WO2013094460A1 - 光ファイバの製造方法、光ファイバ、および内視鏡 - Google Patents
光ファイバの製造方法、光ファイバ、および内視鏡 Download PDFInfo
- Publication number
- WO2013094460A1 WO2013094460A1 PCT/JP2012/081973 JP2012081973W WO2013094460A1 WO 2013094460 A1 WO2013094460 A1 WO 2013094460A1 JP 2012081973 W JP2012081973 W JP 2012081973W WO 2013094460 A1 WO2013094460 A1 WO 2013094460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- glass
- core
- viscosity
- log
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/0011—Manufacturing of endoscope parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
- A61B1/0017—Details of single optical fibres, e.g. material or cladding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02718—Thermal treatment of the fibre during the drawing process, e.g. cooling
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02754—Solid fibres drawn from hollow preforms
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/029—Furnaces therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/04—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
- G02B6/06—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/10—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/32—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/50—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
- C03B2203/222—Mismatching viscosities or softening points of glass layers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/32—Eccentric core or cladding
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/12—Drawing solid optical fibre directly from a hollow preform
- C03B2205/14—Drawing solid optical fibre directly from a hollow preform comprising collapse of an outer tube onto an inner central solid preform rod
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/12—Drawing solid optical fibre directly from a hollow preform
- C03B2205/16—Drawing solid optical fibre directly from a hollow preform the drawn fibre consisting of circularly symmetric core and clad
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/60—Optical fibre draw furnaces
- C03B2205/62—Heating means for drawing
- C03B2205/63—Ohmic resistance heaters, e.g. carbon or graphite resistance heaters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2461—Illumination
- G02B23/2469—Illumination using optical fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- Embodiments of the present invention relate to an optical fiber manufacturing method that guides light through an insertion portion of an endoscope, the optical fiber, and an endoscope that includes the optical fiber.
- the light guide is used to guide the light generated by the light source device to the illumination unit disposed at the distal end of the insertion portion of the endoscope.
- the light guide has a configuration in which a number of optical fibers are bundled. Have. As shown in FIG. 1, each optical fiber 10 (outer diameter ⁇ F) is provided on a core (outer diameter ⁇ C) 11 that transmits light and an outer peripheral portion of the core 11, and light does not leak from the side surface of the core. In this way, the clad 12 is reflected.
- the core 11 is made of high refractive index glass
- the cladding 12 is made of glass having a refractive index lower than that of the core 11.
- Japanese Laid-Open Patent Publication No. 1-215738 discloses a method for manufacturing an optical fiber for optical communication by a rod-in-tube method.
- melt spinning so-called “drawing” is performed in a state where a rod-shaped glass serving as a core is inserted into a tube-shaped glass serving as a clad inside a heating furnace.
- both the optical fiber for endoscope and the optical fiber for optical communication have a function of guiding light, and the basic portions are similar.
- the optical fiber for optical communication transmits light of a predetermined narrow wavelength for a long distance of several kilometers or more, whereas the optical fiber for endoscope has a short distance of a few m for light in a wide wavelength range of visible light, but it is large. It is necessary to guide the amount of light.
- the structure and manufacturing method of the optical fiber for endoscope are basically similar to the structure and manufacturing method of the optical fiber for optical communication, but the manufacturing conditions and the like are greatly different.
- an optical fiber for an endoscope has a larger ratio of the core diameter ⁇ C to the fiber diameter ⁇ F than an optical fiber for optical communication. For this reason, the drawing in the state where the core rod is accurately arranged at the center of the clad tube is not easy, and improvement of productivity has been a problem.
- a method of manufacturing an optical fiber that guides light through an insertion portion of an endoscope is a hollow type made of clad glass inside a vertical drawing furnace used in a rod-in-tube method.
- the core glass in a fluidized state flows down due to gravity inside the tube, so that the core glass and the clad glass are integrated.
- the optical fiber 10 is in a vertical state at the center of a hollow portion of an elongated clad tube 22 made of clad glass held in a vertical state inside a vertical drawing furnace 30. While the elongated core rod 21 made of the held core glass is inserted and heated, it is “drawn” by applying tension downward.
- the wire drawing furnace 30 is provided with a heater 32 and a heat insulating material 33 so as to surround a central core tube 31 that is a heating space.
- the interior of the core tube 31 is designed such that the temperature rises from the upper side to the lower side.
- FIG. 2 is a schematic diagram for explanation, and the shape and size of the components are different from the actual ones.
- the core glass (core rod 21) is in a fluid state at a lower temperature than the clad glass (cladding tube 22). For this reason, as shown in FIG. 2, the core rod 21 starts deformation flow at Z1, enters a flow state at Z2, and flows down in the vertical direction due to gravity.
- the core glass (core rod 21) that has flowed down is integrated with the clad tube 22 at Z2.
- the clad glass (clad tube 22) starts deformation flow at Z3, and the diameter reduction starts.
- the diameter ⁇ CL of the core glass (core rod 21) that starts to flow and flows down at Z2 gradually decreases as it goes down, but is received by the clad tube 22 that is not in the flow state at Z5. Therefore, Z4 indicates the minimum value.
- the glass diameter decreases monotonously.
- ⁇ CL decreases in Z1 to Z4, but becomes a minimum value in Z4 and increases in Z4 to Z5. Then, it decreases again below Z5, and finally becomes the core diameter ( ⁇ C) of the fiber 10, for example, 27 ⁇ m.
- the diameter ⁇ CL of the core glass decreases and increases after reaching a minimum value.
- an optical fiber for an endoscope has a high ratio ( ⁇ C / ⁇ F) of the core diameter ⁇ C to the fiber diameter ⁇ F in order to guide a large amount of light.
- a desired light quantity cannot be guided unless the core diameter ⁇ C of the optical fiber is 80% or more of the fiber diameter ⁇ F.
- the core diameter ⁇ C is preferably 24 ⁇ m (80%) or more, and particularly preferably 27 ⁇ m (90%) or more.
- the upper limit of the core diameter ⁇ C is, for example, 95% or less of the fiber diameter ⁇ F.
- the optical fiber for endoscope has a high ⁇ C / ⁇ F
- the ratio of the outer diameter ⁇ CL of the core rod 21 to the inner diameter ⁇ CT of the clad tube 22 ( ⁇ CT / ⁇ CL) is high even at the time of manufacture.
- the distance (gap) from the inner peripheral surface of the tube is also small. For this reason, eccentricity of the core rod is likely to occur.
- the core glass in a fluidized state flows down by gravity, so that it is integrated with the cladding glass (clad tube 22) in the fluidized state.
- the clad tube 22 is further reduced in diameter by drawing tension, but the core glass inside the hollow tube (clad tube 22) made of clad glass is in a fluid state, so the inside is uniformly filled. Maintain the state.
- the drawing tension applied from the lower side of the drawing furnace 30 is in a flowing state in Z2 to Z5, so that it is not strongly applied to the upper portion of the core rod 21, that is, the core rod 21 with Z> Z1. For this reason, even if the core rod 21 is slightly decentered from the center of the cladding tube 22 in the upper part of the drawing furnace 30, it is not a big problem.
- the manufacturing method of the optical fiber 10 of this embodiment has high productivity.
- the core glass (core rod 21) is in a fluid state at a lower temperature than the clad glass (clad tube 22) is an essential condition for the method of manufacturing the optical fiber 10 of the present embodiment. That is, the clad glass and the core glass were selected in consideration of the temperature change of the viscosity ⁇ 1 of the clad glass (clad tube 22) and the temperature change of the viscosity ⁇ 2 of the core glass (core rod 21).
- Viscosity at a temperature of 900 ° C. or less Fiber elongation method: JIS-R3103 and ASTM-C336 Viscosity at a temperature of 900 ° C. or higher
- the viscosity is calculated by measuring the load load using a balance with a sphere pulling viscometer using glass as Newtonian fluid.
- the ball pulling type viscometer is a method of calculating the viscosity by immersing a platinum ball in molten glass and substituting the load applied when the platinum ball is pulled up at a constant speed into the Stokes equation.
- the clad glass needs to maintain a predetermined hardness (viscosity).
- the temperature of Z5 is higher than the temperature of Z2.
- FIG. 4 shows temperature changes in the viscosity of core glass-A (Core-A), clad glass-A (Clad-A), clad glass-B (Clad-B), and clad glass-C (Clad-C). .
- the viscosity curve of the clad glass combined with the core glass-A is between the viscosity curve of the clad glass-B (Clad-B) and the viscosity curve of the clad glass-C (Clad-C). It is preferable that it exists in.
- the core glass is mainly composed of, for example, borosilicate glass or aluminoborosilicate glass, and the refractive index nd is 1.56 to 1.73.
- the refractive index nd of the clad glass containing silica as a main component and containing an alkali component is 1.47 to 1.52.
- conditions such as refractive index, difference in thermal expansion coefficient with core glass, wettability of core glass / cladding glass, and difficulty of mutual component diffusion are estimated by, for example, APPEN formula While selected.
- the viscosity ⁇ of glass can be adjusted by the content of alkali components. That is, as the alkali component content increases, the viscosity ⁇ at the same temperature decreases.
- the clad glass-A and the clad glass-B have the same main components but different alkali component contents.
- the clad glass-A contains 6 mol% Na and 1.5 mol% K.
- the clad glass-B contains 19 mol% of Na.
- the influence on the viscosity when Na is “1”, K is “0.85”. That is, the Na equivalent content of the clad glass-A is 7 mol%.
- the viscosity condition was satisfied.
- the manufacturing method of the optical fiber 10 it is preferable to perform not only temperature management but also time management. That is, it is preferable that the time during which the glass that is drawn and moves downward in the drawing furnace 30 stays in a predetermined temperature range is also managed.
- the temperature distribution of the drawing furnace 30 is shown in FIG.
- the first residence time is the residence time in the first temperature region of 620 ° C. to 880 ° C.
- the second residence time is the residence time in the second temperature region of 910 ° C. to 1010 ° C. .
- the residence time in the first temperature range and the residence time in the second temperature range of the clad glass and the core glass are both 0.15 times or more of the value obtained by expressing the core outer diameter in mm (unit: "Min") is more preferable for stable production.
- the core outer diameter (core diameter ⁇ CL) varies inside the drawing furnace 30, the initial outer diameter of the core glass before the drawing process is used to calculate the residence time.
- the two residence times are more preferably (30 ⁇ 0.15) minutes, that is, 4.5 minutes or more.
- the residence time is determined by the drawing speed and the region length. For example, when the length of the temperature region is 20 mm, the drawing speed in the temperature region may be 4 mm / min or less.
- the residence time in the first temperature region and the second temperature region is, for example, a time that is not more than twice the value expressed in millimeters of the outer diameter of the core (unit is “minute”) in order to improve productivity. Is preferred. For example, if the core outer diameter is 30 mm, the two residence times are preferably (30 ⁇ 2) minutes, that is, 60 minutes or less.
- the viscosity ⁇ 1 is 5.0 ⁇ Log ⁇ 1 ⁇ 7.0.
- the optical fiber 10 has a core diameter of 80% to 95% of the fiber diameter.
- the optical fiber 10 is manufactured by a rod-in-tube method using a vertical drawing furnace.
- optical fiber 10 Since the optical fiber 10 has good productivity, it can be manufactured at low cost.
- An endoscope system 41 including an endoscope 40 includes a CPU 44 that is a processor for processing image signals, a monitor 45 that displays an endoscope image, a keyboard 46 for a user to set usage conditions, and the like.
- the input unit and the light source device 47 are provided.
- the endoscope 40 has an imaging unit 50 that captures a color endoscope image at a distal end portion 49 and an insertion unit 48 having an illumination optical system 51, and the insertion unit 48 is inserted into the light guide connector on the proximal end side.
- An electronic device comprising: a light guide 42 for guiding illumination light from the light source device 47 connected via the light source 52 to the illumination optical system 51; and an electronic connector 53 for connecting the imaging unit 50 having a CCD or the like to the CPU 44. Endoscope.
- optical fibers 10 having a diameter of 30.0 ⁇ m are filled in a silicone tube, and the diameter is 1.8 mm and the length is 1 m.
- the endoscope 40 includes the optical fiber 10 with high productivity, the endoscope 40 has high productivity and can be manufactured at low cost.
- the illumination light guide optical fiber 10 that guides illumination light from the proximal end portion of the insertion portion 48 to the distal end portion 49 has been described.
- the subject image received by the imaging optical system of the distal end portion 49 is described.
- the embodiment of the present invention has the same effect. That is, the optical fiber 10 and the manufacturing method of the optical fiber 10 according to the embodiment can be used for various applications as long as they are for endoscopes.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Manufacturing & Machinery (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Endoscopes (AREA)
- Glass Compositions (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
Description
ライトガイドは、多数の光ファイバを束ねた構成を有している。図1に示すように個々の光ファイバ10(外径φF)は光を透過するコア(外径φC)11と、コア11の外周部に設けられている、光がコア側面から外へ漏れないように反射するクラッド12と、から構成されている。そして、コア11には高屈折率ガラスが用いられており、クラッド12にはコア11よりも屈折率の低いガラスが用いられている。
ファイバエロンゲーション法:JIS-R3103およびASTM-C336
(2)温度900℃以上の粘度
球引き上げ式粘度計により、ガラスをニュートン流体として、天秤を用いて負荷加重を測定することで粘度を算出する。球引き上げ式粘度計は、溶融ガラス中に白金球を浸し、白金球を等速度で引き上げるときの負荷荷重をストークスの式に代入して粘度を算出する方法である。
以上の説明のように、内視鏡の挿入部に挿通され光を導光する内視鏡用の光ファイバ10は、コアガラスの粘度η2がLogη2=3.5となる温度における、クラッドガラスの粘度η1が、5.0<Logη1<7.0である。また、光ファイバ10は、コア径がファイバ径の80%以上95%以下である。そして光ファイバ10は、縦型の線引き炉を用いてロッドインチューブ法により製造される。
次に、図6を用いて光ファイバ10を具備する内視鏡40について簡単に説明する。
Claims (9)
- 内視鏡の挿入部に挿通され光を導光する光ファイバの製造方法において、
ロッドインチューブ法に用いられる縦型の線引き炉の内部で、クラッドガラスからなる中空のクラッドチューブの内部を、流動状態となったコアガラスが重力により流れ落ちることにより、前記コアガラスと前記クラッドガラスとが一体化することを特徴とする光ファイバの製造方法。 - 前記光ファイバのコア径がファイバ径の80%以上98%以下であることを特徴とする請求項1に記載の光ファイバの製造方法。
- 前記線引き炉の内部において、前記コアガラスからなるコアロッドの径が極小値となった後に増加することを特徴とする請求項2に記載の光ファイバの製造方法。
- 前記コアガラスの粘度η2がLogη2=3.5となる温度における、前記クラッドガラスの粘度η1が、5.0<Logη1<7.0であることを特徴とする請求項3に記載の光ファイバの製造方法。
- 前記線引き炉の内部において、前記コアガラスの粘度η2がLogη2=6.0からLogη2=3.5に減少する第1の温度領域の前記コアガラスの滞留時間が、前記コアガラスの初期の外径をmm単位で表記した値の0.15倍以上の時間(単位は「分」)であり、かつ、前記クラッドガラスの粘度η1がLogη1=6.0からLogη1=5.0に減少する第2の温度領域の前記クラッドガラスの滞留時間が、前記外径をmm単位で表記した値の0.15倍以上の時間(単位は「分」)であることを特徴とする請求項4に記載の光ファイバの製造方法。
- 内視鏡の挿入部に挿通され光を導光する光ファイバにおいて、
コアガラスの粘度η2がLogη2=3.5となる温度における、クラッドガラスの粘度η1が、5.0<Logη1<7.0であることを特徴とする光ファイバ。 - コア径がファイバ径の80%以上98%以下であることを特徴とする請求項6に記載の光ファイバ。
- 縦型の線引き炉を用いてロッドインチューブ法により製造されることを特徴とする請求項7に記載の光ファイバ。
- コアガラスの粘度η2がLogη2=3.5となる温度における、クラッドガラスの粘度η1が、5.0<Logη1<7.0である、挿入部に挿通され光を導光する光ファイバを、具備することを特徴とする内視鏡。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013513320A JP5362140B1 (ja) | 2011-12-19 | 2012-12-10 | 光ファイバの製造方法、光ファイバ、および内視鏡 |
CN201280020406.5A CN103517661B (zh) | 2011-12-19 | 2012-12-10 | 光纤的制造方法、光纤以及内窥镜 |
EP12859162.5A EP2689710B1 (en) | 2011-12-19 | 2012-12-10 | Method for producing optical fiber, optical fiber, and endoscope |
US13/850,549 US8639078B2 (en) | 2011-12-19 | 2013-03-26 | Optical fiber manufacturing method, optical fiber and endoscope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011277355 | 2011-12-19 | ||
JP2011-277355 | 2011-12-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/850,549 Continuation US8639078B2 (en) | 2011-12-19 | 2013-03-26 | Optical fiber manufacturing method, optical fiber and endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013094460A1 true WO2013094460A1 (ja) | 2013-06-27 |
Family
ID=48668354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081973 WO2013094460A1 (ja) | 2011-12-19 | 2012-12-10 | 光ファイバの製造方法、光ファイバ、および内視鏡 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8639078B2 (ja) |
EP (1) | EP2689710B1 (ja) |
JP (1) | JP5362140B1 (ja) |
CN (1) | CN103517661B (ja) |
WO (1) | WO2013094460A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505451A (ja) * | 2013-11-14 | 2017-02-16 | コーニング インコーポレイテッド | 溶融温度が低いガラスを有する光拡散ファイバ |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101758600B1 (ko) | 2015-03-03 | 2017-07-26 | (주)참메드 | 유니버셜 타입 광케이블 홀더 및 이를 포함하는 광케이블 접속장치 |
KR101739179B1 (ko) | 2015-03-03 | 2017-06-08 | 이호식 | 비접촉식 광케이블 감지 유닛을 갖는 광케이블 접속장치 |
WO2020000442A1 (zh) | 2018-06-29 | 2020-01-02 | 深圳市大疆创新科技有限公司 | 云台手柄和具有其的云台 |
CN114057388B (zh) * | 2020-08-05 | 2023-08-08 | 中天科技精密材料有限公司 | 光纤预制棒的制造方法、光纤预制棒及光纤 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01215738A (ja) | 1988-02-23 | 1989-08-29 | Hisankabutsu Glass Kenkyu Kaihatsu Kk | コア・クラッド構造を有するカルコゲナイドガラス製光ファイバーの製造方法 |
JPH0940437A (ja) * | 1995-07-28 | 1997-02-10 | Showa Electric Wire & Cable Co Ltd | 光ファイバの製造方法 |
JP2002529357A (ja) * | 1998-08-25 | 2002-09-10 | コーニング インコーポレイテッド | 光ファイバを製造するための方法および装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1772354B1 (de) * | 1968-05-02 | 1970-11-26 | Jenaer Glaswerk Schott & Gen | Lichtleitfaser,die gegebenenfalls entstehendes Streulicht absorbiert,und Verfahren zu ihrer Herstellung |
JPS5323166B2 (ja) * | 1973-08-22 | 1978-07-13 | ||
JPH02141437A (ja) * | 1988-08-04 | 1990-05-30 | Sumitomo Electric Ind Ltd | 光ファイバの製造方法 |
JPH07133127A (ja) * | 1993-11-05 | 1995-05-23 | Fujitsu Ltd | シングルモード光ファイバの製造方法 |
CN1261332A (zh) * | 1997-06-23 | 2000-07-26 | 康宁股份有限公司 | 用于光学波导制品的组合物和连续包层纤维长丝的制造方法 |
JP4482955B2 (ja) * | 1999-05-27 | 2010-06-16 | 住友電気工業株式会社 | 光ファイバの製造方法 |
US20020054741A1 (en) * | 2000-10-18 | 2002-05-09 | Gilberto Brambilla | Fabrication of optical fibers incorporating volatile constituents |
US7272285B2 (en) * | 2001-07-16 | 2007-09-18 | Massachusetts Institute Of Technology | Fiber waveguides and methods of making the same |
JP4244925B2 (ja) * | 2002-07-10 | 2009-03-25 | 住友電気工業株式会社 | 光ファイバの製造方法 |
US7486862B2 (en) * | 2003-05-19 | 2009-02-03 | Sumitomo Electric Industries, Ltd. | Optical fiber and manufacturing method thereof |
CN1761894B (zh) * | 2003-08-13 | 2010-05-05 | 日本电信电话株式会社 | 光纤及其制造方法 |
JP2005298271A (ja) * | 2004-04-12 | 2005-10-27 | Sumitomo Electric Ind Ltd | 光ファイバの製造方法及び光ファイバ |
CN102033249B (zh) * | 2009-09-29 | 2012-08-29 | 中国科学院西安光学精密机械研究所 | 超大模面积偏磷酸盐光纤的组成及其制备方法 |
-
2012
- 2012-12-10 CN CN201280020406.5A patent/CN103517661B/zh active Active
- 2012-12-10 EP EP12859162.5A patent/EP2689710B1/en active Active
- 2012-12-10 JP JP2013513320A patent/JP5362140B1/ja active Active
- 2012-12-10 WO PCT/JP2012/081973 patent/WO2013094460A1/ja active Application Filing
-
2013
- 2013-03-26 US US13/850,549 patent/US8639078B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01215738A (ja) | 1988-02-23 | 1989-08-29 | Hisankabutsu Glass Kenkyu Kaihatsu Kk | コア・クラッド構造を有するカルコゲナイドガラス製光ファイバーの製造方法 |
JPH0940437A (ja) * | 1995-07-28 | 1997-02-10 | Showa Electric Wire & Cable Co Ltd | 光ファイバの製造方法 |
JP2002529357A (ja) * | 1998-08-25 | 2002-09-10 | コーニング インコーポレイテッド | 光ファイバを製造するための方法および装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2689710A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505451A (ja) * | 2013-11-14 | 2017-02-16 | コーニング インコーポレイテッド | 溶融温度が低いガラスを有する光拡散ファイバ |
Also Published As
Publication number | Publication date |
---|---|
US20130259436A1 (en) | 2013-10-03 |
EP2689710A4 (en) | 2015-04-29 |
CN103517661B (zh) | 2015-09-02 |
JPWO2013094460A1 (ja) | 2015-04-27 |
CN103517661A (zh) | 2014-01-15 |
EP2689710A1 (en) | 2014-01-29 |
US8639078B2 (en) | 2014-01-28 |
EP2689710B1 (en) | 2016-08-03 |
JP5362140B1 (ja) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5362140B1 (ja) | 光ファイバの製造方法、光ファイバ、および内視鏡 | |
CN110140070B (zh) | 低弯曲损耗单模光纤 | |
CN104661975B (zh) | 光纤制造方法 | |
DK2951627T3 (en) | ASYMMETRIC OPTICAL FIBER CONNECTORS | |
WO2013084765A1 (ja) | 光ファイバ、光伝送システムおよび光ファイバ製造方法 | |
JP6129270B2 (ja) | 曲げ耐性のマルチモード光ファイバ | |
CN106291808B (zh) | 一种超低衰减大有效面积单模光纤 | |
US10228509B2 (en) | Low attenuation fiber with viscosity matched core and inner clad | |
CN107632338B (zh) | 抗弯曲单模光纤及其制作方法 | |
Shabahang et al. | Single‐mode, 700%‐stretchable, elastic optical fibers made of thermoplastic elastomers | |
JP2014118334A (ja) | 光ファイバ製造方法 | |
JP5949016B2 (ja) | 光ファイバ製造方法 | |
CN103630965B (zh) | 一种抗弯曲拉锥光纤及其制造方法 | |
CN107817552A (zh) | 光纤和着色光纤 | |
CN104854047A (zh) | 光纤制造方法和光纤 | |
CN104203850B (zh) | 光纤的制造方法 | |
JP2015152871A (ja) | 光ファイバデバイス | |
Rizi et al. | Phosphate glass-based microstructured optical fibers with hole and core for biomedical applications | |
Dambul et al. | Fabrication and development of Flat Fibers | |
JP2008076655A (ja) | 偏波保持光ファイバ | |
US20180292604A1 (en) | Bend-insensitive single-mode optical fiber for fused biconical taper fiber optic coupler | |
RU2402497C2 (ru) | Способ изготовления оптического волокна | |
JPS60142302A (ja) | イメ−ジガイドの製法 | |
CN106019470A (zh) | 一种超低衰减单模光纤 | |
JP2008058432A (ja) | イメージファイバとその製造方法、及びファイバスコープ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013513320 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12859162 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012859162 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012859162 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |