CN1284932A - 制备锂过渡金属酸盐的方法 - Google Patents

制备锂过渡金属酸盐的方法 Download PDF

Info

Publication number
CN1284932A
CN1284932A CN98813542A CN98813542A CN1284932A CN 1284932 A CN1284932 A CN 1284932A CN 98813542 A CN98813542 A CN 98813542A CN 98813542 A CN98813542 A CN 98813542A CN 1284932 A CN1284932 A CN 1284932A
Authority
CN
China
Prior art keywords
compound
lithium
calcining
transition metal
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98813542A
Other languages
English (en)
Other versions
CN1191994C (zh
Inventor
M·本兹
W·库默
E·普罗斯
J·施默尔
W·施维达
D·杜夫
R·莱贝里希
C·施尔德
U·克赖尼茨
V·斯托勒
J·梅瑟-马克特舍菲尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Europe GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/EP1998/000697 external-priority patent/WO1998037023A1/de
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of CN1284932A publication Critical patent/CN1284932A/zh
Application granted granted Critical
Publication of CN1191994C publication Critical patent/CN1191994C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/10Nitrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及制备通式Lix(M1 yM2 1-y)nOnz的锂过渡金属酸盐的方法,其中M1代表镍、钴或锰;M2代表与M1不同的过渡金属,它们是铬、钴、铁、锰、钼或铝,如果M1是锰则n为2,否则为1,x为0.9—1.2,y为0.5—1.0,和z为1.9—2.1。根据本发明的方法,将含氧的过渡金属化合物和含氧的锂化合物的紧密混合物进行煅烧,所述紧密混合物是通过用锂化合物的溶液处理固体粉末的过渡金属化合物并干燥的方法得到的,并且至少所用的M1化合物是粉末状的形式,其比表面积至少为20m2/g(BET),并且煅烧是在移动床中进行的。

Description

制备锂过渡金属酸盐的方法
本发明涉及制备通式如下的锂过渡金属酸盐的方法:
              Lix(M1 yM2 1-y)nOnz其中M1   代表镍、钴或锰,M2   代表与M1不同的过渡金属,它们是铬、钴、铁、锰、钼和/
    或铝,n     如果M1是锰则为2,如果M1是镍或钴则为1,其中x     为0.9-1.2,y     为0.5-1,和z     为1.9-2.1。
这些类型的锂过渡金属酸盐可用作电极材料,特别是作为非水的锂蓄电池体系,所谓锂离子电池的阴极材料。
制备这类锂过渡金属酸盐的方法已经提出很多方案,但是它们大多数不适合于大规模生产,或者产品的电化学性能不完善。
最近LiCoO2的应用已被采纳,但是由于钴的来源有限,所以价格非常昂贵,因而不适合大批量生产(例如为电动车辆提供能源)。所以,已作出很大的努力设法例如用LiNiO2和/或LiMn2O4全部或部分代替LiCoO2作为阴极材料。
相应的钴化合物LiCoO2的合成通常认为是一种非苛刻的方法。由于LiCoO2的热稳定性,对于这个体系甚至可能在较高的温度下用碳酸钴和碳酸锂作为反应组分直接反应,而在最终产物中不会残留有干扰的碳酸盐。
将这种方法应用到LiNiO2则仅仅温度达到800-900℃才有可能。但是,这样高的煅烧温度,将得到部分分解的镍酸锂,其蓄电容量低和/或耐循环操作的性能不满意。
为此,提出采用无碳酸盐混合物制备LiNiO2,其中在大多数情况下,β-氢氧化镍是一种优选的镍组分,如例如,参见US-A5 591 548,EP0 701 293,J.Power Sources(能源杂志)54(95)209-213,54(95)329-333和54(95)522-524。此外,JP-A7 105 950也推荐使用氧化镍,或DE-A196 16 861推荐氢氧化氧镍NiOOH。
根据US-A4 567 031,紧密混合物是通过可溶的锂和过渡金属盐从溶液中共沉淀,然后干燥溶液和煅烧的方法制备。采用这种方法可以在较低的煅烧温度和较短的时间内得到较细分的锂过渡金属酸盐的结晶。锂和过渡金属离子分配到各自的晶格层上,但是发生很大的畸变,所以很大程度上,镍离子占据锂层晶格的位置。这些类型结晶的性能不能满足用作可充电电池的电极的要求。其他方法(EP-A205 856、EP-A243 926、EP-A345 707)采用的是细颗粒的起始金属的碳酸盐、氧化物、过氧化物或氢氧化物。通过这些原料的联合研磨制备紧密混合物。通过煅烧时的固体扩散生成锂过渡金属酸盐。固体扩散要求比较高的温度及比较长的煅烧时间,一般不形成具有优异电子性能的纯相的锂金属酸盐。深入的观察证实,对于镍体系,在约700℃以上的温度下较长的热处理时间,引发LiNiO2分解并伴随生成LiO2和NiO。
所以,为了强化紧密混合过程,已有提议,根据EP-A468 942,采用粉末的氧化镍或氢氧化镍来制备镍酸锂,方法是将粉末悬浮在饱和的氢氧化锂溶液中,并通过喷雾干燥的方法除去悬浮液中的水。这应该导致降低煅烧时间和煅烧温度。由于氢氧化锂在水中的溶解度较低,所以该混合物的均匀性受限。
US-A5 591 548提议将粉末状含氧的过渡金属化合物与硝酸锂一起研磨,然后在惰性气体下煅烧。该方法的优点是硝酸锂的熔点低为264℃,这意味着,在加热到,例如300℃,可以过渡金属颗粒在熔融硝酸锂中的悬浮体形式进行紧密混合,这是有利于带固体的反应。
该方法的缺点是煅烧时,从粘的熔融悬浮液中释放的气体(H2O、NOx、O2)不选出或仅仅非常慢地逸出,所以固体反应和扩散所需要的紧密接触受阻,另一方面由于在几何空间上浓度的不均匀性,仅仅存在不多的悬浮颗粒。所以,就需要中断煅烧过程并进行中间研磨以匀化反应材料。
因而,就希望在移动床上完成煅烧,移动床的优点是有利于反应时产生的气体的选出、产物的均匀性及所需的停留时间。但是,采用移动床与采用低熔点的锂化合物如硝酸锂或氢氧化锂相抵触,因为这些锂化合物预期会与过渡金属化合物形成粘的熔融悬浮体,并且在反应进程中在移动床的有限器壁上形成结块,产物也由于反应过程中产生的这种悬浮体而发生团聚。
已经发现,如果采用比表面积至少为10m2/g(BET)的粉末状的过渡金属化合物,则可以避免产物团聚和在移动床的有限器壁上形成结块的现象,其中,在煅烧前,该具有大比表面积的过渡金属化合物要用含氧的锂化合物的溶液浸渍,并通过干燥除去溶剂。
由于高的比表面积,过渡金属化合物粉末能够按这种方式吸收锂化合物:当加热到锂化合物熔点以上温度时不会产生连续相,并且覆盖了锂化合物的过渡金属化合物粉末在反应器壁上以及粉末颗粒相互之间的结块现象被大大抑制。
所以,本发明通过煅烧含氧的过渡金属化合物和含氧的锂化合物的紧密混合物,提供一种制备通式如下的锂过渡金属化合物的方法:
                  Lix(M1 yM2 1-y)nOnz其中M1   表镍、钴或锰,M2   代表与M1不同的过渡金属,它们是铬、钴、铁、锰、钼和/
    或铝,n     如果M1是锰则为2,如果M1是镍或钴则为1,其中x     为0.9-1.2,y     为0.5-1.0,和z     为1.9-2.1,所述紧密混合物是通过用锂化合物的溶液处理固体粉末的过渡金属化合物并干燥的方法得到的,该方法的特征在于所用的M1化合物至少是粉末状的,其比表面积至少为10m2/g(BET),并且煅烧是在移动床中进行的。
M1化合物的比表面积优选至少为25m2/g,特别优选至少为40m2/g。
氢氧化物是用作优选的M1过渡金属化合物。特别优选是氢氧化镍。比表面积为60-80m2/g的β-氢氧化镍特别优选使用,尤其如果它是如US-A5 391 265所述方法得到。
如果y小于1,则至少某些M2过渡金属化合物优选以式(M1 yM2 1-y)(OH)2的混合氢氧化物形式使用。y的值应该优选大于0.8,特别优选大于0.9。
氢氧化锂和/或硝酸锂可以用作含氧的锂化合物。它们优选在水溶液中与过渡金属化合物混合,然后干燥和粒化。硝酸锂是用作优选的含氧锂化合物。锂化合物的水溶液优选采用浓溶液,在硝酸锂的情况下,水溶液的浓度在35%以上。
根据本发明方法的一个方案,至少某些M2过渡金属化合物可以被用作浸渍M1过渡金属化合物的锂化合物溶液中的成分。
为了制备紧密混合物,在搅拌下将固体的粉末状过渡金属化合物与锂化合物的溶液混合,然后通过干燥,例如喷雾干燥,流化床喷雾造粒或混合器凝聚的方法除去溶剂,特别是水。凝聚粒径小于100μm的喷雾干燥材料是优选的。
随后在移动床中的煅烧可以在管式转炉、流化床或竖井反应器中进行。特别优选采用管式转炉,
在这种情况下,将颗粒连续或间歇地引入优选是电加热的管式转炉中处理,其停留时间0.5-10小时,优选1-5小时,处理温度500-800℃,优选550-650℃,特别优选580-620℃。
当加热紧密混合物到煅烧温度时,从低于锂化合物的熔点直至煅烧温度的温度范围应该尽可能快地转换。所以,紧密混合物应该被引入到已经被预热到煅烧温度的转窑或已经被预热到煅烧温度的移动床中。
如果采用硝酸锂作为含氧的锂化合物,紧密混合物可以被预热到直至200℃的温度,优选150-180℃。如果采用氢氧化锂,预热温度可以直至350℃。
煅烧可以在含有直至50%的氧的气氛,例如空气中进行。至少三分之二的煅烧时间在基本上无氧的惰性气体,例如氩气中煅烧是优选的,这时气体中的氧含量小于5%,特别是小于3%。在这种情况下,混合物在其余的时间里在含氧的气体中煅烧。如果移动床是在间歇的条件下操作,在经过至少三分之二的煅烧时间后,气氛可以变换成含氧的气氛。如果采用连续操作的管式转炉,优选在管式转炉的下三分之一处用喷枪引入含氧的气氛或氧气。
根据本发明,也可以在分开的移动床内于含氧的气氛中进行后煅烧。
为了在煅烧时确保窄分布的停留时间,间歇操作本身是优选的。但是,在连续操作的转窑中通过在旋转管中插入相应的截面缩小的缓冲板,也可以达到半宽度小于平均停留时间的四分之一的足够窄的停留时间范围。
煅烧后,将从移动床排出的粉末状的锂过渡金属酸盐冷却到室温(低于100℃),并进行温和的研磨。适合的研磨装置为,例如利用高气速型面的剪切效应的那些装置,这时通过颗粒-颗粒碰撞达到粉碎,如流化床逆流研磨器或微流化研磨器。研磨优选(在除去细级分后)进行至平均粒径降到15-25μm。根据本发明特别优选的实施方案,研磨中的细级分既可以循环到移动床,也可以与粉末状的含氧过渡金属化合物混合,然后一起用含氧的锂化合物溶液处理并干燥,也即是浸渍。
硝酸锂特别优选用作为含氧的锂化合物。在这种情况下,煅烧时释放的NOx气体优选被吸收到氢氧化锂水溶液中,产生的硝酸锂溶液用于浸渍粉末状过渡金属化合物。
图1是本发明生产镍酸锂的优选实施方案的示意图。预混合生产单元A由搅拌的容器组成,容器一开始置入40%浓度的硝酸锂水溶液,然后加入平均粒径10μm和比表面积65m2/g的粉末状β-氢氧化镍一起搅拌。得到的悬浮体通过喷雾干燥的方法干燥,然后以平均粒径约100μm的颗粒加入管式转炉B。管式转炉的内容物在惰性气体和烧结温度下优选保持1-3小时。然后,氩气氛可以被含20-50%氧的气氛所取代(间歇操作)。然后冷却管式转炉,得到的镍酸锂在流化床逆流研磨器C研磨到粒径小于40μm,粒径小于3μm的细级分通过气流分级或在旋风分离器中分离,收集后循环到管式转炉B。含NOx的炉气氛在涤气器D中用氢氧化锂水溶液洗涤,得到的硝酸锂回收用于另一个预混合工序的生产。
                          实施例
实施例1
搅拌下,将比表面积约65m2/g(BET)的多孔氢氧化镍加到约40%浓度的硝酸锂水溶液中。LiNO3与Ni(OH)2的摩尔比是1.03。悬浮液在喷雾干燥塔中干燥。将平均粒径约60μm的干燥粉末与5%(重量)的粒径<5μm的镍酸锂混合。
将500g粉末混合物置于加热到620℃的实验室管式转炉中通入速度为84m/h的氮气流。管式转炉的内径为55mm,转速1/4rpm。
1小时后,管式转炉冷却到100℃以下并从管式转炉中取出试样。
X-射线衍射分析得到如下的峰比:
    I104/I003(LiNiO2)           0.76
    I111(Li2O)/I101(LiNiO2)    0.038
    半宽度003反射                  0.17
    半宽度104反射                  0.19
实施例2
除了管式转炉保持在600℃和冷却在2小时以后进行外,重复实施例1。
冷却后取出的试样得到如下的值:
    I104/I003(LiNiO2)           1.1
    I111(Li2O)/I10l(LiNiO2)    0.1
    半宽度003反射                  0.27
    半宽度104反射                  0.25
大多数产物是在管式转炉中于620℃的空气中后煅烧16小时。从X-射线衍射分析可以得到以下的值:
    I104/I003(LiNiO2)          0.59
    I111(Li2O)/I101(LiNiO2)   0.003
    I002(Li2CO3)/I101(LiNiO2)0.009
    半宽度003反射                 0.1
    半宽度004反射                 0.13
实施例3
重复实施例2,其中混合物最初在640℃的氮气中煅烧2小时,然后在640℃的空气中煅烧30分钟。
从X-射线衍射分析可以得到以下的值:I104/I003(LiNiO2)          0.76I111(Li2O)/I101(LiNiO2)   0.037I002(Li2CO3)/I101(LiNiO2)0.017半宽度003反射                 0.17半宽度004反射                 0.19

Claims (9)

1.一种制备通式如下的锂过渡金属酸盐的方法:
      Lix(M1yM21-y)nOnz其中M1   代表镍、钴或锰,M2   代表与M1不同的过渡金属,它们是铬、钴、铁、锰、钼或铝,n     如果M1是锰则为2,否则为1,x     为0.9-1.2,y     为0.5-1.0,和z     为1.9-2.1,该方法是煅烧含氧的过渡金属化合物和含氧的锂化合物的紧密混合物,所述紧密混合物是通过用锂化合物的溶液处理固体粉末的过渡金属化合物并干燥的方法得到的,其特征在于所用的M1化合物至少是粉末状的,其比表面积至少为20m2/g(BET),并且煅烧是在移动床中进行的。
2.权利要求1的方法,其特征在于过渡金属酸盐在煅烧后进行研磨和筛分,筛分后的细级分循环到移动床。
3.权利要求1或2的方法,其特征在于含有至少某些M2化合物的混合过渡金属化合物用作为M1化合物。
4.权利要求1-3之一的方法,其特征在于锂化合物的溶液至少含有某些M2化合物。
5.权利要求1-4之一的方法,其特征在于煅烧是在转管、流化床或竖井反应器中进行。
6.权利要求1-5之一的方法,其特征在于煅烧后,进行研磨,并且研磨后在含氧的气氛中进一步煅烧。
7.权利要求1-6之一的方法,其特征在于LiNO3用作为锂化合物,Ni(OH)2,用作为过渡金属化合物。
8.权利要求7的方法,其特征在于煅烧时释放的NO2作为硝酸回收,并且与LiOH反应得到用作锂化合物的LiNO3
9.权利要求1-8之一的方法,其特征在于用锂化合物处理的过渡金属化合物通过喷雾干燥或混合器造粒而干燥。
CNB988135426A 1998-02-09 1998-08-13 制备锂过渡金属酸盐的方法 Expired - Fee Related CN1191994C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EPPCT/EP98/00697 1998-02-09
PCT/EP1998/000697 WO1998037023A1 (de) 1997-02-19 1998-02-09 Verfahren zur herstellung von lithium-übergangsmetallaten

Publications (2)

Publication Number Publication Date
CN1284932A true CN1284932A (zh) 2001-02-21
CN1191994C CN1191994C (zh) 2005-03-09

Family

ID=8166867

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988135426A Expired - Fee Related CN1191994C (zh) 1998-02-09 1998-08-13 制备锂过渡金属酸盐的方法

Country Status (13)

Country Link
US (1) US6875416B1 (zh)
EP (1) EP1058673B1 (zh)
JP (1) JP4122710B2 (zh)
KR (1) KR100544541B1 (zh)
CN (1) CN1191994C (zh)
AT (1) ATE264271T1 (zh)
AU (1) AU744558B2 (zh)
CA (1) CA2320155C (zh)
DE (1) DE59811208D1 (zh)
HK (1) HK1034952A1 (zh)
HU (1) HUP0100690A3 (zh)
IL (1) IL137350A0 (zh)
WO (1) WO1999040029A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596809A (zh) * 2009-08-27 2012-07-18 霍尼韦尔国际公司 涉及流化床技术的锂金属氧化物制备方法
CN107001068A (zh) * 2014-11-26 2017-08-01 巴斯夫欧洲公司 用于制备锂化过渡金属氧化物的方法
CN110112400A (zh) * 2019-05-06 2019-08-09 山东泽石新材料科技有限公司 一种过渡金属锂氧化物的制备方法及装置
WO2021082166A1 (zh) * 2019-10-29 2021-05-06 山东泽石新材料科技有限公司 一种过渡金属锂氧化合物的制备方法及装置
WO2023051502A1 (zh) * 2021-09-28 2023-04-06 宁夏中化锂电池材料有限公司 正极材料的制备方法、装置及系统
US11757095B2 (en) 2019-05-06 2023-09-12 Shandong Zstone New Material Technology Co., Ltd. Method and apparatus for preparing transition metal lithium oxide

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070642A1 (fr) * 2002-02-21 2003-08-28 Tosoh Corporation Particule secondaire granulaire d'oxyde composite de lithium et manganese, procede de production de cette particule et son utilisation
DE10242694A1 (de) * 2002-09-13 2004-03-25 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Neuartige Elektrodenmaterialien und Elektroden für elektrochemische Energiespeichereinrichtungen auf Li-Basis
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
CN1300868C (zh) * 2003-04-30 2007-02-14 杨永平 锂离子电池用结构稳定的尖晶石锰酸锂的制备方法
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
US7648693B2 (en) * 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US20070292761A1 (en) 2005-04-13 2007-12-20 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20080032196A1 (en) 2005-04-13 2008-02-07 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
EP2016636A4 (en) 2006-05-10 2010-02-03 Lg Chemical Ltd MATERIAL FOR LITHIUM HIGH PERFORMANCE SECONDARY BATTERY
JP2009193745A (ja) 2008-02-13 2009-08-27 Sony Corp 正極活物質の製造方法
JP5710788B2 (ja) * 2011-03-16 2015-04-30 韓華石油化学株式会社Hanwhachemical Corporation ロータリーキルンを用いた電極物質のか焼方法
US8992794B2 (en) * 2011-06-24 2015-03-31 Basf Corporation Process for synthesis of a layered oxide cathode composition
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
US10076737B2 (en) * 2013-05-06 2018-09-18 Liang-Yuh Chen Method for preparing a material of a battery cell
US9979022B2 (en) * 2015-03-31 2018-05-22 Denso Corporation Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN105047869A (zh) * 2015-06-16 2015-11-11 田东 一种锂离子正极材料LiNiO2/C的合成方法
CN107068963A (zh) * 2016-12-28 2017-08-18 中国电子科技集团公司第十八研究所 一种铝电极的表面处理方法
KR102136961B1 (ko) * 2017-03-15 2020-07-23 유미코아 전이금속 수산화물 전구체를 제조하기 위한 질산염 공정
KR20190062209A (ko) * 2017-11-27 2019-06-05 주식회사 엘지화학 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR102388848B1 (ko) * 2017-11-30 2022-04-20 주식회사 엘지에너지솔루션 양극 첨가제, 이의 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지
KR20220127517A (ko) * 2021-03-11 2022-09-20 에스케이온 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
CA1265580A (en) 1985-05-10 1990-02-06 Akira Yoshino Secondary battery
US4770960A (en) 1986-04-30 1988-09-13 Sony Corporation Organic electrolyte cell
US4980080A (en) * 1988-06-09 1990-12-25 Societe Anonyme Dite: Saft Process of making a cathode material for a secondary battery including a lithium anode and application of said material
US5264201A (en) 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
US5180574A (en) * 1990-07-23 1993-01-19 Moli Energy (1990) Limited Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
DE4239295C2 (de) 1992-11-23 1995-05-11 Starck H C Gmbh Co Kg Verfahren zur Herstellung von reinem Nickelhydroxid sowie dessen Verwendung
FR2704216A1 (fr) * 1993-04-23 1994-10-28 Centre Nat Rech Scient Matériaux d'électrode pour batteries rechargeables au lithium et leur procédé de synthèse.
CA2126883C (en) * 1993-07-15 2005-06-21 Tomoari Satoh Cathode material for lithium secondary battery and method for producing lithiated nickel dioxide and lithium secondary battery
JPH07105950A (ja) 1993-10-07 1995-04-21 Dowa Mining Co Ltd 非水溶媒リチウム二次電池用正極活物質とその製造法およびリチウム二次電池
JP3067531B2 (ja) 1994-07-13 2000-07-17 松下電器産業株式会社 非水電解液二次電池の正極活物質およびそれを用いた電池
JP3606290B2 (ja) 1995-04-28 2005-01-05 日本電池株式会社 非水系電池の正極活物質用コバルト含有ニッケル酸リチウムの製造方法
US5591548A (en) 1995-06-05 1997-01-07 Motorola, Inc. Electrode materials for rechargeable electrochemical cells and method of making same
US5702679A (en) * 1995-10-06 1997-12-30 Kerr-Mcgee Chemical Corp. Method of preparing Li1+X- Mn2-X O4 for use as secondary battery
US6045771A (en) 1995-11-24 2000-04-04 Fuji Chemical Industry Co., Ltd. Lithium-nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
IT1285922B1 (it) * 1996-05-06 1998-06-26 Gd Spa Metodo e dispositivo per la piegatura di lembi di estremita' di involucri tubolari
US5728367A (en) * 1996-06-17 1998-03-17 Motorola, Inc. Process for fabricating a lithiated transition metal oxide
JPH10152327A (ja) 1996-11-19 1998-06-09 Seimi Chem Co Ltd リチウム含有複合酸化物の製造方法及びそれを実施するための焼成炉
WO1998037023A1 (de) * 1997-02-19 1998-08-27 H.C. Starck Gmbh & Co. Kg Verfahren zur herstellung von lithium-übergangsmetallaten

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596809A (zh) * 2009-08-27 2012-07-18 霍尼韦尔国际公司 涉及流化床技术的锂金属氧化物制备方法
CN107001068A (zh) * 2014-11-26 2017-08-01 巴斯夫欧洲公司 用于制备锂化过渡金属氧化物的方法
CN110112400A (zh) * 2019-05-06 2019-08-09 山东泽石新材料科技有限公司 一种过渡金属锂氧化物的制备方法及装置
CN110112400B (zh) * 2019-05-06 2022-10-21 山东泽石新材料科技有限公司 一种过渡金属锂氧化物的制备方法及装置
US11757095B2 (en) 2019-05-06 2023-09-12 Shandong Zstone New Material Technology Co., Ltd. Method and apparatus for preparing transition metal lithium oxide
WO2021082166A1 (zh) * 2019-10-29 2021-05-06 山东泽石新材料科技有限公司 一种过渡金属锂氧化合物的制备方法及装置
US11643338B2 (en) 2019-10-29 2023-05-09 Shandong Zstone New Material Technology Co., Ltd. Method and device for producing lithium transition metal oxide
WO2023051502A1 (zh) * 2021-09-28 2023-04-06 宁夏中化锂电池材料有限公司 正极材料的制备方法、装置及系统

Also Published As

Publication number Publication date
HK1034952A1 (en) 2001-11-09
JP2002502795A (ja) 2002-01-29
AU9262298A (en) 1999-08-23
US6875416B1 (en) 2005-04-05
AU744558B2 (en) 2002-02-28
EP1058673B1 (de) 2004-04-14
CA2320155C (en) 2006-07-25
EP1058673A1 (de) 2000-12-13
CA2320155A1 (en) 1999-08-12
KR20010040770A (ko) 2001-05-15
KR100544541B1 (ko) 2006-01-24
DE59811208D1 (de) 2004-05-19
IL137350A0 (en) 2001-07-24
HUP0100690A1 (hu) 2001-06-28
ATE264271T1 (de) 2004-04-15
WO1999040029A1 (de) 1999-08-12
CN1191994C (zh) 2005-03-09
HUP0100690A3 (en) 2005-03-29
JP4122710B2 (ja) 2008-07-23

Similar Documents

Publication Publication Date Title
CN1191994C (zh) 制备锂过渡金属酸盐的方法
US6136476A (en) Methods for making lithium vanadium oxide electrode materials
CN1087105C (zh) 用作锂蓄电池阴极活性材料的尖晶石型锂锰复合氧化物
CN1208241C (zh) 一种制备磷酸铁锂的湿化学方法
TW202031596A (zh) 用於鋰離子電池之鋰過渡金屬氧化物之電漿處理
CN1180984C (zh) 锂镍钴二氧化物的合成
EP2485305A1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
CN1091545C (zh) 含钴或镍的锂复合氧化物的制造方法
EP2594529B1 (en) Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
CN1229280C (zh) 具有改善的电化学性能的锂锰尖晶石复合氧化物的制备方法
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
CN1648036A (zh) 一种LiFePO4球形粉体的制备方法
TWI750137B (zh) 磷酸鎢酸鋯的製造方法
CN115939336A (zh) 一种钠离子电池正极材料、正极片以及二次电池
WO2003083969A1 (fr) Materiau d'electrode positive pour accumulateur au lithium, accumulateur utilisant ledit materiau et procede de production de materiau d'electrode positive pour accumulateur au lithium
JP7406006B2 (ja) 活物質回収装置およびこれを用いた活物質の再使用方法
JP2022052817A (ja) リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池
JPH08208231A (ja) スピネル型 LiMn2O4の製造方法
JP2001114521A (ja) 四三酸化マンガンおよびその製造方法
KR20210054486A (ko) 리튬 전이 금속 산화물의 제조방법 및 제조장치
CN1312774A (zh) 锂锰氧化物嵌入化合物的制备方法及由此制成的化合物
KR102314019B1 (ko) 과산화리튬의 입도 조절 방법 및 입도가 조절된 리튬산화물의 제조방법
JPH10182161A (ja) リチウムマンガン複合酸化物の製造方法
WO2020023017A1 (en) Dry milling additive and process
JP2003054952A (ja) リチウム・マンガン複合酸化物の製造方法及び該リチウム・マンガン複合酸化物を用いてなるリチウム電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TODA INDUSTRIAL CO.

Free format text: FORMER OWNER: H.C. STARCH GMBH + CO. KG

Effective date: 20080718

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080718

Address after: Dusseldorf

Patentee after: Toda Kogyo Europ GmbH

Address before: German Goslar

Patentee before: H.C. Starck GmbH & Co. KG

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050309

Termination date: 20100813