CN1288671C - 温度传感器 - Google Patents

温度传感器 Download PDF

Info

Publication number
CN1288671C
CN1288671C CNB031200702A CN03120070A CN1288671C CN 1288671 C CN1288671 C CN 1288671C CN B031200702 A CNB031200702 A CN B031200702A CN 03120070 A CN03120070 A CN 03120070A CN 1288671 C CN1288671 C CN 1288671C
Authority
CN
China
Prior art keywords
face
temperature sensor
film resistor
resistor device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031200702A
Other languages
English (en)
Other versions
CN1444235A (zh
Inventor
卡尔·海因茨·维南德
托马斯·洛泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HERRICH SENSCHONET AG
Original Assignee
HERRICH SENSCHONET AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HERRICH SENSCHONET AG filed Critical HERRICH SENSCHONET AG
Publication of CN1444235A publication Critical patent/CN1444235A/zh
Application granted granted Critical
Publication of CN1288671C publication Critical patent/CN1288671C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Fluid Pressure (AREA)
  • Glass Compositions (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

本发明涉及一种温度传感器,在单晶衬底的表面上具有温敏元件,其中该温敏元件由铂薄膜电阻器制成,并且将其制作为外延层。

Description

温度传感器
技术领域
本发明涉及在单晶衬底的表面上具有温敏元件的温度传感器,其中温敏元件由铂薄膜电阻器制成。本发明进一步涉及用于制造这种温度传感器的方法及其用途。
背景技术
在单晶衬底上具有薄膜电阻器的温度传感器是公知的。RU2069324描述了一种这样的温度测量器件,该温度测量器件具有介质衬底和施加于其上的由镍或铂制成的、弯曲形式的薄膜电阻器。铂层和衬底之间是由氮化钛制成的粘合剂层。例如,已经公开了用蓝宝石作为介质衬底。
US 6,229,121 B1公开了一种具有双金属(bimetallic)开关接触的微型开关,具有外延层上的弯曲形的加热元件和温敏元件,例如铂薄膜电阻器。
WO 87/05146描述了一种具有绝缘衬底的温度传感器,绝缘衬底例如由蓝宝石制成。提供铂薄膜电阻器作为温度传感器,该温度传感器由覆盖层保护。
DE 32 05 704公开了一种利用温度传感器元件评估室内气候的器件。例如,在蓝宝石衬底上具有弯曲形式的铂薄膜电阻器。
US 4,378,489描述了一种测量装置,在蓝宝石支撑体上具有铂薄膜电阻器和加热元件。
发明内容
为了能够得到几何尺寸进一步减小的、包含铂薄膜电阻器的温度传感器,必须在越来越小的衬底表面上制造更薄、更长的导体通路。由于在更小的宽度处,导电电子在铂晶粒边界处泄漏和铂的电阻温度系数α成为零,因此制造到这种程度的用于温度传感器的结晶铂薄膜电阻器从大约>10μm的导体通路宽度处开始在技术上是可行的。此外,在例如通过蚀刻构成结晶铂薄膜电阻器中,在导体通路中会出现孔隙,这种孔隙可以追溯到铂微晶、它们的形状、尺寸和定向。
因此,问题是制造温度传感器的问题,该温度传感器利用铂薄膜电阻器作为温敏元件,其中能够减小导体通路的宽度,并且铂薄膜电阻器的导体通路之间的距离减小到<10μm。此外,应提供制造这种温度传感器的适当方法。
对于温度传感器来说解决该问题的方案是将铂薄膜电阻器构造为外延层,铂薄膜电阻器由1至10μm宽的导体通路构成,导体通路呈弯曲状,在彼此间隔1-10μm处设置相邻的导体通路,导体通路具有0.05μm至2μm的厚度。将外延层理解为通过外延在单晶衬底上制造的单晶层。如果将铂薄膜电阻器构造为外延层,那么由于其单晶特性,因此很容易蚀刻,可以制造没有缺陷的导体通路宽度,并且通路之间的距离<10μm。由于在晶界处不再有任何导电电子的泄漏,因此铂的电阻温度系数α保持不变。由于能够在衬底上构造更薄和更长的导体通路,因此铂薄膜电阻器毫无疑问可以得到>10kΩ的电阻。
已经证实如果单晶衬底由电绝缘材料,优选α-Al2O3或MgO制成是有利的。
通过B.M.Lairson et al在1992年9月21日的Appl.Phys.Lett.61(12)第1390-1392页的“Epitaxial Pt(001),Pt(110)and Pt(111)films on MgO(001),MgO(110),MgO(111)and Al2O3(0001)”中的描述,对于铂的外延层来说使用这些衬底是已知的了。该公开文献描述了在由MgO或Al2O3制成的单晶衬底上制造外延铂层,并且记载了各种制造方法,例如分子束外延、激光熔蚀、阴极溅射或化学汽相淀积。
具体地说,优选单晶衬底由α-Al2O3制成,衬底表面平行于α-Al2O3的结晶面(110),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。然而,如果单晶衬底由α-Al2O3制成,衬底表面平行于α-Al2O3的结晶面(001),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂,那么这种情况也是有利的。
进一步显示出下列情况也是有利的,即单晶衬底由α-Al2O3制成,衬底表面平行于α-Al2O3的结晶面(1-10),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
此外,已经显示出下列情况是值得采用的,即单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(111),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
进一步显示出下列情况是有利的,即单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(001),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
此外,已经显示出下列情况是值得采用的,即单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(110),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
可以在单晶衬底和铂薄膜电阻器之间设置最厚达2nm的籽晶层。
单晶衬底也可以由半导体材料制成,例如硅,其中在衬底和铂薄膜电阻器之间设置电绝缘的外延层。
这里,已经显示出下列情况是值得采用的,即平行于硅的结晶面(111)制造衬底的表面。然后优选在平行于该表面的(111)面生长铂薄膜电阻器的铂。
可以在导电衬底和电绝缘的外延层之间和/或在电绝缘的外延层和铂薄膜电阻器之间设置最厚达2nm的籽晶层。
导体通路优选具有大于0.00350/K的电阻温度系数α。
解决工艺问题的方案是利用PVD(物理汽相淀积)或CVD(化学汽相淀积)或MBE(分子束外延)淀积一个或者多个外延层。
单晶衬底上的外延铂薄膜的理想用途是作为温度传感器的铂薄膜电阻器。
下面的例1至例3以举例的方式阐述了本发明。具有铂薄膜电阻器的温度传感器的外观已经众所周知了,例如RU2069324就记载了这样的内容,因此附图说明是多余的。
具体实施方式
例1:
在由α-Al2O3制成的单晶衬底上,衬底表面平行于结晶面(110)伸展,通过阴极溅射生成弯曲状的铂薄膜电阻器。该铂薄膜电阻器由外延层构成,外延层在平行于衬底表面的(110)面中生长,并且具有1μm的厚度。形成的弯曲状铂薄膜电阻器的导体通路分别具有3μm的导体通路宽度和相互的间隔。
例2:
在由MgO制成的单晶衬底上,衬底表面平行于结晶面(001)伸展,通过CVD制造弯曲状的铂薄膜电阻器。该铂薄膜电阻器由外延层构成,外延层在平行于衬底表面的(110)面中生长,并且具有0.5μm的厚度。形成的弯曲状铂薄膜电阻器的导体通路具有5μm的导体通路宽度和1.5μm的相互间隔。在衬底和铂薄膜电阻器之间设置0.5nm厚的Fe籽晶层。
例3:
在由硅制成的单晶衬底上,衬底表面平行于结晶面(111)伸展,通过阴极溅射制造由MgO构成的电绝缘外延层,该电绝缘外延层在平行于衬底表面的(111)面中生长,并且具有2μm的厚度。在由MgO构成的电绝缘外延层上,通过阴极溅射生成弯曲状的铂薄膜电阻器。铂薄膜电阻器由外延层构成,该外延层在平行于衬底表面的(111)面中生长,并且具有1.5μm的厚度。形成弯曲状铂薄膜电阻器的导体通路具有6μm的导体通路和5μm的相互间隔。

Claims (18)

1.一种温度传感器,在单晶衬底的表面上具有温敏元件,其中该温敏元件由铂薄膜电阻器构成,其特征在于,将铂薄膜电阻器制作为外延层,铂薄膜电阻器由1至10μm宽的导体通路构成,导体通路呈弯曲状,在彼此间隔1-10μm处设置相邻的导体通路,导体通路具有0.05μm至2μm的厚度。
2.根据权利要求1所述的温度传感器,其特征在于,单晶衬底由电绝缘材料制成。
3.根据权利要求2所述的温度传感器,其特征在于,单晶衬底由α-Al2O3或MgO制成。
4.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由α-Al2O3制成,其中衬底的表面平行于α-Al2O3的结晶面(110),在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
5.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由α-Al2O3制成,衬底表面平行于α-Al2O3的结晶面(001),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
6.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由α-Al2O3制成,衬底表面平行于α-Al2O3的结晶面(1-10),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
7.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(111),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
8.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(001),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
9.根据权利要求3所述的温度传感器,其特征在于,单晶衬底由MgO制成,其中衬底表面平行于MgO的结晶面(110),并且在平行于该表面的(111)面或(110)面或(100)面中生长铂薄膜电阻器的铂。
10.根据权利要求1至9中任一项所述的温度传感器,其特征在于,在衬底和铂薄膜电阻器之间设置最厚达2nm的籽晶层。
11.根据权利要求1所述的温度传感器,其特征在于,单晶衬底由半导体材料制成,在衬底和铂薄膜电阻器之间设置电绝缘的外延层。
12.根据权利要求11所述的温度传感器,其特征在于,单晶衬底由硅制成。
13.根据权利要求12所述的温度传感器,其特征在于,衬底的表面平行于硅的结晶(111)面。
14.根据权利要求13所述的温度传感器,其特征在于,在平行于该表面的(111)面中生长铂薄膜电阻器的铂。
15.根据权利要求11至14中任一项所述的温度传感器,其特征在于,在衬底和电绝缘的外延层之间和/或在电绝缘的外延层和铂薄膜电阻器之间设置最厚达2nm的籽晶层。
16.根据权利要求1所述的温度传感器,其特征在于,导体通路具有大于0.00350/K的电阻温度系数α。
17.一种制造根据权利要求1所述的温度传感器的方法,其特征在于,通过物理汽相淀积PVD或化学汽相淀积CVD或分子束外延MBE淀积一个或者多个外延层。
18.使用单晶衬底上的外延铂薄膜作为根据权利要求1所述的温度传感器的铂薄膜电阻器。
CNB031200702A 2002-03-12 2003-03-12 温度传感器 Expired - Fee Related CN1288671C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10210772.6 2002-03-12
DE10210772A DE10210772C1 (de) 2002-03-12 2002-03-12 Temperatursensor

Publications (2)

Publication Number Publication Date
CN1444235A CN1444235A (zh) 2003-09-24
CN1288671C true CN1288671C (zh) 2006-12-06

Family

ID=7714077

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031200702A Expired - Fee Related CN1288671C (zh) 2002-03-12 2003-03-12 温度传感器

Country Status (6)

Country Link
US (1) US6819217B2 (zh)
EP (1) EP1345019B1 (zh)
CN (1) CN1288671C (zh)
AT (1) ATE416365T1 (zh)
DE (2) DE10210772C1 (zh)
TW (1) TWI224668B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341433A1 (de) * 2003-09-09 2005-03-31 Braun Gmbh Beheizbarer Infrarot-Sensor und Infrarot-Thermometer mit einem derartigen Infrarot-Sensor
US20070046421A1 (en) * 2005-09-01 2007-03-01 International Business Machines Corporation Structure and method for forming thin film resistor with topography controlled resistance density
DE102006012088B4 (de) * 2006-03-14 2008-02-14 Heraeus Sensor Technology Gmbh Verwendung einer epitaktischen Widerstandsstruktur als stoffsensitiven Sensor, Verfahren zum Betreiben des stoffsensitiven Sensors sowie stoffsensitiver Sensor
EP1878503A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Temperature sensor element for monitoring heating and cooling
US7670921B2 (en) * 2006-12-28 2010-03-02 International Business Machines Corporation Structure and method for self aligned vertical plate capacitor
DE102007046900C5 (de) * 2007-09-28 2018-07-26 Heraeus Sensor Technology Gmbh Hochtemperatursensor und ein Verfahren zu dessen Herstellung
DE102009007940B4 (de) * 2009-02-06 2010-11-18 Heraeus Sensor Technology Gmbh Nichtleitfähiges Zirkonoxid
JP5776942B2 (ja) * 2012-03-30 2015-09-09 三菱マテリアル株式会社 温度センサ
CN103308204B (zh) * 2013-05-20 2015-07-15 中国科学院半导体研究所 一种用于检测密闭环境温度变化的方法
DE102017118109A1 (de) 2017-08-09 2019-02-14 Endress + Hauser Flowtec Ag Sensorbaugruppe
EP3588035A1 (en) 2018-06-28 2020-01-01 Heraeus Nexensos GmbH A wire bonding arrangement and method of manufacturing a wire bonding arrangement
US10505403B1 (en) 2018-08-31 2019-12-10 Apple Inc. Wireless charging system with temperature sensing
US10658878B2 (en) 2018-08-31 2020-05-19 Apple Inc. Wireless charging system with temperature sensor array
EP3842566A1 (en) 2019-12-27 2021-06-30 Tubacex Innovación A.I.E. Pipe with resistance temperature detection sensor
CN112082667B (zh) * 2020-09-02 2022-08-16 苏州热工研究院有限公司 一种薄膜铂电阻温度传感器及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378489A (en) * 1981-05-18 1983-03-29 Honeywell Inc. Miniature thin film infrared calibration source
DE3205704A1 (de) * 1982-02-17 1983-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Einrichtung zur beurteilung des raumklimas
JPS6064401A (ja) * 1983-09-20 1985-04-13 株式会社カ−ク 白金薄膜測温抵抗体
CA1250155A (en) * 1984-07-31 1989-02-21 James A. Ruf Platinum resistance thermometer
US4791398A (en) * 1986-02-13 1988-12-13 Rosemount Inc. Thin film platinum resistance thermometer with high temperature diffusion barrier
JP2968111B2 (ja) * 1991-11-22 1999-10-25 日本特殊陶業株式会社 マイグレーション防止パターンを備えた抵抗体物理量センサ
KR950001303A (ko) * 1993-06-22 1995-01-03 이헌조 박막 적외선 센서구조 및 그 제조 방법
RU2069324C1 (ru) * 1993-07-15 1996-11-20 Московский институт электронной техники Термометр сопротивления
JP3728465B2 (ja) * 1994-11-25 2005-12-21 株式会社神戸製鋼所 単結晶ダイヤモンド膜の形成方法
JP3457826B2 (ja) * 1997-01-31 2003-10-20 株式会社リコー 薄膜式抵抗体及びその製造方法、流量センサ、湿度センサ、ガスセンサ、温度センサ
JP3867393B2 (ja) * 1998-03-20 2007-01-10 株式会社デンソー マイクロヒータおよびその製造方法ならびにエアフローセンサ
DE19848524C1 (de) * 1998-10-21 1999-12-16 Dresden Ev Inst Festkoerper Verfahren zur Herstellung hochintegrationsfähiger Platin-Dünnschichtwiderstände
US6229121B1 (en) * 1999-07-23 2001-05-08 Industrial Technology Research Institute Integrated thermal buckling micro switch with electric heater and sensor
JP3461469B2 (ja) * 1999-07-27 2003-10-27 株式会社日立製作所 熱式空気流量センサ及び内燃機関制御装置
KR100422333B1 (ko) * 2000-07-31 2004-03-10 이노스텍 (주) 단결정 거대 입자로 구성된 금속 박막 제조 방법 및 그 금속 박막

Also Published As

Publication number Publication date
DE10210772C1 (de) 2003-06-26
DE50310847D1 (de) 2009-01-15
US6819217B2 (en) 2004-11-16
EP1345019A1 (de) 2003-09-17
ATE416365T1 (de) 2008-12-15
EP1345019B1 (de) 2008-12-03
TW200306409A (en) 2003-11-16
CN1444235A (zh) 2003-09-24
TWI224668B (en) 2004-12-01
US20030174041A1 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
CN1288671C (zh) 温度传感器
JP4289641B2 (ja) 強誘電体キャパシタおよびその製造方法
Song et al. Preparation and crystallization of tin-doped and undoped amorphous indium oxide films deposited by sputtering
US8436337B2 (en) Amorphous multi-component metallic thin films for electronic devices
EP3605627B1 (en) Piezoelectric device and manufacturing method thereof
EP1056125B1 (en) Lead germanate ferroelectric structure with multi-layered electrode
JP5499529B2 (ja) 薄膜トランジスタ搭載基板、その製造方法及び画像表示装置
Rand et al. Observations on the formation and etching of platinum silicide
US6728093B2 (en) Method for producing crystallographically textured electrodes for textured PZT capacitors
US6853535B2 (en) Method for producing crystallographically textured electrodes for textured PZT capacitors
EP1035589B1 (en) Iridium composite barrier structure and method for same
JPH05190877A (ja) ダイオード素子の製造方法
CN1317151A (zh) 微电子结构,其制法及其在存储单元内的应用
KR970077672A (ko) 증대된 유전 특성을 갖는 산화 탄탈 박막 층의 제조 방법 및 그 층을 사용하는 커패시터
KR100422333B1 (ko) 단결정 거대 입자로 구성된 금속 박막 제조 방법 및 그 금속 박막
KR102181436B1 (ko) 투명 전도성 박막
JP3288301B2 (ja) 薄膜抵抗体及びその製造方法並びに当該薄膜抵抗体を内蔵した配線基板
Li et al. Preferred orientation and ferroelectric properties of lead zirconate titanate thin films
KR100884360B1 (ko) 니켈 실리사이드 제조방법
Novotny et al. Piezoelectric ZnO thin films prepared by cyclic sputtering and etching technology
KR100247474B1 (ko) 피지티 강유전체 캐패시터 제조 방법
JPH10209160A (ja) 配線及びそれを用いた表示装置
TW488011B (en) Iridium composite barrier structure and method for same
KR20040042122A (ko) 칼코게나이드 비정질 반도체를 이용한 박막온도센서 및 그제조방법
JPH11284242A (ja) 圧電性薄膜およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061206

Termination date: 20110312