CN1288785C - 电源装置及其操作方法 - Google Patents

电源装置及其操作方法 Download PDF

Info

Publication number
CN1288785C
CN1288785C CNB028030354A CN02803035A CN1288785C CN 1288785 C CN1288785 C CN 1288785C CN B028030354 A CNB028030354 A CN B028030354A CN 02803035 A CN02803035 A CN 02803035A CN 1288785 C CN1288785 C CN 1288785C
Authority
CN
China
Prior art keywords
fuel cell
humidification
cell unit
type fuel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028030354A
Other languages
English (en)
Other versions
CN1486517A (zh
Inventor
田中浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1486517A publication Critical patent/CN1486517A/zh
Application granted granted Critical
Publication of CN1288785C publication Critical patent/CN1288785C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • H01M8/2495Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies of fuel cells of different types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种在湿度极低环境下能够提供高输出并具有良好气动性能的电源装置。一种增湿型燃料电池单元,其采用在增湿条件下具有质子传导功能的增湿型质子导体作为电解液;及低增湿型燃料电池单元,其采用在比上述增湿条件低的增湿条件下具有质子传导功能的低增湿型质子导体作为电解液,将这两种燃料电池单元结合在一起。在初始启动时,至少低增湿型燃料电池单元工作,然后仅增湿型燃料电池单元工作。在初始启动时,将低增湿型燃料电池单元产生的水分提供给增湿型燃料电池单元的电解液。

Description

电源装置及其操作方法
                        技术领域
本发明涉及一种新的电源装置,其包括增湿型燃料电池与低增湿型燃料电池(非增湿型燃料电池)的结合在一起的结构,本发明还涉及该电源装置的操作方法。
                        背景技术
燃料电池是一种能够通过向其中提供作为燃气的氢和氧(空气)而使发电机产生电动势的装置。一般地,燃料电池具有电解液膜(质子导电膜)固定在气体电极之间的结构,其中使燃料电池工作,以便获得所需的电动势。极其希望将这种燃料应用于电动汽车和混合型的车辆。除了安装在车辆如汽车上使用外,目前正在研究将其用于新的应用领域,这些新的应用领域不同于现有的干式电池和可充电电池的应用领域,以便有效利用燃料电池在重量和尺寸方面容易减小的优势。
此外,根据所使用的电解液的种类,上述燃料电池主要分为增湿型燃料电池组和低增湿型(或非增湿型)燃料电池组。增湿型燃料电池和低增湿型燃料电池各有各的优缺点。例如,增湿型燃料电池在初始启动时如果外部空气中不包含一定程度的水分,就不能获得良好的启动性,因为只有当外部空气中的水分和/或有发电反应所产生的水分进入电解液膜时,燃料电池的电解液膜的质子传导功能才能发挥作用。同时,低增湿型燃料电池(或非增湿型燃料电池)即使在湿度极低的大气中,也可以启动,例如在冰点以下温度,因为该燃料电池所使用的电解液膜具有基本上不需要水分的质子导电膜。然而,低增湿型燃料电池难于单独需要大输出的应用,因为该燃料电池的电解液膜在导电性方面,比增湿型燃料电池的电解液膜差,后者具有主要由水分构成的传导通道。
基于如上所述,完成了本发明,且本发明的目的是提供一种电源装置及其操作方法,该电源装置即使在极低温度下和极低湿度的大气中也能够获得高输出,因此它适用于需要能够在冰点以下至高温的宽温度范围工作的便携式设备。
                        发明内容
为了达到上述目的,本发明提供一种电源装置,其包括一种增湿型燃料电池单元,其使用在增湿状态下具有质子传导功能的增湿型质子导体作为电解液;及一种低增湿型燃料电池单元,其使用在比前述增湿状态低的增湿状态下具有质子传导功能的低增湿型质子导体作为电解液。本发明还提供一种电源装置的操作方法,该电源装置包括一种增湿型燃料电池单元,其使用在增湿状态下具有质子传导功能的增湿型质子导体作为电解液;及一种低增湿型燃料电池单元,其使用在比前述增湿状态低的增湿状态下具有质子传导功能的低增湿型质子导体作为电解液。该方法包括在初始启动时至少使低增湿型燃料电池单元工作,以及在初始启动之后,仅使增湿型燃料电池单元工作的步骤。
根据本发明,低增湿型燃料电池单元在启动时工作,以补偿增湿型燃料电池单元在初始启动时的低输出特性。低增湿型燃料电池单元,尤其是非增湿型燃料电池单元使用基本上不需要水分的具有质子导电机理的电解液膜,因此,即使在湿度极低的大气中,例如在冰点以下的温度时也可以启动。同时,将低增湿型燃料电池中产生的水分提供给增湿型燃料电池单元,以便促进增湿型燃料电池自身的增湿。因此,增湿型燃料电池单元能够显示出其固有的高发电能力,从而使电源装置在增湿型燃料电池单元启动之后,能够获得高输出。
                        附图说明
图1是应用了本发明的电源装置的构造实例的典型示意图;
图2是应用了本发明的电源装置的另一构造实例的典型示意图;
图3是燃料电池基本构造实例的分解透视图;
图4是燃料电池的电极构造实例的横断面示意图;
图5是作为电解液基体的碳簇的各种结构实例的典型示意图;
图6是碳簇(部分富勒烯结构)的其它实例的典型示意图;
图7A和图7B是碳簇(管状碳质材料)的其它实例的典型示意图;
图8是碳簇(金刚石结构)的更多实例的典型示意图;
图9是碳簇团(每簇之间彼此键合)的更多实例的典型示意图;
图10是增湿型燃料电池低温启动性的特性曲线;
图11是非增湿型燃料电池低温启动性的特性曲线;及
图12是本发明电源装置低温启动性的特性曲线,该装置包括增湿型燃料电池单元和非增湿型燃料电池单元的混合结构。
                        具体实施方式
下面参照附图详细说明应用了本发明的电源装置及其操作方法。。
本发明的电源装置是一种发电模式,其包括增湿型燃料电池和低增湿型(非增湿型)燃料电池的混合结构,其构造如图1所示,具有增湿型燃料电池单元2和低增湿型燃料电池单元3,二者安装在外壳1中。
燃料电池单元2的组成为电解液2a,连接在电解液2a的一个表面的燃料电极2b,及连接在电解液2a的另一表面的空气电极2c,并且类似地,燃料电池单元3的组成为电解液3a,连接在电解液3a的一个表面的燃料电极3b,和连接在电解液3a的另一表面的空气电极3c。例如,外壳1的底表面具有很多空气供给孔1a,允许空气(氧气)通过空气供给孔1a进入到外壳1中,然后供给空气电极2c和3c。
另一方面,氢作为燃料供给燃料电极2b和3b。电源装置安装了用于贮氢的贮氢容器4,并且装有用于将贮氢容器4中的氢,通过压力调节器5和流体通道开关6,提供给增湿型燃料电池单元2和低增湿型燃料电池单元3的燃料电极2b和3b的氢供给管线7。氢供给管线7包括连接到增湿型燃料电池单元2的氢供给通道7a,及连接到低增湿型燃料电池单元3的氢供给通道7b,其中供给氢的燃料电池单元(即工作的燃料电池单元)可以通过操作流体通道开关6进行选择。当然,可以同时向燃料电池单元2和3供氢。
燃料电池单元2和3的输出通过输出路径8输入到输出控制管线9,并且通过输出终端10a和10b排出。低增湿型燃料电池单元3装有电解液膜增湿通道11,以便将燃料电池单元3产生的水分引入到增湿型燃料电池单元2的电解液2a中。
燃料电池单元3产生的水分不是必须直接引入到增湿型燃料电池单元2的电解液2a中,但是可以通过增湿型燃料电池单元2的氢供给通道或氧供给通道间接地引入到增湿型燃料电池单元2的电解液2a中。图2示出了通过增湿型燃料电池单元2的氢供给通道7a,将所述水分引入电解液2a的实例,其中电解液增湿通道11与增湿型燃料电池单元2的氢供给通道7a相连。
下面将阐述燃料电池的基本构造和燃料电池产生电动势的机理。如图3所示,燃料电池构造使得与燃料气体氢接触的燃料电极21和与空气(氧气)接触的空气电极22重叠,它们之间装有电解液23,并且这种组件夹在两个集电体24之间。该集电体24是由具有高电流收集性能且在氧化性蒸气气氛中稳定的致密的石墨制成。在集电体24的与燃料电极21相对的表面,形成供给氢的水平槽24a,并在集电体24的与空气电极22相对的表面形成供给空气的垂直槽24b。
正如图4所示,燃料电极21和空气电极22通过固定于其间的电解液23重叠。燃料电极21的组成为气体扩散电极21a和催化剂层21b,类似地,空气电极22的组成为气体扩散电极22a和催化剂层22b。气体扩散电极21a和22a都是由多孔材料制成的,催化剂层21b和22b都是由电解液和负载电极催化剂如铂的碳颗粒的混合物制成的。
多个作为基本单元的燃料电池彼此串联地堆积成燃料电池堆。通过操作燃料电池基本单元,这种电池能够输出特定的电压。
在具有上述构造的燃料电池中,当将氢提供给形成于集电体24中的槽24a进而与燃料电极21接触,且将空气(氧气)提供给形成于集电体24中的槽24b进而与空气电极22接触时,在燃料电极21一侧发生下式所示的反应:
                           
另外,在空气电极22一侧发生下式所示的反应:
             
总体上发生下式所示的反应:
                 
更具体地,在燃料电极21一侧,氢通过释放电子变成质子。质子通过电解液23迁移到空气电极22一侧,并且与电子和空气电极22一侧的氧反应。以这种电化学反应为基础产生了电动势。
增湿型燃料电池单元2和低增湿型燃料电池单元3,其基本结构已经在上面阐述,其各自使用的电解液的种类是不同的。下面将描述增湿型燃料电池单元2和低增湿型燃料电池单元3。
首先描述增湿型燃料电池单元2。增湿型燃料电池单元2是一种燃料电池单元,其使用实质上仅在被外部空气中的水分或者发电期间产生的水分增湿时才具有质子导电性的电解液膜,并因此能够通过增湿而获得高输出。然而,增湿型燃料电池单元2的缺点在于其不能获得良好的启动性能,除非外部空气中包含一定程度的水分,因为只有当外部空气中或在发电过程中产生的水分与电解液结合时,电解液才具有质子导电性。例如,在水分极低的大气中,由于没有足够的水分从外部的空气中进入增湿型燃料电池单元,所以增湿型燃料电池单元2几乎不能获得输出。为了解决这种不便,已经提出这样的方法,即通过增湿器预先增湿供给燃料电池的燃气(氢)。然而,这种方法存在另一个问题,即实施该方法的系统变得大而复杂。
可用于增湿型燃料电池单元2的电解液膜的增湿型质子导体的实例包括由全氟烷基磺酸酯制成的氟碳树脂基离子交换膜,非酯结构型富勒烯如引入磺酸丁酯的富勒烯,及烃基离子交换膜。氟碳树脂基离子交换膜是由聚合物制成的聚合物电解液膜,所述聚合物包含具有高憎水性的全氟烷基链作为主链,在主链上引入了由全氟烷基醚链组成的侧链,所述侧链具有高的亲水性和与之结合的磺酸基。这种氟碳树脂基离子交换膜在商业上是可以购得的例如de Pont de Nemours and Company的商品“Nafion”,W.L. Gore&Associates,Inc.的商品“Gore-Select”,Asahi Glass Company的商品“Flemion”,及Asahi Kasai Corporation的商品“Aciplex”。非酯结构型富勒烯是一类作为碳簇的富勒烯,在其上引入的均具有非酯结构的官能团如磺酸丁酯。碳簇是通过几个至几百个碳原子的结合或聚集而形成的聚集体。碳原子的聚集体可以改进质子导电性,并在保持化学性质的同时确保足够的膜强度,从而促进膜形成。碳簇不特别限制于碳-碳键,而且不必由100%碳原子组成,可以包含其它原子。这种碳簇的实例包括用C60,C70和C82表示的富勒烯。
另一方面,低增湿型燃料电池单元3使用低增湿型质子导体作为电解液,其在增湿状态低于上述增湿型燃料电池单元2所使用的增湿型质子导体所需的增湿状态时具有质子传导功能。具体地,优选将低增湿型燃料电池单元2构建成非增湿型燃料电池单元,使用基本上不需要水分的非增湿型质子导体作为电解液,因而即使在非增湿状态也具有质子导电性。由于非增湿型燃料电池单元具有基本上不需要水分的质子导电机理,因此可以在任何的干燥气氛中启动。然而,非增湿型燃料电池单元由于应用需要大的输出而难于单独使用,因为它的电解液在质子导电性方面比使用由水分组成的主要导电路径的电解液差。
用于低增湿型燃料电池单元3的电解液膜的低增湿型质子导体的实例,特别是用于非增湿型燃料电池单元的电解液膜的非增湿型质子导体,包括碳簇,其中引入了能够释放质子的官能团,例如酯结构型的富勒烯如引入磺酸的富勒烯和OH型富勒烯,还包括主要包含氧化硅和Brönsted酸的化合物,具有磷酸基团的丙烯酸基聚合物,固体无机酸化合物,及酸-碱型烃基离子交换膜,其代表性的实例是由碱性聚合物和无机酸如硫酸或磷酸的复合物制成的膜。
酯结构类型的富勒烯,如引入磺酸的富勒烯,是作为一种碳簇的富勒烯,在该碳簇上引入酯结构如磺酸,而OH型富勒烯则是引入了OH基团的富勒烯。如上所述,碳簇是一种由几个或几百个碳原子通过结合或聚集而形成的聚集体。碳原子的聚集体可以改进质子导电性,并在保持化学性质的同时确保足够的膜强度,从而促进膜形成。碳簇不特别限制于碳-碳键,而且不必由100%碳原子组成,可以包含其它原子。这种碳簇的实例包括用C60,C70和C82表示的富勒烯。
由上述酯结构型富勒烯及OH型富勒烯所示的质子导体所包含的主要成分是其上引入了能够释放质子(H+)的官能团(质子释放基团)的碳簇。在这种质子导体中,离子导电性是凭借质子释放基团通过质子的迁移而获得的。任何类型的碳簇均可用作质子导体的主要成分;然而,本发明所使用的碳簇需要在其中引入质子释放基团之后具有大于电子导电性的离子导电性。
碳簇是一种由几个或几百个碳原子通过结合或聚集而形成的聚集体。碳原子的聚集体可以改进质子导电性,并在保持化学性质的同时确保足够的膜强度,从而促进膜形成。碳簇不特别限制于碳-碳键,而且不必由100%碳原子组成,可以包含其它原子。这种碳簇的实例包括用C60,C70和C82表示的富勒烯,至少部分结构中具有开口端的富勒烯,及管状的碳质材料(所谓的碳纳米管)。因为富勒烯或纳米管的SP2成键结构部分地包含SP3成键结构的元素,所以富勒烯或纳米管一般不具有电子导电性,因而优选作为质子导体的基体。
图5示出了多种由很多碳原子聚集而成的碳簇,例如,球形或准球形的碳簇,及具有类似于球形或准球形结构的闭合平面结构的碳簇。上述富勒烯属于图5所示的碳簇。图6示出了部分球形结构缺失了的各种碳簇,其中在该结构中形成了开口端。这种结构主要来源于通过电弧放电方生产富勒烯时的副产物。图7A和7B示出了管状的碳簇。管状的碳簇通常分为直径几个纳米(通常1~2纳米)或更小的碳纳米管(CNTs),及直径几个纳米或更大但最大为1微米的碳纳米纤维(CNFs)。特别地,CNTs进一步分为由单层管组成的单壁碳纳米管(SWCNTs)(见图7A),及由重叠的两层或多层管组成的多壁碳纳米管(MWCNTs)(见图7B)。图8示出了各种具有金刚石结构的碳簇,其中大多数碳原子具有SP3成键结构。图9示出了其中每碳簇彼此键合的各种碳簇团。这种碳簇团也可以用作质子导体的基体。
引入到碳簇中能够释放质子(H+)的官能团的实例包括具有-SO3H或-PO(OH)2的官能团,例如,用-A-SO3H或-A-PO(OH)2表示的官能团(其中A为O,R,O-R,R-O,及O-R-O之一,R是用CxHy(1≤x≤20,2≤y≤40)表示的亚烷基部分),以及用-A′-SO3H或-A′-PO(OH)2表示的官能团(其中A′是R′,O-R′,R′-O,及R′-O-R″之一,R′和R″是用CxFyHz(1≤x≤20,1≤y≤40,及1≤z≤39)表示的氟代亚烷基部分)。
除了上述的能够释放质子的官能团之外,本发明所使用的碳簇还可以包括吸电子基团如硝基,羰基,羧基,醛基,烷氧基羰基,磺酸基,腈基,卤代烷基或卤原子(氟或氯原子),更具体地,可以包括-NO2,-CN,-F,-Cl,-COOH,-COOR0,-CHO,-CPR0,-CF3或-SO3CF3(此处R0表示烷基)。这种吸电子基团与质子释放官能团的组合出现有利于质子容易地从质子释放官能团上释放出来,原因是吸电子基团的吸电子作用,进而容易通过官能团而迁移。
在本发明所使用的碳簇中引入上述官能团的数目可以根据构成碳簇的碳原子数目而适当地选择,作为优选的实例,可以设定为5个或更多。采用富勒烯时,为了使富勒烯保留π-电子特性以获得有效的吸电子特性,优选将官能团的数目设定为构成富勒烯的碳原子数的一半或更少。
可以将能够释放质子的官能团引入到碳簇中,方法是采用碳基电极通过电弧放电合成碳簇,并对碳簇进行酸处理(使用硫酸),接着进行如水解等处理,或者将碳簇进行磺化磷酸化等处理。采用这种处理,可以容易地获得作为目标产物(具有能够释放质子的官能团的碳簇)的碳簇衍生物。
例如,在采用大量富勒烯衍生物(每种衍生物均是通过将上述官能团引入富勒烯中而得到)的聚集体作为碳簇时,松散或聚集体形式的富勒烯衍生物的质子导电性直接依赖于从分子中所包含的大量官能团(如OSO3H基团)中所释放出来的质子的迁移,结果是,富勒烯衍生物可以具有质子导电性,无需引入来自于外部空气中的水分子的氢或质子,因而无需从外部提供水分,特别地从外部空气中吸附水分。因此,富勒烯衍生物能够显示出质子导电性,而对空气无任何限制。由于在一个富勒烯分子中可以引入大量的官能团,因此对单位体积导体的导电性作出贡献的质子数密度变得非常大。这是本发明的质子导体增加导电效率的原因。
具体地,作为衍生物分子基体的富勒烯具有亲电性,可以认为其对促进官能团中氢离子的电离作出巨大的贡献。可以认为质子导电性主要归因于引入的基团,对于富勒烯衍生物,由于富勒烯分子的亲电性,可能存在通过边界(CONTOUR)的电传导。这是本发明的质子导体显示优良的质子导电性的另一个原因。
因为大多数质子导体是由富勒烯的碳原子组成,所以它重量轻,变化小,相对清洁,而且不含有任何对质子导电性有负作用的杂质。另外,富勒烯的生产成本正在迅速地降低。考虑到资源、环境、经济等,富勒烯是最理想的碳基材料。
正如上述,具有质子释放功能的碳簇可以具有一种结构,由于具有酸性官能团的空间密度较高的结构性质和作为基体(如富勒烯),的碳簇的电性质,其允许质子容易地离解和在点位间跳跃,因此,其即使在干燥状态下,仍然可以实现好的质子传导。
另一方面,均主要包含氧化硅和Brönsted酸的化合物(质子导体)的实例包括由主要包含氧化硅和Brönsted酸的化合物及热塑性弹性体组成的质子导体(参见待审的日本专利Hei 8-249923),由主要包含氧化硅和Brönsted酸的化合物及具有磺酸基为侧链的聚合物组成的质子导体(参见待审的日本专利Hei 10-69817),以及由主要包含氧化硅和Brönsted酸的化合物及通过共轭二烯单元与芳烃乙烯基单元的聚合而制备的嵌段共聚物组成的质子导体(参见待审的日本专利Hei 11-203936)。这里,Brönsted酸的实例包括磷酸及其衍生物以及高氯酸及其衍生物。氧化硅表面具有作为端基的OH基团,其中OH基团为离子传导做贡献。将Brönsted酸加入到氧化硅中的有利之处在于,Brönsted酸作为电子供体,与高密度的氧化硅表面作为端基的OH基团结合。这种OH基团的质子导致频繁的迁移,因此,即使在干燥气氛中,质子导体也能具有高质子导电性。
具有磷酸基团的丙烯酸基聚合物是通过在相对温和条件下聚合含有磷酸基团的丙烯酸单体而制备的聚合物(这种单体在商业上通常可从Unichemical Mfg.,Ltd.购得,商品名为Phosmer)。丙烯酸聚合物即使在不含水分也在高温下显示出质子导电性,因为它的电导性随着温度的升高而迅速地增加。可以认为其理由如下:即磷酸基团中冷凝或吸附的水分很少解吸,因此,在高温区,当聚合物电解液变成可塑体时,冷凝或吸附在分子中的水分为质子传导做出贡献。丙烯酸聚合物具有另一个特性,既与磺酸基团比较,磷酸基团或膦酸基团较少引起任何脱附反应,因此其具有更高的抗自由基阻力。
上述的固体无机化合物的实例包括CsHSO4和Rb3H(SeO4)2。这种固体无机化合物即使在非增湿状态,也显示出质子导电性,并且即使在250℃或更高温度,也是稳定的。
在本发明的电源装置中,最优选地将增湿型燃料电池单元与上述的非增湿型燃料电池单元进行结合;然而,本发明并不限于此,但考虑到燃料电池增湿状态的必要性,可以变化结合彼此相对不同的燃料电池。例如,考虑上述的质子导体,按照氟碳树脂基离子交换膜,非酯结构型富勒烯,及酯结构型富勒烯的顺序,需要增湿的程度变低。因此,可以接受的组合是,使用氟碳树脂基离子交换膜作为燃料电池(等价于增湿型燃料电池)的电解液和使用酯结构型富勒烯作为燃料电池(等价于非增湿型燃料电池)的电解液,一种组合是使用非酯结构型富勒烯作为燃料电池(等价于增湿型燃料电池)的电解液和使用酯结构型富勒烯作为燃料电池(等价于非增湿型燃料电池)的电解液,及一种结合是使用氟碳树脂基离子交换膜作为燃料电池(等价于增湿型燃料电池)的电解液和使用非酯结构型富勒烯作为燃料电池(等价于低增湿型燃料电池)的电解液。
下面将阐述上述电源装置的操作方法。首先,将阐述增湿型燃料电池的低温启动性。在水分极低的大气中,增湿型燃料电池不能从外部空气中获得足够量湿度用于产生电力,因此不能得到任何输出。图10为增湿型燃料电池的低温启动性的特性曲线。在这个实例中,120秒后的输出(电流密度)保持在0mA/cm2。需要注意的是燃料电池的低温启动性测量方法为,在-10℃和低压(0.7V)条件下,测量电流密度。这应用于下面的实例中。
考虑非增湿型燃料电池的低温启动性,如图11所示,非增湿型燃料电池本身即使在任何干燥气氛中,也可以启动。在这个实例中,在启动之后,可以立刻获得约20mA/cm2输出。然而,即使120秒之后,该输出几乎没有变化,并且维持在较低水平。输出有时受发电影响而增加的原因是在发电装置中产生的热增加了电解液的导电性,并且其依赖于质子导体的材料,因反应产生的水分引起的增湿对导电性的增加做出了贡献。
本发明的电源装置具有增湿型燃料电池部分2和低增湿型(或非增湿)燃料电池部分3的杂化结构。因此,通过选择地操作两种电池装置2和3,可以有效地利用两种电池装置2和3的优势,由此使两种燃料电池装置2和3的发电能力达到最大。
更具体地,在初始启动时,供给氢到增湿型燃料电池单元2和低增湿型燃料电池单元3,操作两种燃料电池装置2和3。此时,在一定程度上,由于低增湿型燃料电池单元3的贡献,可以获得低温启动性。注意到电源装置的操作并不限于此。例如,在初始启动时只能操作低增湿型燃料电池单元3。
在启动之后,为了增加增湿型燃料电池单元2的输出,低增湿型燃料电池单元3产生的水分促进了其本身的增湿。低增湿型燃料电池单元3产生的水分通过电解液膜增湿通道11,供给增湿型燃料电池单元2的电解液2a,因此促进了其自身的增湿。通过增湿,当增湿型燃料电池单元2的输出增加时,通过输出控制线9,将输出模式切换到增湿型燃料电池单元2一侧。同时,将在启动时同时供给增湿型燃料电池单元2和低增湿型燃料电池单元3的氢切换到只供给增湿型燃料电池单元2,此后,只操作增湿型燃料电池单元2。
因为低增湿型燃料电池单元3的输出,在启动后迅速切换到增湿型燃料电池单元2,因此,即使在极低湿度下,从启动开始就可以获得高输出。图12显示了本发明的电源装置的低温启动性,该系统包括增湿型燃料电池装置2和低增湿型(或非增湿)燃料电池单元3的杂化结构。从该曲线明显地看到,在启动后,立刻可以获得约20mA/cm2输出,其迅速地增加,并且保持在高水平。
根据本发明上面的阐述,可以明确:即使在低温和极低湿度下,也可以获得高输出。因此,可以提供一种最适合应用于需要在从低温开始的宽的温度范围内操作的便携式设备所需的电源,例如,从冰点以下到高温,及提供一种该电源装置的操作方法。

Claims (9)

1.一种电源装置,包括:
增湿型燃料电池单元,其使用在增湿状态下具有质子传导功能的增湿型质子导体作为电解液;
低增湿型燃料电池单元,其使用在比所述增湿状态低的增湿状态下具有质子传导功能的低增湿型质子导体作为电解液;
增湿机构,以便将所述低增湿型燃料电池单元产生的水分提供给所述增湿型燃料电池单元的电解液;及
氢供给机构,以便将氢提供给所述低增湿型燃料电池单元和所述增湿型燃料电池单元。
2.根据权利要求的1的电源装置,其中所述低增湿型燃料电池单元是非增湿型燃料电池单元,其使用在非增湿状态下具有质子传导功能的非增湿型质子导体作为电解液。
3.根据权利要求1的电源装置,其中所述增湿型质子导体包含选自氟碳树脂基离子交换膜,非酯结构型富勒烯,及烃基离子交换膜中的至少一种;而所述低增湿型质子导体包含选自引入了能够释放质子的官能团的碳簇,包含氧化硅和Brönsted酸的化合物,具有磷酸基团的丙烯酸基聚合物,固体无机酸化合物,及酸-碱型烃基离子交换膜中的至少一种。
4.根据权利要求3的电源装置,其中所述引入了能够释放质子的官能团的碳簇为选自酯结构型富勒烯和OH型富勒烯中的至少一种。
5.根据权利要求1的电源装置,其中所述增湿型质子导体包含非酯结构型富勒烯,而所述低增湿型质子导体为非增湿型质子导体,其包含选自酯结构型富勒烯和OH型富勒烯中的至少一种。
6.根据权利要求1的电源装置,其中所述增湿型燃料电池单元具有氢供给通道和/或氧供给通道,且通过该氢供给通道和/或氧供给通道,间接地将所述低增湿型燃料电池单元产生的水分提供给所述增湿型燃料电池单元的电解液。
7.根据权利要求1的电源装置,其中所述氢供给机构具有流体通道开关,以便将所述燃料电池单元切换到需要供给氢的燃料电池单元。
8.一种操作电源装置的方法,该电源装置包括:一种增湿型燃料电池单元,其使用在增湿状态具有质子传导功能的增湿型质子导体作为电解液;一种低增湿型燃料电池单元,其使用在比所述增湿状态低的增湿状态下具有质子传导功能的低增湿型质子导体作为电解液;增湿机构,以便将所述低增湿型燃料电池单元产生的水分提供给所述增湿型燃料电池单元的电解液;及氢供给机构,以便将氢提供给所述低增湿型燃料电池单元和所述增湿型燃料电池单元,所述方法包括如下步骤:
在初始启动时,至少使所述低增湿型燃料电池单元工作;及
在初始启动后,仅使所述增湿型燃料电池单元工作。
9.根据权利要求8的操作电源装置的方法,其中在启动时,将所述低增湿型燃料电池单元产生的水分提供给所述增湿型燃料电池单元。
CNB028030354A 2001-09-03 2002-08-07 电源装置及其操作方法 Expired - Fee Related CN1288785C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001265227 2001-09-03
JP265227/2001 2001-09-03
JP2002172737A JP4019313B2 (ja) 2001-09-03 2002-06-13 電源装置及びその動作方法
JP172737/2002 2002-06-13

Publications (2)

Publication Number Publication Date
CN1486517A CN1486517A (zh) 2004-03-31
CN1288785C true CN1288785C (zh) 2006-12-06

Family

ID=26621507

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028030354A Expired - Fee Related CN1288785C (zh) 2001-09-03 2002-08-07 电源装置及其操作方法

Country Status (7)

Country Link
US (1) US7150930B2 (zh)
EP (1) EP1335440B1 (zh)
JP (1) JP4019313B2 (zh)
KR (1) KR100931975B1 (zh)
CN (1) CN1288785C (zh)
CA (1) CA2427851C (zh)
WO (1) WO2003021703A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595297B2 (ja) * 2003-08-22 2010-12-08 日産自動車株式会社 燃料電池システム
JP2007280828A (ja) * 2006-04-10 2007-10-25 Hitachi Ltd 燃料電池用カーボン担体、燃料電池用電極材、それを用いた膜電極接合体、燃料電池、燃料電池電源システム及び電子機器
US8653204B2 (en) * 2010-08-04 2014-02-18 Chang Gung University Carboxylic polybenzimidazole
CN112803042B (zh) * 2021-01-26 2022-06-21 重庆长安新能源汽车科技有限公司 一种燃料电池汽车进气增湿量控制方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242764A (en) * 1991-12-17 1993-09-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
JPH06274233A (ja) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 電力システム
JP3604178B2 (ja) * 1994-09-02 2004-12-22 良弘 阿部 水素イオン導電体
JP3483644B2 (ja) 1995-03-07 2004-01-06 松下電器産業株式会社 プロトン伝導体およびプロトン伝導体を用いた電気化学素子
JP3035885B2 (ja) * 1996-03-15 2000-04-24 工業技術院長 固体イオン導電体
JP3535942B2 (ja) 1996-08-29 2004-06-07 松下電器産業株式会社 プロトン伝導体および同プロトン伝導体を用いた電気化学素子
JP3886235B2 (ja) * 1998-01-19 2007-02-28 松下電器産業株式会社 プロトン伝導体および該プロトン伝導体を用いた電気化学素子
JPH11339820A (ja) * 1998-05-26 1999-12-10 Tokyo Gas Co Ltd ハイブリッド型燃料電池システム
JP4081896B2 (ja) * 1998-12-02 2008-04-30 トヨタ自動車株式会社 燃料電池システム
JP2000357524A (ja) 1999-06-15 2000-12-26 Toshiba Corp プロトン伝導体、燃料電池、電解質板の製造方法および燃料電池の製造方法
US6495290B1 (en) * 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
BR0012582B1 (pt) * 1999-07-19 2010-08-24 condutor de pràtons, processo para produzir o mesmo, e, dispositivo eletroquÍmico.
IT1314256B1 (it) * 1999-12-03 2002-12-06 Nora Fuel Cells S P A De Batteria di celle a combustibile a membrana polimerica.
AU2001247971A1 (en) 2000-02-14 2001-08-27 Orchid Biosciences, Inc. Well plate holder
US6534210B2 (en) * 2001-01-16 2003-03-18 Visteon Global Technologies, Inc. Auxiliary convective fuel cell stacks for fuel cell power generation systems

Also Published As

Publication number Publication date
JP4019313B2 (ja) 2007-12-12
WO2003021703A1 (fr) 2003-03-13
CA2427851C (en) 2011-05-10
EP1335440A4 (en) 2009-02-25
US20040038101A1 (en) 2004-02-26
KR20040028665A (ko) 2004-04-03
EP1335440A1 (en) 2003-08-13
JP2003151581A (ja) 2003-05-23
CA2427851A1 (en) 2003-05-02
EP1335440B1 (en) 2012-06-20
CN1486517A (zh) 2004-03-31
KR100931975B1 (ko) 2009-12-15
US7150930B2 (en) 2006-12-19

Similar Documents

Publication Publication Date Title
CN1744364A (zh) 聚合物电解质膜及采用它的燃料电池
WO2002027843A1 (fr) Pile a combustible
CN1725538A (zh) 膜电极组件、燃料电池组、燃料电池系统以及膜电极组件的制造方法
CN1903919A (zh) 燃料电池用的聚合物电解质,其生产方法,及含其的燃料电池系
KR20040015273A (ko) 프로톤 전도체 및 이를 이용한 전기 화학 디바이스
CN1889296A (zh) 用于燃料电池的聚合物膜及其制备方法
US8592095B2 (en) High molecular nanocomposite membrane for direct methanol fuel cell, and membrane-electrode assembly and methanol fuel cell including the same
JPWO2002027831A1 (ja) 燃料電池及びその製造方法
KR100666820B1 (ko) 층상 규산염 광물 또는 층상 규산염 광물 층간 화합물을 고체전해질막으로 사용한 막·전극 접합체, 이를 포함한 연료전지 및 화학셀, 그리고 층상 규산염 광물 또는 층상 규산염 광물 층간 화합물을 이용한 연료전지용 고체전해질막의 제조 방법
CN1339842A (zh) 电化学装置及其操作方法
CN100342573C (zh) 燃料电池的膜电极组件及包含它的燃料电池
CN1288785C (zh) 电源装置及其操作方法
JP4352878B2 (ja) モノマー化合物、グラフト共重合化合物、及びそれらの製造方法、高分子電解質膜、並びに燃料電池
JP2004192808A (ja) プロトン伝導体及びその製造方法、並びに電気化学デバイス
JP2002075420A (ja) 電気化学デバイス及びその駆動方法
JP7359077B2 (ja) 燃料電池用の積層体
JP2007141625A (ja) 固体電解質
WO2002027829A1 (fr) Procede de production d'une pile a combustible
JP5604818B2 (ja) イオン伝導性複合体、膜電極接合体(mea)、及び電気化学装置
JP2006156410A (ja) 燃料電池及びその駆動方法
JP7272319B2 (ja) 燃料電池用の積層体
WO2016203722A1 (ja) 電極触媒材料、及び燃料電池
KR100612306B1 (ko) 연료전지의 바이폴러 플레이트용 복합재료
JP2002216780A (ja) 電極部材及び電極部材を用いた電池並びに電極部材の製造方法
JP2011021084A (ja) イオン伝導性複合体とその製造方法、膜電極接合体(mea)、及び電気化学装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061206

Termination date: 20150807

EXPY Termination of patent right or utility model