CN1296510C - 气体渗碳方法 - Google Patents

气体渗碳方法 Download PDF

Info

Publication number
CN1296510C
CN1296510C CNB2004100489298A CN200410048929A CN1296510C CN 1296510 C CN1296510 C CN 1296510C CN B2004100489298 A CNB2004100489298 A CN B2004100489298A CN 200410048929 A CN200410048929 A CN 200410048929A CN 1296510 C CN1296510 C CN 1296510C
Authority
CN
China
Prior art keywords
carburizing
gas
aforementioned
carbon
processing object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100489298A
Other languages
English (en)
Other versions
CN1572896A (zh
Inventor
立里晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Publication of CN1572896A publication Critical patent/CN1572896A/zh
Application granted granted Critical
Publication of CN1296510C publication Critical patent/CN1296510C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

气体渗碳方法的步骤1中,在从δ铁和液相转变为γ铁的包晶点以下、从液相转变为γ铁和渗碳体的共晶点以上的渗碳温度范围内,在含有渗碳气体的渗碳气氛中对钢制处理对象物进行加热处理,直至前述处理对象物的表面碳浓度达到固溶限度以下的最终目标值。步骤1后的步骤2中,通过经时减少前述渗碳气体的碳势,在将前述处理对象物的表面碳浓度维持在最终目标值的同时,使气体渗碳进行以增加前述处理对象物的渗碳深度。

Description

气体渗碳方法
技术领域
本发明涉及例如汽车工业和产业机械工业中为改善金属制部件的品质所用的气体渗碳方法。
背景技术
以往,进行钢制处理对象物的气体渗碳时实际使用的渗碳温度未满从液相转变为γ铁和渗碳体的共晶点(例如,图1所示的铁和碳的平衡状态图中的C点温度1147℃)。但是,在渗碳温度限定在未满共晶点的情况下,奥氏体中的碳原子的扩散流速迟缓,从处理对象物的表面开始的渗碳深度的增加需要一定的时间,所以不能够缩短渗碳时间。
因此,考虑将渗碳温度设定在上述共晶点以上,使奥氏体中的碳原子的扩散流速加快,达到缩短渗碳时间的目的。
但是,即使渗碳温度设定在上述共晶点以上,处理对象物的表面碳浓度达到目标值也需要一定的时间,所以很难进一步缩短渗碳时间。
本发明的目的是提供能够解决上述以往的问题的气体渗碳方法。
发明内容
在渗碳气体的碳势和渗碳温度一定的情况下,该碳势如果较小,则渗碳深度达到目标值需要一定的时间,该碳势如果过大,则在渗碳深度达到目标值前处理对象物的表面碳浓度就超过了固溶限度,所以处理对象物被溶解。因此,在渗碳气体的碳势和渗碳温度一定的情况下,渗碳时间不能够短于处理对象物的表面碳浓度达到固溶限度(例如,达到图1中的JE线)所需的时间。对应于此,本发明通过实现渗碳气体的碳势、渗碳时间和处理对象物的表面碳浓度之间的新的关系,达到缩短渗碳处理所需时间的目的。
本发明的气体渗碳方法的特征是具备以下2个步骤,步骤1是在从δ铁和液相转变为γ铁的包晶点(例如,图1中的J点)以下、从液相转变为γ铁和渗碳体的共晶点以上的渗碳温度范围内,在含有渗碳气体的渗碳气氛中对钢制处理对象物进行加热处理,直至前述处理对象物的表面碳浓度达到固溶限度以下的最终目标值;步骤2是在前述步骤1后,通过经时减少前述渗碳气体的碳势(平衡碳浓度),在将前述处理对象物的表面碳浓度维持在最终目标值的同时,使气体渗碳进行以增加前述处理对象物的渗碳深度。步骤2的渗碳温度最好在前述包晶点以下但在前述共晶点以上。
利用本发明的特征1,在步骤1中使处理对象物的表面碳浓度达到固溶限度以下的最终目标值,在步骤2中使渗碳气体的碳势经时减少的同时使渗碳深度增加。因此,步骤1中能够使处理对象物的表面碳浓度在短时间内达到最终目标值,步骤2中能够不溶解处理对象物而在短时间内使渗碳深度增加。
最好以将渗碳温度维持在定值的状态,预先求得将前述处理对象物的表面碳浓度维持在前述最终目标值所必须的渗碳气体的碳势和时间之间的关系,在前述步骤2中,以将渗碳温度维持在前述定值的状态,使前述渗碳气体的碳势按照满足以上求得的关系经时变化。如果渗碳温度一定,则处理对象物的表面的碳原子的扩散流速与从渗碳气体的碳势减去处理对象物的表面碳浓度而求得的偏差值成比例。因此,在一定的渗碳温度下的步骤2中,能够通过求得处理对象物的表面碳浓度达到最终目标值时的碳原子的扩散流速和时间之间的关系来求得将处理对象物的表面碳浓度维持在最终目标值所必须的碳势和时间之间的关系。作为步骤2中的渗碳时间可预先通过实验求得获得所希望的渗碳深度所必须的时间。
最好预先求得前述渗碳气体的碳势、渗碳温度和前述处理对象物的表面碳浓度达到前述最终目标值为止的渗碳时间之间的关系,前述步骤1中,按照满足以上求得的关系,设定前述处理对象物的表面碳浓度达到前述最终目标值为止的前述渗碳气体的碳势、渗碳温度及渗碳时间,前述步骤1中将渗碳气体的碳势和渗碳温度维持定值,使步骤2中的一定的渗碳温度与前述步骤1中维持定值的渗碳温度相等,并使前述步骤2中的渗碳气体的最初的碳势和前述步骤1中维持定值的碳势相等。这样,能够连续进行步骤1和步骤2,实现渗碳处理的自动化。
最好使前述处理对象物的表面碳浓度的最终目标值与前述处理对象物的表面的碳的固溶限度相对应。这样能够尽可能地缩短渗碳时间。这种情况下,并不需要最终目标值与固溶限度完全一致,该最终目标值也可比固溶限度小,可根据处理对象物的表面碳浓度的控制能力而尽可能地一致。
本发明通过缩短渗碳时间,能够减少渗碳所需的能量及气体消耗量。
附图说明
图1为铁和碳的平衡状态图。
图2表示利用本发明的实施方式的气体渗碳用装置对处理对象物的试样进行加热的状态。
图3表示本发明的实施方式中,在1300℃的渗碳温度下处理对象物的表面开始溶融为止的渗碳时间和渗碳气体浓度及表面碳浓度之间的关系。
图4表示本发明的实施方式中,处理对象物的表面碳浓度和渗碳时间的关系,以及将该表面碳浓度维持在最终目标值所需的渗碳气体浓度和渗碳时间的关系。
图5表示渗碳气体的碳势和浓度的关系。
图6表示利用本发明的实施方式的气体渗碳用装置对处理对象物进行加热的状态。
图7表示本发明的实施方式和以往例中各自的处理对象物的碳浓度和时间的关系。
具体实施方式
图2表示本发明的实施方式中所用的气体渗碳用装置。该气体渗碳用装置具备真空容器1、加热装置2、对该真空容器1的内部进行减压的真空泵3、向该真空容器1内供给渗碳气氛用气体的气体源4。本实施方式中,加热装置2通过与电源7连接的线圈2a在真空容器1内进行感应加热。从电源7至线圈2的输出功率可以有变化。
在进行钢制处理对象物的气体渗碳前,先进行钢制处理对象物的试样5’的气体渗碳。因此,在装入加热装置2的试样5’的表面焊接作为温度检测用传感器的热电偶6。但温度检测装置并不仅限于热电偶。然后,利用真空泵3对真空容器1内的空气进行排气使真空容器1内部减压,此时最好使真空容器1的内压达到约27Pa以下。减压后,由气体源4向真空容器1内导入渗碳气氛用气体。这样真空容器1内就充满了渗碳气氛,使该渗碳气体的整体压力上升。例如,升压直至真空容器1内的渗碳气氛达到80kPa左右。本实施方式的渗碳气氛用气体由渗碳气体和稀释气体构成。对该渗碳气体和稀释气体的种类无特别限定。本实施方式的渗碳气体为甲烷气体,稀释气体为氮气。作为渗碳气体使用烃类气体可实现无氧化渗碳。但渗碳气体并不仅限于烃类气体。渗碳气氛中可部分包含渗碳气体或完全是渗碳气体。
在真空容器1内的渗碳气氛的整体压力保持一定的情况下,从气体源4以一定流量向真空容器1内供给渗碳气氛用气体的同时,也以一定流量通过真空泵3对渗碳气氛进行排气处理。这样,真空容器1内的渗碳气氛用气体例如以0.5L/min的一定流量流动,渗碳气氛的整体压力例如能被保持在约80kPa。即,含有一定分压的渗碳气体的渗碳气氛在真空容器1内流动。该渗碳气体的分压是真空容器1内的渗碳气氛的整体压力乘以渗碳气体的摩尔分率或容积%而获得的值,与渗碳气体的碳势相对应。通过改变真空容器1内的渗碳气氛的整体压力,或改变渗碳气体和稀释气体的流量比,能够改变对应于渗碳气体的碳势的渗碳气体的浓度(容积%)。
利用加热装置2对试样5’加热至设定的渗碳温度。该渗碳温度设定在从δ铁和液相转变为γ铁的包晶点温度以下、从液相转变为γ铁和渗碳体的共晶点温度以上的温度范围。该渗碳温度设定值可通过对加热装置2的线圈2a的输出功率的变化而改变。
在设定的渗碳气体的碳势及设定的渗碳温度下,预先求得试样5’的表面即将溶融前为止的渗碳时间,即,预先求得处理对象物的表面碳浓度达到固溶限度为止的渗碳时间。本实施方式中,处理对象物的表面碳浓度的最终目标值与该处理对象物的表面的碳的固溶限度相对应。这样,能够求得渗碳气体的碳势、渗碳温度和处理对象物的表面碳浓度达到最终目标值为止的渗碳时间之间的关系。例如,图3表示在1300℃的渗碳温度下,处理对象物的表面碳浓度达到固溶限度(1.15重量%)为止的该表面碳浓度(重量%)和渗碳时间(分钟)、对应于渗碳气体(甲烷)的碳势的浓度(容积%)之间的关系的一个例子。图3中,在渗碳气体浓度为3vol%的情况下,处理对象物的表面碳浓度如图中的实线L1所示变化,在渗碳时间约10分钟时达到固溶限度;在渗碳气体浓度为4vol%的情况下,处理对象物的表面碳浓度如图中的实线L2所示变化,在渗碳时间约5分钟时达到固溶限度;在渗碳气体浓度为7vol%的情况下,处理对象物的表面碳浓度如图中的实线L3所示变化,在渗碳时间约2分钟时达到固溶限度;在渗碳气体浓度为10vol%的情况下,处理对象物的表面碳浓度如图中的实线L4所示变化,在渗碳时间约1分钟时达到固溶限度。
此外,如果渗碳温度一定,则处理对象物的表面的碳原子的扩散流速与从渗碳气体的碳势减去处理对象物的表面碳浓度而求得的偏差值成比例。因此,以将渗碳温度维持在一定值的状态,能够通过求得处理对象物的表面碳浓度达到最终目标值时的碳原子的扩散流速和时间之间的关系来求得将处理对象物的表面碳浓度维持在最终目标值所必须的碳势和时间之间的关系。由于该碳原子的扩散流速与从渗碳气体的碳势减去处理对象物的表面的碳固溶限度而求得的偏差值成比例,所以由实验或已知的关系式就能够求得碳原子的扩散流速和时间的关系。例如,在Industrial Heating中2000年5月1日由Dave VanAken供稿的Engineering Concepts中,记载了利用已知的关系式和表计算软件,能够简单地求得近似值。例如,求得试样5’的表面碳浓度达到作为最终目标值的固溶限度1.15重量%、渗碳温度为1300℃时的试样5’表面的碳原子的扩散流速和时间之间的关系。然后,在一定的渗碳温度下,由求得的扩散流速和时间之间的关系及已知的固溶限度,求得处理对象物的表面碳浓度维持在作为最终目标值的固溶限度所需的碳势和时间之间的关系。图4中,处理对象物的表面碳浓度(重量%)和渗碳时间(分钟)之间的关系如实线L5所示,该表面碳浓度达到作为最终目标值的固溶限度(1.15重量%)后并维持在该值所需的对应于渗碳气体的碳势的渗碳气体浓度(容积%)和时间(分钟)的关系如实线L6所示。此外,如果使渗碳气体的浓度一定,长时间地进行渗碳处理,则由于处理对象物的表面碳浓度和碳势一致,所以能够预先通过实验求得渗碳气体的碳势和渗碳气体的浓度(容积%)之间的关系。图5表示通过实验求得的渗碳气体的浓度(容积%)和碳势(重量%)之间的关系的一个例子。
如果利用试样5’的气体渗碳预先求得图3和图4所示的关系,则利用上述气体渗碳用装置进行钢制处理对象物的气体渗碳。该处理对象物的渗碳与试样5’的渗碳可以同样进行。即如图6所示,将处理对象物5置于加热装置2内,利用真空泵3对真空容器1内的空气进行排气,从气体源4向真空容器1内导入渗碳气氛用气体,使渗碳气氛升压直至达到设定压力,由气体源4以一定流量向真空容器1内供给渗碳气体用气体的同时,利用真空泵3以一定流量使渗碳气氛用气体排气。由此将对应于真空容器1内的渗碳气体的碳势的渗碳气体浓度设定在一定值。此外,利用加热装置2将处理对象物5的渗碳温度设定在从δ铁和液相转变为γ铁的包晶点以下、从液相转变为γ铁和渗碳体的共晶点以上的一定值。在该设定的渗碳气体浓度和渗碳温度下进行步骤1,即仅以设定的渗碳时间,在含有渗碳气体的渗碳气氛中进行加热,直至处理对象物5的表面碳浓度达到固溶限度以下的最终目标值。该步骤1中,按照满足图3所示的预先求得的关系,设定处理对象物5的表面碳浓度达到最终目标值为止的渗碳时间、对应于渗碳气体的碳势的渗碳气体浓度和渗碳温度。本实施方式中,处理对象物5的表面碳浓度的最终目标值与固溶限度(1.15重量%)相对应,分别设定步骤1中的渗碳温度为1300℃、渗碳气体(甲烷气体)浓度为10vol%、渗碳时间为1分钟。这样,处理对象物5的表面碳浓度如图1中的虚线箭头X1所示变化,在短时间内达到JE线上表示固溶限度的X点附近。
上述步骤1后进行步骤2,即通过经时减少渗碳气体的碳势,在将处理对象物5的表面碳浓度维持在对应于固溶限度的最终目标值的同时,使气体渗碳进行以增加处理对象物5的渗碳深度。渗碳气体的碳势因渗碳气体的浓度减少而减少。步骤2中,以将渗碳温度维持在一定值的状态,按照满足预先求得的关系,使渗碳气体的碳势经时变化。本实施方式中,在渗碳温度维持在1300℃的状态下,为了将处理对象物5的表面碳浓度维持在作为最终目标值的固溶限度(1.15重量%),按照满足图4中的实线L6所示的关系,使渗碳气体的浓度(容积%)经时减少。这样,在步骤1中能够将渗碳气体的碳势和渗碳温度维持一定,能够使步骤2中的一定的渗碳温度与步骤1中的一定的渗碳温度相等,并使步骤2中的渗碳气体的最初碳势和步骤1中的一定的碳势相等。
图7中的实线L7表示利用本发明的上述实施方式的方法进行了气体渗碳的处理对象物5的表面到0.5mm的位置的碳浓度和渗碳时间的关系。此外,图7中的实线L8表示利用以往的方法进行了气体渗碳的处理对象物的表面到0.5mm的位置的碳浓度和渗碳时间的关系。该以往例中,从渗碳开始至结束渗碳温度维持在1300℃的定值,对应于渗碳气体的碳势的浓度(容积%)维持在3vol%的定值。从图7可知,从处理对象物5的表面到0.5mm的位置的碳浓度达到0.4重量%的时间,利用上述实施方式的方法约为3.6分钟,利用以往的方法约为7.8分钟。即,从计算上能够确认利用上述实施方式能够将渗碳时间缩短约50%。
本发明并不仅限于上述实施方式,可在本发明的范围内进行各种变化。例如,渗碳气体的碳势的改变并不限定于通过改变渗碳气氛中的渗碳气体的浓度来进行,也可采用在渗碳气氛中混入碳原子数不同的渗碳气体的方法来实现。

Claims (5)

1.气体渗碳方法,其特征在于,具备以下2个步骤,步骤1是在从δ铁和液相转变为γ铁的包晶点以下、从液相转变为γ铁和渗碳体的共晶点以上的渗碳温度范围内,在含有渗碳气体的渗碳气氛中对钢制处理对象物进行加热处理,直至前述处理对象物的表面碳浓度达到固溶限度以下的最终目标值;步骤2是在前述步骤1后,通过经时减少前述渗碳气体的碳势,在将前述处理对象物的表面碳浓度维持在最终目标值的同时,使气体渗碳进行以增加前述处理对象物的渗碳深度。
2.如权利要求1所述的气体渗碳方法,其特征还在于,以将渗碳温度维持在定值的状态,预先求得将前述处理对象物的表面碳浓度维持在前述最终目标值所必须的渗碳气体的碳势和时间之间的关系,在前述步骤2中,以将渗碳温度维持在前述定值的状态,使前述渗碳气体的碳势按照满足以上求得的关系经时变化。
3.如权利要求1或2所述的气体渗碳方法,其特征还在于,预先求得前述渗碳气体的碳势、渗碳温度和前述处理对象物的表面碳浓度达到前述最终目标值为止的渗碳时间之间的关系,前述步骤1中,按照满足以上求得的关系,设定前述处理对象物的表面碳浓度达到前述最终目标值为止的前述渗碳气体的碳势、渗碳温度及渗碳时间,前述步骤1中将渗碳气体的碳势和渗碳温度维持定值,使前述步骤2中的一定的渗碳温度与前述步骤1中维持定值的渗碳温度相等,并使前述步骤2中的渗碳气体的最初的碳势和前述步骤1中维持定值的碳势相等。
4.如权利要求1或2所述的气体渗碳方法,其特征还在于,使前述处理对象物的表面碳浓度的最终目标值与前述处理对象物表面的碳的固溶限度相对应。
5.如权利要求3所述的气体渗碳方法,其特征还在于,使前述处理对象物的表面碳浓度的最终目标值与前述处理对象物表面的碳的固溶限度相对应。
CNB2004100489298A 2003-06-12 2004-06-11 气体渗碳方法 Expired - Fee Related CN1296510C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP03/07450 2003-06-12
PCT/JP2003/007450 WO2004111292A1 (ja) 2003-06-12 2003-06-12 ガス浸炭方法

Publications (2)

Publication Number Publication Date
CN1572896A CN1572896A (zh) 2005-02-02
CN1296510C true CN1296510C (zh) 2007-01-24

Family

ID=33495958

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100489298A Expired - Fee Related CN1296510C (zh) 2003-06-12 2004-06-11 气体渗碳方法

Country Status (4)

Country Link
US (1) US8317939B2 (zh)
CN (1) CN1296510C (zh)
AU (1) AU2003244116A1 (zh)
WO (1) WO2004111292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213251B (zh) * 2005-06-30 2012-10-31 三井化学株式会社 橡胶组合物及其用途

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348770C (zh) * 2004-05-15 2007-11-14 洛阳轴承集团有限公司 高温渗碳钢H10Cr4Mo4Ni4V的热处理渗碳工艺
CN1304624C (zh) * 2005-03-29 2007-03-14 大连华锐股份有限公司 机械零件表面补碳的工艺方法
DE112007003622B4 (de) * 2007-08-17 2020-08-06 Gkn Sinter Metals, Llc. Verfahren zum Erhalten eines Zahnrads mit variierender Einsatzhärtetiefe
JP5550276B2 (ja) * 2009-07-23 2014-07-16 光洋サーモシステム株式会社 ガス浸炭処理装置およびガス浸炭方法
JP5658934B2 (ja) * 2010-07-22 2015-01-28 光洋サーモシステム株式会社 浸炭焼入方法
CN101984139B (zh) * 2010-11-30 2012-07-04 江苏丰东热技术股份有限公司 一种用于风力发电的风电齿轮的渗碳方法
JP6497208B2 (ja) * 2015-05-19 2019-04-10 大同特殊鋼株式会社 高濃度浸炭鋼の製造方法
CN112051380A (zh) * 2020-08-21 2020-12-08 北京科技大学 一种测定碳素材料渗碳速率的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200009A (ja) * 1998-01-14 1999-07-27 Nissan Motor Co Ltd 高面圧用機械構造用鋼
CN1376810A (zh) * 2001-01-19 2002-10-30 东方工程公司 渗碳方法和渗碳设备
US20020179187A1 (en) * 2001-06-05 2002-12-05 Hisashi Ebihara Carburization treatment method and carburization treatment apparatus
EP1264914A2 (en) * 2001-06-05 2002-12-11 Dowa Mining Co., Ltd. A carburising method and an apparatus therefor
JP2003147506A (ja) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd 鋼材部品の浸炭方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012165A (en) 1931-10-05 1935-08-20 Hevi Duty Electric Co Heat treating in circulatory gases
US4145232A (en) * 1977-06-03 1979-03-20 Union Carbide Corporation Process for carburizing steel
JPH0645868A (ja) 1991-10-22 1994-02-18 Toyo Commun Equip Co Ltd 超薄板多段縦続接続多重モ−ドフィルタ
JPH06192815A (ja) * 1992-12-28 1994-07-12 Kawasaki Steel Corp 金属帯の連続浸炭設備
JPH0959756A (ja) * 1995-08-22 1997-03-04 Kobe Steel Ltd 耐高面圧浸炭部品の製法
JP3329210B2 (ja) 1996-10-16 2002-09-30 住友金属工業株式会社 肌焼鋼の製造方法及びその方法により製造された肌焼鋼
JP3409236B2 (ja) 1997-02-18 2003-05-26 同和鉱業株式会社 熱処理炉の雰囲気制御方法
JPH1136060A (ja) * 1997-07-18 1999-02-09 Toa Steel Co Ltd 肌焼鋼材の熱処理歪み防止焼入れ方法
JP4100751B2 (ja) * 1998-01-30 2008-06-11 株式会社小松製作所 転動部材とその製造方法
JP4041602B2 (ja) 1998-10-28 2008-01-30 Dowaホールディングス株式会社 鋼部品の減圧浸炭方法
JP2001081543A (ja) 1999-09-14 2001-03-27 Chugai Ro Co Ltd 真空浸炭方法
JP3428936B2 (ja) * 2000-01-31 2003-07-22 オリエンタルエンヂニアリング株式会社 金属表面のガス硬化処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200009A (ja) * 1998-01-14 1999-07-27 Nissan Motor Co Ltd 高面圧用機械構造用鋼
CN1376810A (zh) * 2001-01-19 2002-10-30 东方工程公司 渗碳方法和渗碳设备
US20020179187A1 (en) * 2001-06-05 2002-12-05 Hisashi Ebihara Carburization treatment method and carburization treatment apparatus
EP1264914A2 (en) * 2001-06-05 2002-12-11 Dowa Mining Co., Ltd. A carburising method and an apparatus therefor
JP2003147506A (ja) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd 鋼材部品の浸炭方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213251B (zh) * 2005-06-30 2012-10-31 三井化学株式会社 橡胶组合物及其用途

Also Published As

Publication number Publication date
US8317939B2 (en) 2012-11-27
CN1572896A (zh) 2005-02-02
WO2004111292A1 (ja) 2004-12-23
AU2003244116A1 (en) 2005-01-04
US20040250922A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
CN1296510C (zh) 气体渗碳方法
Bell et al. Environmental and technical aspects of plasma nitrocarburising
CN110914467B (zh) 表面硬化处理装置和表面硬化处理方法
US4175986A (en) Inert carrier gas heat treating control process
Maldzinski et al. ZeroFlow gas nitriding of steels
CN108959832B (zh) 用于优化M50NiL钢渗碳淬火工艺的晶粒长大预测方法
WO2015034446A1 (en) Process of and apparatus for hardening steel surface
EP1966398A1 (en) Method of optimizing an oxygen free heat treating process
AU635868B2 (en) Process for the production of a controlled atmosphere for heat treatment of metals
Małdziński et al. Concept of an economical and ecological process of gas nitriding of steel
CN102605315A (zh) 提高钢材料工件氮碳共渗强化层性能的热处理工艺
JP3899081B2 (ja) ガス浸炭方法
EP1493829B1 (en) Method of gas carburizing
Czeczot Model-based adaptive control of fed-batch fermentation process with the substrate consumption rate application
CN205420524U (zh) 一种钛合低压真空渗碳复合渗氮的表面处理装置
Herring A case for acetylene based low pressure carburizing of gears
Belashova et al. Intensified saturation of iron with nitrogen by the method of thermogasocyclic nitriding
JP5624048B2 (ja) ミストの準備、ミストガス放電による新規の材料の形成方法およびその装置
CN1545566A (zh) 气体渗碳方法
KR20160137884A (ko) 자기장을 이용한 폐가스 응집 억제 시스템
JP3899077B2 (ja) ガス浸炭方法
Thong-on et al. Surface modification of low carbon martensitic stainless steel by current heating technique in graphite
CN1453372A (zh) 钢液的精炼脱氮方法
JP2014095105A (ja) 排気系部品の窒化処理方法
JP2005350729A (ja) 真空浸炭方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070124

CF01 Termination of patent right due to non-payment of annual fee