长0.63μm处的损耗。
发明内容
为了制造可以降低瑞利散射损耗,同时具有良好的耐氢特性的光纤,就必须对拉制成线后的光纤,进行用来使之降低地假想温度Tf以降低瑞利散射损耗的在高温下的退火,和进行用来减少在光纤内产生的缺陷以降低在波长0.63μm处的损耗的在中温下的退火。在这里所说的具有良好的耐氢特性,指的是即便是在氢气氛下在起因于OH基的波长1.38μm处的损耗峰值也不会增大的特性。
但是,在像这样地在宽的温度范围内对光纤进行退火的情况下,就需要相当长度的退火用的热处理炉,因而就存在着包括拉线炉和热处理炉的拉线装置的大型化问题。此外,为了进行退火就不得不把拉线时的光纤的线速设定得低,因而会使光纤的生产性降低。
本发明就是为解决以上问题而完成的,目的在于提供可以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤,以及生产性良好的光纤的制造方法。
为了实现这样的目的,本发明的光纤的制造方法,包括(1)通过拉线炉把具有纤芯区域和在纤芯区域的外周上设置的包层区域的光纤母材加热拉制成线的,使之变成为光纤的拉线步骤;(2)借助于设置在拉线炉的后边的热处理炉对使用拉线炉拉制成线的光纤进行退火的热处理步骤;(3)在700℃以上的温度下将使用热处理炉退火后的光纤送线到设置在热处理炉的后边的冷却装置,用冷却装置进行强制冷却的冷却步骤,其特征在于:(4)在热处理步骤中,在光纤的冷却速度变成为2000℃/秒以下的条件,以及在把热处理炉的长度定义为L(m),把光纤的线速定义为Vf(m/秒),把热处理炉的入口处的光纤的粘度定义为ηs(Pa·秒),把单位截面面积的光纤的张力(张力/光纤截面面积、剪断应力)定义为K(Pa),把缓和时间定义为τ=ηs/K时,满足退火时间L/Vf变成为在缓和时间τ(L/Vf≥τ)以上的退火条件下使光纤退火。
在上边所说的光纤的制造方法中,在把光纤母材加热拉制成线时,要在拉线炉的后边设置热处理炉。此外,在拉制成线后的光纤通过热处理炉时,要使得光纤的冷却速度和退火时间满足规定的条件那样地对光纤进行退火。如上所述,通过采用热处理炉进行光纤的缓慢冷却,就可以因使光纤内的假想温度Tf降低而可以降低在光纤内产生的瑞利散射损耗。
此外,对于退火后的光纤,在热处理炉的后边还设置冷却装置,用该冷却装置对光纤进行强制冷却。借助于此,就可以缩短拉线装置的长度等,作为整体使拉线装置小型化。此外,还可以提高拉线时的光纤的线速等,效率良好地制造光纤。
此外,关于由该冷却装置进行的光纤的强制冷却,把向冷却装置送线的光纤的送线温度定为700℃以上。借助于此,就可以减少在波长0.63μm处的损耗的增大,以及成为由耐氢特性的劣化产生的在波长1.38μm处的损耗的增大的原因的光纤内的Si-O缺陷或NBOHC等的缺陷。由此,就可以生产性良好地制造可以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤。
在这里,在热处理步骤中,优选把热处理炉的炉温定为800℃以上1600℃以下的范围内的规定温度使光纤退火。此外,更优选把热处理炉的炉温定为1100℃以上1600℃以下的范围内的规定温度使光纤退火。借助于此,就可以充分地降低光纤内的瑞利散射损耗。
本发明的光纤,其特征在于:(1)具备纤芯区域、和设置在纤芯区域的外周上的包层区域,纤芯区域是用相对于纯SiO2的%表示的相对折射率差[Ge]满足条件[Ge]≥0.3%的添加量添加进了Ge,同时,(2)在瑞利散射系数A(dB/km·μm4)和在波长1.00μm处的传送损耗α1.00(dB/km)分别相对于用下式表示的基准值A0和α0
A0=0.85+0.29[Ge]
α0=0.86+0.29[Ge]
为97%以下,而且,(3)在波长1.38μm处的氢处理前后的传送损耗差Δα1.38在0.15dB/km以下。
在上边所说的光纤中,在已用规定的添加量向纤芯内添加进Ge的光纤中,其瑞利散射系数A以及包括瑞利散射损耗在内的传送损耗α1.00比在通常的光纤中所显示的值的基准值A0、α0降低3%以上,变成为97%以下的值。此外,作为相对于光纤的耐氢特性的指标的氢处理前后的传送损耗差Δα1.38则降低到0.15dB/km以下。借助于此,就可以得到以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤。以上那样的光纤可用上边所说的制造方法进行制造。
在这里,包层区域,优选是分别由纯SiO2、已添加进Ge的SiO2或已添加进F的SiO2中的任何一者构成的1个或多个包层。采用这样的构成,则可以得到单模光纤、分散移位光纤和分散补偿光纤等各种各样的光纤。
附图的简单说明
图1概略地示出了光纤的制造方法,以及在光纤的制造中使用的拉线装置的一个实施方式的构成图。
图2示出了光纤的实施方式1的折射率分布的曲线图。
图3示出了光纤的实施例A1~A4的制造条件和损耗特性的表。
图4示出了光纤的比较例B1~B5的制造条件和损耗特性的表。
图5示出了光纤的实施方式2的折射率分布的曲线图。
图6示出了光纤的实施方式3的折射率分布的曲线图。
图7示出了在光纤的实施例C1~C3,以及比较例D1~D3的制造条件和损耗特性的表。
图8示出的是光纤的实施例E和比较例F的光纤的制造时的温度变化的表。
图9示出的是在线速定为400m/分时的光纤的冷却速度和退火效果的表。
图10示出的是在线速定为800m/分时的光纤的冷却速度和退火效果的表。
图11示出的是在线速定为1600m/分时的光纤的冷却速度和退火效果的表。
图12示出的是在线速定为3000m/分时的光纤的冷却速度和退火效果的表。
图13示出的是在线速定为800m/分时的光纤的冷却速度和退火效果的表。
具体实施方式
以下,与附图一起详细地对本发明的光纤及其制造方法的优选实施方式进行说明。另外,在附图的说明中对于同一要素赋予同一标号,省略重复的说明。此外,图面的尺寸比率,并非一定要与说明的尺寸比率一致不可。
图1的构成图概略地示出了光纤的制造方法,和在光纤的制造中使用的拉线装置的一个实施方式。
图1所示的拉线装置1,是为了把石英玻璃系的光纤拉制成线而使用的拉线装置,其构成为具有拉线炉11、缓慢冷却用热处理炉21、和冷却装置31。这些拉线炉11、热处理炉21和冷却装置31,按照上述顺序在把光纤母材2拉制成线的方向上(图1中的上下方向)设置。此外,在热处理炉21和冷却装置31的后边,设置有用树脂把拉制成线后的玻璃光纤被覆起来的树脂被覆部分40。
在使用拉线装置1的光纤制造中,首先,准备其构成为具有纤芯区域和在纤芯区域的外周上设置的包层区域的光纤母材2,把保持在母材供给装置(图中未示出)内的光纤母材2供往拉线炉11。然后,通过采用拉线炉11内的加热器12加热光纤母材2的下端使之软化,以规定的线速拉线,拉成为玻璃光纤3(拉线步骤)。来自惰性气体供给部分14的气体供给通路15已连接到拉线炉11的炉心管13上,并构成为使得炉心管13内变成为惰性气体气氛。
加热拉制成线后的玻璃光纤3,在炉心管13内,例如一直到1700℃左右为止借助于惰性气体急剧地冷却。然后,玻璃光纤3,被从炉心管13的下部取出到拉线炉11外,在拉线炉11与热处理炉21之间进行空冷。作为惰性气体,例如可以使用N2气体。N2气体的热传导系数λ(T=300K)为26mW/(m·K)。此外,空气的热传导系数λ(T=300K)为26mW/(m·K)。
其次,把拉制成线空冷后的玻璃光纤3,送往设置在既是拉线炉11和树脂被覆部分40之间,又是拉线炉11的后边的规定位置上的退火用的热处理炉21。然后,借助于热处理炉21内的加热器22以规定的温度使玻璃光纤3退火(热处理步骤)。在该热处理炉21中,使得光纤的冷却速度、退火时间和退火温度等退火条件满足规定的条件那样地对玻璃光纤3进行退火。
具体地说,就玻璃光纤3的冷却速度来说,要使得满足冷却速度将变成为2000℃/秒以下的条件那样地使玻璃光纤3退火。此外,就玻璃光纤3的退火时间来说,在把热处理炉21的长度定义为L(m),把玻璃光纤3的线速定义为Vf(m/秒),把热处理炉21的入口处的玻璃光纤3的粘度定义为ηs(Pa·秒),把单位截面面积的玻璃光纤3的张力(张力/光纤截面面积、剪断应力)定义为K(Pa),把缓和时间定义为τ=ηs/K时,要使得满足退火时间L/Vf变成为在缓和时间τ(L/Vf≥τ)以上的条件那样地对玻璃光纤3进行退火。
另外,玻璃光纤3的冷却速度,可在把热处理炉21的入口(退火的开始时)处的玻璃光纤3的温度定为Ts(℃),把热处理炉21的出口(退火的结束时)处的玻璃光纤3的温度定为Te(℃)时,用冷却速度=(Ts-Te)×Vf/L定义。
此外,在热处理炉21中,优选使得满足对于上边所说的玻璃光纤3的冷却速度和退火时间的条件那样地设定将成为热处理炉21的炉温的加热器22的温度。具体地说,优选把加热器22的温度定为800℃以上1600℃以下的范围内的规定温度,进行玻璃光纤3的退火。或者更优选把加热器22的温度定为1100℃以上1600℃以下的范围内的规定温度,进行玻璃光纤3的退火。
热处理炉21,具有使玻璃光纤3在其中通过的炉心管23。在热处理炉21的炉心管23上,连接有来自N2气体供给部分24的气体供给通路25,并构成为使得炉心管23内变成为N2气体气氛。也可以不使用N2气体,而代之以使用空气或Ar等的分子量比较大的气体等。但是,在炉心管是碳制作的情况下,就必须使用不含氧的气体。
接着,把退火后的玻璃光纤3送往设置在既是拉线炉11和树脂被覆部分40之间、又是热处理炉21的后边的规定位置上的强制冷却用的冷却装置31。接着,通过冷却装置31将玻璃光纤3冷却到规定的温度(冷却步骤)。该冷却装置31,被配置为使得在热处理炉21中退火后的玻璃光纤3以700℃以上的温度,优选700℃以上1300℃以下的范围内的规定温度向冷却装置31送线。
冷却装置31,具有玻璃光纤3在其中通过的圆筒状的管32。此外,在圆筒管32的侧壁上,设置有已连接到冷却气体供给部分34上的多个喷嘴33。借助于此,就可以对在圆筒管32中通过的玻璃光纤3供给来自冷却气体供给部分34的冷却气体,玻璃光纤3被强制性地冷却。作为冷却气体,优选使用He气体。
从冷却装置31中出来的玻璃光纤3,可借助于外径测定器51在线测定外径。然后,把该测定值反馈给对鼓52进行旋转驱动的驱动电机53,使得外径变成为恒定那样地对鼓52的旋转进行驱动控制。来自外径测定器51的输出信号,被送往作为控制装置的控制单元54。控制单元54,使得玻璃光纤3的外径变成为预先设定好的规定值那样地,借助于运算,求鼓52和驱动电机53的旋转速度。
从控制单元54,向驱动电机用驱动器(图中未示出)输出表示借助于运算求得的鼓52和驱动电机53的旋转速度的输出信号。该驱动电机用驱动器,根据来自控制单元54的输出信号,控制驱动电机53的旋转速度。
借助于外径测定器51测定了外径的玻璃光纤3,向构成为2段(串联)的树脂被覆部分40送线。首先,在第1段的树脂被覆部分中,对通过了外径测定器51后的玻璃光纤3,借助于涂敷模41涂敷UV树脂42。所涂敷的UV树脂42,可借助于来自树脂硬化部分43的UV灯泡44的紫外光进行硬化。
此外,在第2段的树脂被覆部分中,对来自树脂硬化部分43的玻璃光纤3,借助于涂敷模46涂敷UV树脂47。所涂敷的UV树脂47,可借助于来自树脂硬化部分48的UV灯泡49的紫外光硬化。借助于此,就可以形成借助于树脂把玻璃光纤3被覆起来的光纤导线束4。然后,光纤导线束4,经由引导辊子56被鼓52卷绕起来。鼓52被旋转驱动轴55支持,在该旋转驱动轴55的端部已连接到驱动电机53上。
另外,拉线炉11的炉心管13上,如上所述,连接有来自惰性气体供给部分14的气体供给通路15,并构成为使得炉心管13内变成为惰性气体气氛。相对于此,也可以作为惰性气体供给部分14设置N2气体供给部分,并构成为使得向炉心管13内供给N2气体以使之变成为N2气体气氛。此外,还可以并行设置He气体供给部分和N2气体供给部分,变成为根据线速向炉心管13内供给He气体或N2气体。
对上边所说的实施方式的光纤的制造方法的效果进行说明。
在图1所示的光纤的制造方法中,在把光纤母材2加热拉制成线时,要在拉线炉11的后边设置热处理炉21。此外,在拉制成线后的玻璃光纤3通过热处理炉21时,使得玻璃光纤3的冷却速度和退火时间满足规定的条件那样地使玻璃光纤3退火。如上所述,通过采用热处理炉21进行光纤的缓慢冷却,就可以使光纤内的假想温度Tf降低,因而可以降低在光纤内产生的瑞利散射损耗。
此外,对于已用热处理炉21退火的玻璃光纤3,在热处理炉21的后边还要设置冷却装置31,借助于该冷却装置31使玻璃光纤3强制冷却。借助于此,就可以缩短为了把出了热处理炉21的玻璃光纤冷却到数10℃所需要的通路长度。这样一来,由于可以缩短包括拉线炉11和热处理炉21的拉线装置1的长度(拉线装置的高度),故作为整体可以使图1所示的拉线装置1小型化。
例如,若用在拉线炉11和热处理炉21的后边设置有树脂被覆部分40的构成,则在用树脂被覆玻璃光纤3时,必须使玻璃光纤3充分地冷却。相对于此,在图1所示的拉线装置1的情况下,则可以用冷却装置31把玻璃光纤3冷却到适当的温度。此外,还可以提高拉线时的玻璃光纤3的线速(拉线速度)等,因而可以效率良好地制造玻璃光纤3以及光纤导线束4。
此外,至于由该冷却装置31进行的光纤的强制冷却,把向冷却装置31送线的玻璃光纤3的送线温度定为700℃以上。借助于此,就可以减少在波长0.63μm处的损耗的增大、以及成为由耐氢特性的劣化产生的在波长1.38μm处的损耗的增大的原因的光纤内的Si-O缺陷或NBOHC等的缺陷。由以上可知,可以生产性良好地制造可以降低瑞利散射损耗,而且具有良好的耐氢特性的玻璃光纤3。
在这里,在玻璃光纤3的退火中,优选把热处理炉21的炉温定为800℃以上1600℃以下的范围内的规定的温度使玻璃光纤3退火。此外,更优选把热处理炉21的炉温定为1100℃以上1600℃以下的范围内的规定的温度使玻璃光纤3退火。借助于此,就可以充分地降低在玻璃光纤3内的瑞利散射损耗。
此外,至于退火开始时的玻璃光纤3的温度Ts,若在温度降已经下来之后再退火,由于为使之产生效果所需要的时间就会增长,故优选定为1400℃以上1600℃以下的温度。该玻璃光纤3向热处理炉21送线的送线温度,可根据玻璃光纤的具体的构成设定。
另一方面,向冷却装置31送线的玻璃光纤3的送线温度,优选定为700℃以上1300℃以下的范围内的规定温度。借助于此,就可以满意地使玻璃光纤3内的缺陷确实减少,和对玻璃光纤3的有效地强制冷却两立。
此外,在用拉线炉11进行的拉线,用热处理炉21进行的退火,和用冷却装置31进行的强制冷却中,优选把玻璃光纤3的线速定为300m/分以上。通过采用像这样地把拉线时的玻璃光纤3的线速定为比较高的线速,就可以提高玻璃光纤3的生产性。
此外,至于用热处理炉21进行的玻璃光纤3的退火,优选用0.03秒以上0.8秒以下的退火时间进行退火。通过采用在这样的范围内在规定时间进行玻璃光纤3的退火,就可以充分地降低在玻璃光纤3内产生的瑞利散射损耗。
其次,对本发明的光纤进行说明。另外,以下所示的光纤,可以满意地用上边所说的制造方法制造。
图2是对本发明的光纤的实施方式1示出了其折射率分布的曲线图。在该曲线图中,横轴示出的是从光纤内的各个部位的中心轴看的位置。此外,纵轴示出的是在光纤内的各个部位处的相对于纯SiO2的相对折射率差(%)。
本实施方式的光纤,具备纤芯区域100,设置在纤芯区域100的外周上的包层区域110。纤芯区域100被形成为包括光纤的中心轴在内的半径r0的层。此外,该纤芯区域100,由用规定的添加量添加进Ge的SiO2构成。
具体地说,已向纤芯区域100内,借助于用对纯SiO2的%表示的相对折射率差[Ge]表示Ge的添加量时,满足条件
[Ge]≥0.3%
的添加量添加进了Ge。借助于此,纤芯区域100的相对折射率差Δn0就变成为Δn0=[Ge]>0。
此外,包层区域110,在本实施方式中,由1层的包层111构成。包层111,被形成为设置在纤芯区域100的外周上的半径r1的层。此外,该包层111,由纯SiO2构成。借助于此,包层111的相对折射率差Δn1就变成为Δn1=0。
在这样的构成中,本光纤要形成为使得与在光纤内产生的瑞利散射损耗有关的瑞利散射系数A(dB/km·μm4)和在波长1.00μm处的传送损耗α1.00(dB/km)分别相对于用下式表示的基准值A0和α0
A0=0.85+0.29[Ge]
α0=0.86+0.29[Ge]
为97%以下。此外,本光纤,要形成为使得在波长1.38μm处的氢处理前后的传送损耗差Δα1.38在0.15dB/km以下。在这里,例如若设[Ge]=0.35%,则A0=0.85+0.29×0.35=0.95。
在图2所示的光纤的情况下,对于其纤芯区域100,已用满足条件[Ge]≥0.3%的添加量添加进了Ge。在像这样地添加进了Ge的光纤的情况下,起因于Ge就易于产生在光纤内产生的Si-O缺陷或NBOHC等的缺陷。此外,如上所述,这些缺陷还会成为在波长0.63μm处的损耗的增大和由耐氢特性的劣化带来的在波长1.38μm处的损耗的增大的原因。
相对于此,在上边所说的光纤的情况下,在已向纤芯区域100内添加进了Ge的光纤中,其瑞利散射系数A以及包括瑞利散射损耗在内的传送损耗α1.00,比在通常的光纤中所显示的值的基准值A0、α0还要降低3%以上,变成为97%以下的值。此外,如后所述,依赖于在光纤内产生的缺陷的量,将成为相对于光纤的耐氢特性的指标的氢处理前后的传送损耗差Δα1.38则降低到0.15dB/km以下。借助于此,就可以得到降低瑞利散射损耗,而且具有良好的耐氢特性的光纤。
在这里,对于设置在纤芯区域100的外周上的包层区域110来说,在图2所示的构成中,虽然作成为具有由纯SiO2构成的1层的包层111的构成,但是,一般地说,优选作成为具有由纯SiO2、已添加进Ge的SiO2或已添加进F的SiO2中的任何一者构成的1个或多个包层的构成。
倘采用这样的构成,则可以以良好的特性生产性良好地制造单模光纤(SMF)、分散移位光纤(DSF)和分散补偿光纤(DCF)等各种各样的光纤。
对上边所说的光纤的各特性条件,进一步进行说明。在本实施方式的光纤的情况下,作为用来评价瑞利散射损耗等的降低效果的指标,作成为使用瑞利散射系数A和在波长1.00μm处的传送损耗α1.00,使这些瑞利散射系数A和在波长1.00μm处的传送损耗α1.00,变成为比表示通常的值的基准值A0、α0,降低3%以上的、97%以下的值。
在光纤内产生的波长λ处的传送损耗αλ(dB/km),可借助于瑞利散射损耗,和除此之外的构造不规则损耗等的传送损耗成分,一般地说,用下式
αλ=A/λ4+B+C(λ)
表示。其中,第1项A/λ4(dB/km)表示瑞利散射损耗,其系数A是瑞利散射系数(dB/km·μm4)。由上式可知,瑞利散射损耗比例于瑞利散射系数A,因此,如果瑞利散射系数A从基准值降低3%,则结果就变成为瑞利散射损耗降低3%。
在这里,在借助于不进行由热处理炉进行的光纤的退火等通常的制造方法得到的光纤中,在用上边所说的[Ge]表示Ge向纤芯区域的添加量时,瑞利散射系数A(dB/km·μm4)的值,就变成为下式
A0=0.85+0.29[Ge]
因此,就可以把该在通常情况下的值A0当作瑞利散射系数A的基准值。这时,所得到的光纤内的瑞利散射系数A,只要是从基准值A0减少了3%以上即可。
此外,为了评价包括瑞利散射损耗在内的全体的传送损耗,也可以把在波长1.00μm处的传送损耗α1.00作为指标。在波长1.00μm处,在上边所说的表示传送损耗αλ的式中,B+C(λ)大体上为0.01,因此,在用通常的制造方法得到的光纤中,传送损耗α1.00(dB/km)的值,就将变成为下式
α0=A0+0.01
=0.86+0.29[Ge]
因此,就可以把在该通常制造方法下的值α0当作传送损耗α1.00的基准值。这时,在所得到的光纤中的传送损耗α1.00,优选从基准值α0减少3%以上。
如上所述,通过把瑞利散射系数A,或传送损耗α1.00作为指标使用,就可以确实地得到瑞利散射损耗或包括瑞利散射损耗在内的全体的传送损耗的降低效果。此外,如果采用上边所说的基准值A0、α0的各自的表示式,则在表示式中,就含有与Ge向纤芯的添加量有关的变数[Ge]。因此,可以进行与Ge的添加量对应的传送损耗的评价。
另外,至于瑞利散射系数A,可以根据传送损耗的波长依赖性的数据(例如在1/λ4曲线上的斜率)来求。此外,作为评价全体的传送损耗的指标,使用的是在波长1.00μm处的传送损耗α1.00,这是因为在1.00μm处的传送损耗的值,比在光传送中使用的1.55μm波长区域等大,用1~10km左右的比较短的光纤样品就可以以充分的精度进行评价的缘故。
此外,光纤的在波长1.00μm处的传送损耗α1.00,和在波长1.55μm处的传送损耗α1.55,具有恒定的关系地对应,通过采用传送损耗α1.00评价降低效果,即便是对于传送损耗α1.55,也可以同样地确认其降低。作为具体的对应关系,在波长1.00μm处的传送损耗α1.00,如上所述,虽然可以用
α1.00=A+0.01
表示,但是,相当于该表示式的在波长1.55μm处的传送损耗α1.55的表示式,是下式
α1.55=A×0.17325+0.025
其次,关于对在上边所说的光纤内的传送损耗差Δα1.38的特性条件进行说明。在本实施方式的光纤的情况下,作为对光纤的耐氢特性的指标,使用波长1.38μm处的氢处理前后的传送损耗差Δα1.38,把该传送损耗差Δα1.38定为0.15dB/km以下的值。
在已向纤芯区域添加进了Ge的光纤中,如上所述,通过起因于Ge的Si-O缺陷、NBOHC等的缺陷,在波长0.63μm处的宽度宽的损耗峰值就将增大。这些缺陷,在氢气氛中就将变成为Si-O-H,成为在由OH基产生的波长1.38μm处的损耗的增大的原因。
因此,对于在该波长1.38μm处的传送损耗差Δα1.38,通过采用求在氢处理前和氢处理后之间的传送损耗差Δα1.38,对在拉制成线后的光纤内发生的缺陷进行评价。此外,通过把该传送损耗差Δα1.38作成为0.15dB/km以下,就可以得到具有良好的耐氢特性的光纤。
在这里,对于氢处理前后的传送损耗差Δα1.38,具体地说,在氮99%∶氢1%的氢气氛中,在温度80℃下进行20个小时的氢处理。然后,根据相对于氢处理前的光纤得到的在波长1.38μm处的传送损耗差Δα1.38,和相对于氢处理后的光纤得到的传送损耗差Δα1.38之间的差的损耗的增大量,来求作为耐氢特性的指标的传送损耗差Δα1.38。如果可以抑制氢处理前的光纤内的缺陷的发生,则传送损耗差Δα1.38就可以降低。
至于本发明的光纤及其制造方法所带来的传送损耗的降低效果和耐氢特性的提高效果,与具体的实施例和比较例一起进行说明。另外,在以下所示的实施例中的光纤的情况下,不论哪一者都规定用图1所示的构成的拉线装置1制造。
图3的表,示出了本发明的光纤的实施例A1~A4的制造条件及其损耗特性。在这里,作为所制造的光纤,想象具有图2所示的构成的Ge添加单模光纤(Ge-SM)。具体地说,把由已添加进Ge的SiO2构成的纤芯区域100的外径设定为2r0=8μm,把相对折射率差设定为Δn0=[Ge]=0.35%,把由纯SiO2构成的包层111的外径设定为2r1=125μm,把相对折射率差设定为Δn1=0%。
此外,至于其制造条件,作为使光纤3强制冷却的冷却装置31,使用直径6mm、长度4m的冷却装置,此外,作为冷却气体以20 l/分(20slm)的流量供给He气体。此外,把将光纤3拉制成线的线速定为400m/分。此外,至于热处理炉21中的光纤3的退火温度(℃)和光纤3向冷却装置31送线的送线温度(℃),对于各个实施例如图3的表中所示。另外,对于光纤的退火条件来说,要设定为使得满足把上边所说的冷却速度定为2000℃/秒以下的条件,和把退火时间L/Vf作成为大于缓和时间τ。
此外,在图3的表中,作为在各个实施例中的光纤的损耗特性,示出了在波长1.55μm处的传送损耗α1.55(dB/km),和在波长0.63μm处的传送损耗α0.63(dB/km)。这些损耗值,任何一个都是在对于光纤进行氢处理前的值。
在这些损耗值内,在波长1.55μm处的传送损耗α1.55,主要示出了通过对在热处理炉21中进行了拉制成线后的光纤3进行退火而得到的瑞利散射损耗的降低效果。此外,在波长0.63μm处的传送损耗α0.63,通过对在退火后的光纤3在冷却装置31中进行的强制冷却等得到的在光纤内的缺陷的降低效果。
成为该传送损耗α0.63增大的原因的在光纤内产生的缺陷,如上所述,在对光纤进行了氢处理后,就变成为在波长1.38μm处的损耗的增大的原因。
在图3的表中所示的实施例A1~A4之中,在实施例A1中,把在热处理炉中进行的退火温度设定为1100℃,把向冷却装置送线的送线温度设定为700℃,所得到的传送损耗变成为α1.55=0.185dB/km,α0.63=6dB/km。此外,在实施例A2中,把在热处理炉中进行的退火温度设定为1400℃,把向冷却装置送线的送线温度设定为1000℃,所得到的传送损耗变成为α1.55=0.180dB/km,α0.63=6dB/km。
此外,在实施例A3中,把在热处理炉中进行的退火温度设定为1550℃,把向冷却装置送线的送线温度设定为1200℃,所得到的传送损耗变成为α1.55=0.182dB/km,α0.63=7dB/km。此外,在实施例A4中,把在热处理炉中进行的退火温度设定为1550℃,把向冷却装置送线的送线温度设定为1300℃,所得到的传送损耗变成为α1.55=0.182dB/km,α0.63=9dB/km。
在这些实施例中,在热处理炉中进行的退火温度,任何一个都变成为在1000℃以上1600℃以下的范围内的温度。借助于此,就可以降低在光纤内的瑞利散射损耗,可以降低包括瑞利散射损耗在内的在波长1.55μm处的传送损耗α1.55。此外,向冷却装置送线的送线温度,任何一个都变成为在700℃以上的范围内的温度。借助于此,就可以减少在光纤内产生的缺陷,可以降低起因于缺陷的在波长0.63μm处的传送损耗α0.63
另一方面,图4的表,示出了光纤的比较例B1~B5的制造条件和损耗特性。在这里,作为所要制造的光纤,设想与具有图2所示的构成的实施例A1~A4同样的Ge添加单模光纤(Ge-SM)。
在图4的表中所示的比较例B1~B5之中,在比较例B1中,不进行在热处理炉中进行的退火,把向冷却装置送线的送线温度设定为1000℃,所得到的传送损耗变成为α1.55=0.190dB/km,α0.63=12dB/km。在这里,由于对光纤不进行退火,故包括瑞利散射损耗在内的传送损耗α1.55增大了。此外,起因于光纤内的缺陷的传送损耗α0.63也变大了。
此外,在比较例B2中,不进行在热处理炉中进行的退火,把向冷却装置送线的送线温度设定为500℃,所得到的传送损耗变成为α1.55=0.190dB/km,α0.63=6dB/km。在这里,由于对光纤不进行退火,故包括瑞利散射损耗在内的传送损耗α1.55增大了。但是,由于向冷却装置送线的送线温度低,故传送损耗α0.63却变低了。
此外,在比较例B3中,把在热处理炉中进行的退火温度设定为900℃,把向冷却装置送线的送线温度设定为500℃,所得到的传送损耗变成为α1.55=0.189dB/km,α0.63=6dB/km。在这里,由于光纤的退火温度低,故包括瑞利散射损耗在内的传送损耗α1.55增大了。但是,由于向冷却装置送线的送线温度低,故传送损耗α0.63却变低了。
此外,在比较例B4中,把在热处理炉中进行的退火温度设定为1100℃,把向冷却装置送线的送线温度设定为500℃,所得到的传送损耗变成为α1.55=0.185dB/km,α0.63=6dB/km。在这里,由于光纤的退火温度比较高,故包括瑞利散射损耗在内的传送损耗α1.55某种程度降低了。但是,由于向冷却装置送线的送线温度也低,故传送损耗α0.63也变低了,至于损耗特性,却得到了良好的特性的光纤。但是,在像这样地使向冷却装置送线的送线温度降低到500℃的情况下,就必须在热处理炉和冷却装置之间使光纤充分地进行空冷,作为全体不能使拉线装置小型化。
此外,在比较例B5中,把在热处理炉中进行的退火温度设定为1650℃,把向冷却装置送线的送线温度设定为1300℃,所得到的传送损耗变成为α1.55=0.188dB/km,α0.63=10dB/km。在这里,由于光纤的退火温度过高,故包括瑞利散射损耗在内的传送损耗α1.55增大了。此外,起因于光纤内的缺陷的传送损耗α0.63也变大了。
如果采用以上的实施例A1~A4,和比较例B1~B5,由于把由热处理炉进行的光纤的退火温度定为1000℃以上1600℃以下的温度,而且,把向冷却装置送线的送线温度定为700℃以上,优选定为700℃以上1300℃以下的温度,故可以降低瑞利散射损耗,而且,可以得到具有良好的耐氢特性的光纤。此外,还可以使拉线装置小型化,生产性良好地制造光纤。
进一步对本发明的光纤进行说明。
图5是对光纤的实施方式2示出了其折射率分布的曲线图。在该曲线图中,横轴示出的是从光纤内的各个部位的中心轴看的位置。此外,纵轴示出的是在光纤内的各个部位处的相对于纯SiO2的相对折射率差(%)。
本实施方式的光纤,具备纤芯区域200,设置在纤芯区域200的外周上的包层区域210。纤芯区域200被形成为包括光纤的中心轴在内的半径r0的层。此外,该纤芯区域200,用由满足条件
[Ge]≥0.3%
的添加量添加进Ge的SiO2构成。借助于此,纤芯区域200的相对折射率差Δn0就变成为Δn0=[Ge]>0。
此外,包层区域210,在本实施方式中,由2层的包层211、212构成。内侧的第1包层211,被形成为设置在纤芯区域200的外周上的半径r1的层。此外,该包层211,由用规定的添加量添加进Ge的SiO2构成。借助于此,包层211的相对折射率差Δn1就变成为Δn1>0。
此外,外侧的第2包层212,被形成为设置在第1包层211的外周上的半径r2的层。此外,该包层212,由纯SiO2构成。借助于此,包层212的相对折射率差Δn2就变成为Δn2=0。
另外,至于瑞利散射系数A、在波长1.0μm处的传送损耗α1.00和在波长1.38μm处的氢处理前后的传送损耗差Δα1.38,与对于图2所述的实施方式1的光纤上边所说的特性条件是同样的。此外,具有这样构成的光纤,例如可以满意地应用于例如分散移位光纤(DSF)。
图6的曲线图,对于光纤的实施方式3示出了其折射率分布。在该曲线图中,横轴示出的是从光纤内的各个部位的中心轴看的位置。此外,纵轴示出的是在光纤内的各个部位处的相对于纯SiO2的相对折射率差(%)。
本实施方式的光纤,具备纤芯区域300,设置在纤芯区域300的外周上的包层区域310。纤芯区域300被形成为包括光纤的中心轴在内的半径r0的层。此外,该纤芯区域300,用由满足条件
[Ge]≥0.3%
的添加量添加进Ge的SiO2构成。借助于此,纤芯区域300的相对折射率差Δn0就变成为Δn0=[Ge]>0。
此外,包层区域310,在本实施方式中,由2层的包层311、312构成。内侧的第1包层311,被形成为设置在纤芯区域300的外周上的半径r1的层。此外,该包层311,由用规定的添加量添加进F的SiO2构成。借助于此,包层311的相对折射率差Δn1就变成为Δn1<0。
此外,外侧的第2包层312,被形成为设置在第1包层311的外周上的半径r2的层。此外,该包层312,由纯SiO2构成。借助于此,包层312的相对折射率差Δn2就变成为Δn2=0。
另外,至于瑞利散射系数A、在波长1.00μm处的传送损耗α1.00和在波长1.38μm处的氢处理前后的传送损耗差Δα1.38,与对于图2所述的实施方式1的光纤上边所说的特性条件是同样的。此外,具这样构成的光纤,例如可以满意地应用于例如分散补偿光纤(DCF)。
与具体的实施例和比较例一起对图2、图5和图6所述的各个实施方式的光纤中的传送损耗的降低效果和耐氢特性的提高效果,进行说明。
图7的表,示出了光纤的实施方式C1~C3和比较例D1~D3的制造条件及其损耗特性。
在这里,在实施例C1和比较例D1中,作为光纤,设想与具有图2所示的构成的Ge添加单模光纤(Ge-SM)。具体地说,把由已添加进Ge的SiO2构成的纤芯区域100的外径设定为2r0=8μm,把相对折射率差设定为Δn0=[Ge]=0.35%,把由纯SiO2构成的包层111的外径设定为2r1=125μm,把相对折射率差设定为Δn1=0%。
此外,在实施例C2和比较例D2中,作为光纤,设想与具有图5所示的构成的Ge添加分散移位光纤(DSF)。具体地说,把由已添加进Ge的SiO2构成的纤芯区域200的外径设定为2r0=6μm,把相对折射率差设定为Δn0=[Ge]=0.6%,把由已添加进Ge的SiO2构成的第1包层211的外径设定为2r1=40μm,把相对折射率差设定为Δn1=0.1%,把由纯SiO2构成的第2包层212的外径设定为2r2=125μm,把相对折射率差设定为Δn2=0%。
此外,在实施例C3和比较例D3中,作为光纤,设想与具有图6所示的构成的Ge添加分散补偿光纤(DCF)。具体地说,把由已添加进Ge的SiO2构成的纤芯区域300的外径设定为2r0=4μm,把相对折射率差设定为Δn0=[Ge]=1.5%,把由已添加进F的SiO2构成的第1包层311的外径设定为2r1=8μm,把相对折射率差设定为Δn1=-0.4%,把由纯SiO2构成的第2包层312的外径设定为2r2=125μm,把相对折射率差设定为Δn2=0%。
此外,关于其制造条件,在实施例C1~C3中,使用的是把热处理炉中的光纤的退火温度定为1400℃,把光纤向冷却装置送线的送线温度定为1000℃的实施例A2(参看图3)中的制造条件。此外,在比较例D1~D3中,使用的是不进行在热处理炉中的光纤的退火,把光纤向冷却装置送线的送线温度定为1000℃的比较例B1(参看图4)中的制造条件。此外,至于光纤的线速等,与在图3和图4的情况下是同样的。另外,关于在实施例C1~C3中的光纤的退火条件,设定为使得满足把上边所说的冷却速度定为2000℃/秒以下的条件,和把退火时间L/Vf作成为在缓和时间τ以上的条件。
此外,在图7的表中,作为在各个实施例和比较例中的光纤的损耗特性,示出了在波长1.55μm处的传送损耗α1.55(dB/km),和在波长1.38μm处的传送损耗α1.38(dB/km)。在这里,在波长1.38μm处的传送损耗α1.38,与图3所述的在波长0.63μm处的传送损耗α0.63同样,示出了退火后的光纤在冷却装置中的通过强制冷却等得到的光纤内的缺陷的降低效果。
在图7的表中所示的实施例C1~C3中,传送损耗分别变成为α1.55=0.180、0.188、0.288。在这些值中,尽管传送损耗与已添加到纤芯内的Ge的添加量相对应地增加了,但是,归因于在热处理炉中进行的退火,光纤中的瑞利散射损耗却降低了,包括瑞利散射损耗在内的在波长1.55μm处的传送损耗α1.55降低了。
此外,传送损耗差分别变成为Δα1.38=0.05、0.07、0.11。在这些值中,归因于向冷却装置送线的送线温度的设定等,在光纤内的缺陷减少了,起因于缺陷的在波长1.38μm处的氢处理前后的传送损耗差Δα1.38降低到了0.15dB.km以下。
另一方面,在比较例D1~D3中,传送损耗分别变成为α1.55=0.190、0.200、0.245,而传送损耗差则分别变成为Δα1.38=0.2、0.3、0.6。这些值,无论哪一个都变得比对应的实施例C1~C3中的值大,光纤的损耗特性和耐氢特性都劣化。
由以上的实施例C1~C3和比较例D1~D3可知:通过把由热处理炉进行的光纤的退火温度定为1100℃以上1600℃以下,而且,把光纤向冷却装置送线的送线温度定为700℃以上的温度,即便是具有在图2、图5和图6中分别所示的构成的光纤的任何一者中,都可以得到可以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤。
图8的表,示出了光纤的实施例E和比较例F中的光纤的制造时的温度变化。在该表中,示出了光纤相对于从热处理炉的出口的距离的温度变化(℃)。
具体地说,在实施例E和比较例F中,把在热处理炉的入口处的光纤的温度设定为1600℃,把光纤的线速设定为1200m/分,把热处理炉的长度设定为2m,把退火温度设定为1200℃,把退火时间设定为0.1秒。此外,在实施例E中,在距热处理炉的出口的距离为2m~3m的范围内,对光纤进行由He冷却装置进行的强制冷却。此外,在实施例E以及比较例F中,设想的是具有图2所述的构成的Ge添加单模光纤。玻璃光纤的直径为125μm。此外,在该条件下,缓和时间τ为约0.05秒,退火时间比之更长。
此外,至于光纤的温度变化,用Paek的公式
θ=exp{-[(4h)/(ρCpV)]S}
或对该公式改写后的下式
θ=exp{-[(4h)/(ρCpd)]t}
计算。在这里,h是热传达系数,ρ是密度,Cp是比热,V是光纤的线速,d是光纤的直径,t是经过时间。
此外,θ和S可用下式表示
θ=(T-T0)/(Ts-T0)
S=z/d
在这里,T是温度,Ts是软化温度,T0是气氛温度,z是位置(参看文献“U.C.Paek et.al.,Journal of The American Ceramic SocietyVol.58,No.7-8,pp.330-335”)。
在图8的表中,实施例E和比较例F一起,热处理炉的出口处的光纤温度都变成为1449℃,在距出口1m处变成为1299℃,在2m处变成为1125℃。此外,在其后边,借助于He冷却装置进行强制冷却的实施例E的情况下,在距出口3m处光纤温度变成为600℃以下的553℃,相对于此,在不进行强制冷却的比较例F的情况下,在距出口7m处则变成为600℃以下的554℃。
就是说,在该例子中,通过在热处理炉的后边设置冷却装置,而得以把用来使光纤的温度降低到600℃以下的拉线装置的长度缩短4m,可以使拉线装置大幅度地小型化。借助于此,就可以减少拉线装置的建设费用。此外,还可以提高拉线时的光纤的线速等,提高光纤的生产性。
这样的效果,特别是在拉线时的光纤的线速高的情况下更为显著。例如,在图8所示的例子中,线速为1200m/分时,4m的空间缩短是可能的。由此可知,如果光纤的线速在300m/分以上,则可以使拉线装置的空间缩短1m以上。
此外,关于通过热处理炉进行的光纤的退火时间,在长度1m的热处理炉的情况下,若设光纤的线速为300~1800m/分,则退火时间将变成为0.2~0.03秒。此外,在长度4m的热处理炉的情况下,退火时间则将变成为0.8~0.13秒。因此,在这样的条件下,优选把由热处理炉进行的退火时间定为0.03秒以上0.8秒以下。
与实施例一起进一步说明本发明的光纤的制造方法中的因退火而得到传送损耗的降低效果。
在以下所示的实施例中,作为光纤,设想与实施例A1~A4同样的Ge添加单模光纤,把热处理炉的入口处的光纤的温度定为Ts=1500℃,同时,使光纤的线速Vf和热处理炉的长度L变化,对光纤的温度变化、冷却速度和可得到的效果进行探讨。在该光纤的构成和向热处理炉的送线温度中,光纤的缓和时间为τ=0.12秒(K约为80Pa)。
此外,关于光纤的温度变化,可用上边所说的Paek的公式通过计算求得,在表中示出了热处理炉内的各个位置和位于热处理炉的后边的冷却装置的入口处的光纤的温度(℃),以及由该计算求得的热处理炉中的冷却速度(℃/秒)。此外,关于退火效果,与不退火的情况下比较,把瑞利散射系数降低3%以上的情况定为有效果(表中的○),把除此之外定为无效果(图中的×)。
图9的表,示出了把光纤的线速定为Vf=400m/分时的光纤的冷却速度和退火效果。在图9所示的例子中,对于把热处理炉的长度设定为L=2m,把热处理炉与冷却装置之间的距离设定为0.3m,把热处理炉的设定温度设定为1300℃、1000℃、800℃、500℃和20℃的各个条件研究光纤的温度变化以及可得到的退火效果。这时,退火时间为L/Vf=0.30秒,满足条件L/Vf≥τ。
图10的表,示出了把光纤的线速定为Vf=800m/分时的光纤的冷却速度和退火效果。在图10所示的例子中,对于把热处理炉的长度设定为L=2m,把热处理炉与冷却装置之间的距离设定为1.2m,把热处理炉的设定温度设定为1300℃、1000℃、800℃、500℃和20℃的各个条件研究光纤的温度变化以及可得到的退火效果。这时,退火时间为L/Vf=0.15秒,满足条件L/Vf≥τ。
图11的表,示出了把光纤的线速定为Vf=1600m/分时的光纤的冷却速度和退火效果。在图11所示的例子中,对于把热处理炉的长度设定为L=3.5m,把热处理炉与冷却装置之间的距离设定为2m,把热处理炉的设定温度设定为1300℃、1000℃、800℃、500℃和20℃的各个条件研究光纤的温度变化以及可得到的退火效果。这时,退火时间为L/Vf=0.13秒,满足条件L/Vf≥τ。
图12的表,示出了把光纤的线速定为Vf=3000m/分时的光纤的冷却速度和退火效果。在图12所示的例子中,对于把热处理炉的长度设定为L=7m,把热处理炉与冷却装置之间的距离设定为2m,把热处理炉的设定温度设定为1300℃、1000℃、800℃、500℃和20℃的各个条件研究光纤的温度变化以及可得到的退火效果。这时,退火时间为L/Vf=0.14秒,满足条件L/Vf≥τ。
图13的表,示出了把光纤的线速定为Vf=800m/分时的光纤的冷却速度和退火效果。在图13所示的例子中,对于把热处理炉的长度设定为L=1.5m,把热处理炉与冷却装置之间的距离设定为1.2m,把热处理炉的设定温度设定为1300℃的条件研究光纤的温度变化以及可得到的退火效果。这时,退火时间L/Vf是比缓和时间τ还短的L/Vf=0.11秒,不满足条件L/Vf≥τ。
如以上的图9~图13所示,可知:在退火时间已变短而不满足关于退火时间的条件L/Vf≥τ的图13的例子中,得不到充分的瑞利散射系数的降低效果。此外,即便是在退火时间满足L/Vf≥τ的图9~图12的例子中,在冷却速度比2000℃/秒更快的情况下,也同样地得不到充分的瑞利散射系数的降低效果。
相对于此,通过使得满足在热处理炉中的冷却速度变成为2000℃/秒以下的条件、和退火时间L/Vf变成为缓和时间τ以上的条件那样地使光纤退火,就可以充分地降低瑞利散射系数。此外,关于热处理炉的设定温度的退火温度,通过把退火温度定为800℃以上,就可以充分地降低瑞利散射系数。另外,即便是在这些例子中,因通过冷却装置使光纤强制冷却而产生的效果,也是与上边所说的实施例A1~A4同样的。
本发明的光纤及其制造方法,并不限定于上边所说的实施方式和实施例,各种各样的变形是可能的。例如,就拉线装置的具体的构成来说,图1只不过是其一个例子,只要是可以实现上边所说的制造方法的构成,也可以使用其它的构成的拉线装置。
工业上利用的可能性
本发明的光纤及其制造方法,就如以上详细说明的那样,可以用作降低了瑞利散射损耗,而且具有良好的耐氢特性的光纤以及生产性良好的光纤的制造方法。就是说,在光纤的拉线时,如果采用借助于拉线炉的后边的热处理炉,在冷却速度变成为2000℃/秒以下,退火时间变成为在缓和时间以上的条件下,使光纤退火的同时,在700℃以上的温度下使光纤向热处理炉后边的冷却装置送线以进行强制冷却的制造方法,则生产性良好地制造可以降低瑞利散射损耗,而且具有良好的耐氢特性的光纤是可能的。
此外,如果采用以满足条件[Ge]≥0.3的添加量向纤芯区域内添加Ge,瑞利散射系数A和在波长1.00μm处的传送损耗α1.00分别相对于通常的基准值A0、α0在97%以下,而且,在波长1.38μm处的氢处理前后的传送损耗差Δα1.38在0.15dB/km以下的光纤的制造方法,则可以得到降低了瑞利散射损耗,而且,具有良好的耐氢特性的光纤。

Claims (8)

1.光纤的制造方法,包括:
通过拉线炉把具有纤芯区域和在上述纤芯区域的外周上设置的包层区域的光纤母材加热拉制成线,使之变成为光纤的拉线步骤;
借助于设置在上述拉线炉的后边的热处理炉对使用上述拉线炉拉制成线的上述光纤进行退火的热处理步骤;
在700℃以上的温度下将使用上述热处理炉退火后的上述光纤送线到设置在上述热处理炉的后边的冷却装置,用上述冷却装置进行强制冷却的冷却步骤,
其特征在于:
在上述热处理步骤中,在上述光纤的冷却速度变成为2000℃/秒以下的条件,以及在把上述热处理炉的长度定义为L,长度单位为m,
把上述光纤的线速定义为Vf,线速单位为m/秒,
把上述热处理炉的入口处的上述光纤的粘度定义为ηs,粘度单位为Pa·秒,
把单位截面面积的上述光纤的张力定义为K,张力单位为Pa,
把缓和时间定义为τ=ηs/K时,
在满足退火时间L/Vf变成为在缓和时间τ以上的退火条件下使上述光纤退火。
2.根据权利要求1所述的光纤的制造方法,其特征在于:在上述热处理步骤中,借助于上述热处理炉在800℃以上1600℃以下的温度下使上述光纤退火。
3.根据权利要求1所述的光纤的制造方法,其特征在于:在上述热处理步骤中,借助于上述热处理炉在1100℃以上1600℃以下的温度下使上述光纤退火。
4.根据权利要求1所述的光纤的制造方法,其特征在于:在上述冷却步骤中,使上述光纤在700℃以上1300℃以下的温度下向上述冷却装置送线。
5.根据权利要求1所述的光纤的制造方法,其特征在于:在上述拉线步骤、上述热处理步骤和上述冷却步骤中的上述光纤的线速在300m/分以上。
6.根据权利要求1所述的光纤的制造方法,其特征在于:在上述热处理步骤中,借助于上述热处理炉用0.03秒以上0.8秒以下的时间使上述光纤退火。
7.根据权利要求1所述的光纤的制造方法,其特征在于:上述纤芯区域,用相对于纯SiO2的%表示的相对折射率差[Ge]满足条件[Ge]≥0.3%的添加量添加进了Ge。
8.根据权利要求1所述的光纤的制造方法,其特征在于:上述包层区域具有分别由纯SiO2、已添加进Ge的SiO2或已添加进F的SiO2中的任何一者构成的1个或多个包层。
CNB038012537A 2002-07-10 2003-07-10 光纤的制造方法 Expired - Lifetime CN1318337C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002201795 2002-07-10
JP201795/2002 2002-07-10

Publications (2)

Publication Number Publication Date
CN1630621A CN1630621A (zh) 2005-06-22
CN1318337C true CN1318337C (zh) 2007-05-30

Family

ID=30112588

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038012537A Expired - Lifetime CN1318337C (zh) 2002-07-10 2003-07-10 光纤的制造方法

Country Status (6)

Country Link
US (1) US20050259932A1 (zh)
EP (1) EP1533284A4 (zh)
JP (1) JP4244925B2 (zh)
KR (1) KR100973373B1 (zh)
CN (1) CN1318337C (zh)
WO (1) WO2004007383A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558368B2 (ja) 2004-04-09 2010-10-06 古河電気工業株式会社 光ファイバの製造方法
US8074474B2 (en) * 2007-11-29 2011-12-13 Corning Incorporated Fiber air turn for low attenuation fiber
US7987066B2 (en) * 2008-08-29 2011-07-26 Bae Systems Information And Electronic Systems Integration Inc. Components and configurations for test and valuation of integrated optical busses
US8800324B2 (en) 2009-05-20 2014-08-12 J-Fiber Gmbh Method for producing a glass fiber and device
JP2011039109A (ja) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd 光通信システム
US7876990B1 (en) * 2009-11-25 2011-01-25 Corning Incorporated Low loss optical fiber
JP2012020908A (ja) * 2010-07-15 2012-02-02 Sumitomo Electric Ind Ltd 光ファイバの製造方法及び光ファイバ
CN102010123B (zh) * 2010-10-13 2014-04-09 长飞光纤光缆股份有限公司 一种光纤的热处理方法及装置
WO2013094460A1 (ja) * 2011-12-19 2013-06-27 オリンパス株式会社 光ファイバの製造方法、光ファイバ、および内視鏡
WO2013105302A1 (ja) 2012-01-10 2013-07-18 住友電気工業株式会社 光ファイバの製造方法および製造装置並びに光ファイバ
JP6048031B2 (ja) * 2012-09-24 2016-12-21 住友電気工業株式会社 光ファイバ製造方法
JP6048105B2 (ja) 2012-12-12 2016-12-21 住友電気工業株式会社 光ファイバ製造方法および光ファイバ
US9309143B2 (en) * 2013-08-08 2016-04-12 Corning Incorporated Methods of making optical fiber with reduced hydrogen sensitivity
US10322963B2 (en) * 2014-12-02 2019-06-18 Corning Incorporated Low attenuation optical fiber
US10221089B2 (en) * 2015-09-10 2019-03-05 Corning Incorporated Optical fiber with low fictive temperature
CN115872614A (zh) 2015-10-30 2023-03-31 康宁股份有限公司 制造光纤的方法和光纤
JP6248130B2 (ja) * 2016-02-15 2017-12-13 古河電気工業株式会社 光ファイバ素線の製造方法
JP6254628B2 (ja) * 2016-03-16 2017-12-27 株式会社フジクラ 光ファイバの製造方法
JP6340390B2 (ja) 2016-08-30 2018-06-06 株式会社フジクラ 光ファイバの製造方法
JP6457579B2 (ja) * 2017-04-10 2019-01-23 株式会社フジクラ 光ファイバの製造方法
CN108383375B (zh) * 2018-02-12 2023-08-04 浙江富春江光电科技有限公司 光纤拉丝退火装置及光纤
FR3082955B1 (fr) * 2018-06-22 2021-07-23 Commissariat Energie Atomique Procede de fabrication d'une fibre optique pour une mesure repartie de temperature ou de deformation en environnement severe par exploitation du signal retrodiffuse rayleigh
CN115466044B (zh) * 2022-09-09 2023-08-15 中国建筑材料科学研究总院有限公司 光纤传像元件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271330A (ja) * 1985-09-25 1987-04-02 Hitachi Ltd 半導体集積回路
JPH08290932A (ja) * 1995-04-17 1996-11-05 Sumitomo Electric Ind Ltd 光ファイバ母材の製造方法
CN1343893A (zh) * 2000-08-28 2002-04-10 住友电气工业株式会社 光纤维及其制造方法
CN1350509A (zh) * 1999-05-27 2002-05-22 住友电气工业株式会社 光纤的制造装置和制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186430A (ja) * 1984-01-27 1985-09-21 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの線引き方法および装置
JP2765033B2 (ja) * 1989-04-14 1998-06-11 住友電気工業株式会社 光ファイバーの線引方法
JPH0459631A (ja) * 1990-06-27 1992-02-26 Sumitomo Electric Ind Ltd 光ファイバの線引方法
US5314519A (en) * 1992-08-31 1994-05-24 At&T Bell Laboratories Methods and apparatus for increasing optical fiber draw speed
JP3275429B2 (ja) * 1993-03-17 2002-04-15 住友電気工業株式会社 光ファイバの製造方法
US5366527A (en) * 1993-04-05 1994-11-22 Corning Incorporated Method and apparatus for coating optical waveguide fibers
JP3511811B2 (ja) * 1996-07-31 2004-03-29 住友電気工業株式会社 光ファイバの製造方法
US6578164B1 (en) * 2000-07-12 2003-06-10 Iomega Corporation Method for detecting transient write errors in a disk drive having a dual transducer slider
JP2002148466A (ja) * 2000-08-28 2002-05-22 Sumitomo Electric Ind Ltd 光ファイバ及びその製造方法
JP2002234751A (ja) * 2001-01-31 2002-08-23 Fujikura Ltd 光ファイバ紡糸方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271330A (ja) * 1985-09-25 1987-04-02 Hitachi Ltd 半導体集積回路
JPH08290932A (ja) * 1995-04-17 1996-11-05 Sumitomo Electric Ind Ltd 光ファイバ母材の製造方法
CN1350509A (zh) * 1999-05-27 2002-05-22 住友电气工业株式会社 光纤的制造装置和制造方法
CN1343893A (zh) * 2000-08-28 2002-04-10 住友电气工业株式会社 光纤维及其制造方法

Also Published As

Publication number Publication date
JPWO2004007383A1 (ja) 2005-11-10
KR20050020742A (ko) 2005-03-04
KR100973373B1 (ko) 2010-07-30
WO2004007383A1 (ja) 2004-01-22
CN1630621A (zh) 2005-06-22
US20050259932A1 (en) 2005-11-24
EP1533284A1 (en) 2005-05-25
EP1533284A4 (en) 2011-04-27
JP4244925B2 (ja) 2009-03-25

Similar Documents

Publication Publication Date Title
CN1318337C (zh) 光纤的制造方法
CN100401117C (zh) 光纤维及其制造方法
US20020197039A1 (en) Double-clad optical fiber for lasers and amplifiers
GB2423517A (en) Apparatus for drawing and annealing an optical fibre
EP1243568B1 (en) Production method for optical fiber
US20050281521A1 (en) Optical fiber, apparatus and method for manufacturing optical fiber
US20010043782A1 (en) Optical fiber and method of manufacturing the same
JP4663277B2 (ja) 光ファイバ素線及びその製造方法
WO2001023924A1 (fr) Fibre optique a gestion de distribution, son procede de fabrication, systeme de communication optique l&#39;utilisation et materiau de base de fibre optique
WO2000073224A1 (fr) Dispositif de production et procede pour fibre optique
JP4482954B2 (ja) 光ファイバの製造方法
JPH05345632A (ja) 希土類元素添加マルチコアファイバ及びその製造方法
CA1160085A (en) Gradient index optical components
JP4124254B2 (ja) 光ファイバ、光ファイバ母材の製造方法、及び光ファイバの製造方法
EP1728769A1 (en) Method of drawing bare optical fiber, process for producing optical fiber strand and optical fiber strand
AU772566B2 (en) Optical fiber drawing method and drawing device
JP4400026B2 (ja) 光ファイバの製造方法
EP1251107A1 (en) Controlled collapse of depressed index optical fiber preforms
JP3952734B2 (ja) 光ファイバの製造方法
CN100343704C (zh) 接合损耗低的光纤及其制造方法
JP4389409B2 (ja) 光ファイバの製造方法
JP2002148465A (ja) 光ファイバ、光ファイバ母材の製造方法、及び光ファイバの製造方法
JP2002321936A (ja) 光ファイバ及びその製造方法
WO2004060822A1 (en) Method for heat treating a glass article
JP2005187285A (ja) 光ファイバの線引き方法およびその線引き装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070530