CN1260876C - 开关电源装置 - Google Patents

开关电源装置 Download PDF

Info

Publication number
CN1260876C
CN1260876C CNB021033390A CN02103339A CN1260876C CN 1260876 C CN1260876 C CN 1260876C CN B021033390 A CNB021033390 A CN B021033390A CN 02103339 A CN02103339 A CN 02103339A CN 1260876 C CN1260876 C CN 1260876C
Authority
CN
China
Prior art keywords
voltage
circuit
resistance
output
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021033390A
Other languages
English (en)
Other versions
CN1369953A (zh
Inventor
吉田幸司
仓贯正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1369953A publication Critical patent/CN1369953A/zh
Application granted granted Critical
Publication of CN1260876C publication Critical patent/CN1260876C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

在开关电源装置的过电流保护电路中,通过开关单元的通断动作将输入电压形成为矩形波电压,利用电感元件和电容器将该矩形波电压进行平滑处理而形成输出电压,间流过开关单元的电流的峰值电流,使用输入电压(Vin)和输出电压(Vout)以及与开关单元的通断比D成正比的电压限制过电流。

Description

开关电源装置
技术领域
本发明涉及向工业用和民用的电子仪器供给直流稳定电压的开关电源装置。本发明特别涉及在过负荷状态下防止高大的电流流过开关电源装置本身以及与开关电源装置的输入侧或输出侧连接的机器的开关电源装置的过电流保护电路。
背景技术
近年来,随着电子仪器的低价格化、小型化、高性能化和节能化,对于这些电子仪器使用的开关电源装置,强烈要求输出的稳定性高、更小型和高效率等。另外,同时作为开关电源装置,在电子仪器领域也要求安全性高的装置。作为适应这样的要求的开关电源装置的过电流保护电路,即使作为负荷的电子电路发生异常、其输入阻抗降低时也必须具有适当地限制流过负荷的电子电路的电流从而将该电子电路保持在安全的状态的功能。
下面,使用附图12说明先有的开关电源装置的过电流保护电路。图12表示先有的降压型的开关电源装置的过电流保护电路。
在图12中,输入直流电源201由将商用电源进行整流平滑的电路或电池构成。该输入直流电源201与输入端子202a、202b连接。变流器203具有初级绕组203a和次级绕组203b,初级绕组203a的一端与输入端子202a、202b中的一方(202a)连接。开关元件204的一端与变流器的初级绕组203a的另一端连接。另外,开关元件204的另一端与电感元件206的一端连接。这样连接的开关元件204反复进行通/断动作。整流二极管205的阳极与另一方的输入端子202b连接。
如图12所示,电感元件206和平滑电容器207串联连接,构成串联体,该串联体与整流二极管205的两端连接,构成平滑电路。该平滑电路使在整流二极管205的两端发生的矩形波电压平均化,形成直流电压。
从图12所示的先有的开关电源装置的过电流保护电路的输出端子208a、208b输出由平滑电容器207平均化的电压。负荷209与输出端子208a、208b连接,消耗开关电源装置的过电流保护电路的电力。
控制电路210检测输出端子208a、208b的电压,输出控制开关元件204的通断比的控制信号,以使其输出稳定的电压。第1电阻211与变流器203的次级绕组203b并联连接。在开关元件204截止的期间励磁电流流过变流器203的次级绕组203b,消耗变流器203的励磁能量。
在开关元件204处于导通状态时流过变流器203的初级绕组203a的电流变换为与变流器203的圈数比相应的电流,通过二极管212流入第2电阻213。这样,在第2电阻213的两端就发生与流过变流器203的初级绕组203a的电流成正比的电压Vs。
在第2电阻213的两端发生的电压Vs在比较电路215中与预先决定的基准电源214的基准电压进行比较,在电压Vs达到基准电压时,就通过控制电路210使开关元件204断开。即,在图12所示的开关电源装置的过电流保护电路中,实时的检测流过开关元件204的电流,控制开关元件204使其瞬时电流不超过一定值。在该过电流保护电路中,作为检测对象的流过开关元件204的电流,通过电感元件206成为输出电流,所以,开关元件204的控制动作,结果就成了限制输出电流的动作。
在上述结构的开关电源装置的过电流保护电路中,输出电流Iout是流过电感元件206的电流的平均值Iav。另外,流过开关元件204的电流的峰值即流过电感元件206的电流的峰值被实时地进行限制。流过电感元件206的电流的变化幅度ΔI是输入电压Vin和输出电压Vout的函数,由下式(1)给出。在式(1)中,D是作为开关元件204的通断比的占空比,Ts是开关周期,Lf是电感元件206的电感值。
ΔI = V out ( 1 - D ) T s L f - - - ( 1 )
因此,流过电感元件206的电流的峰值Ip与流过电感元件206的电流的平均值Iav的关系由下式(2)表示。
I p = I av + ΔI 2 = I av + V out ( 1 - D ) T s 2 L f - - - ( 2 )
图13是表示先有的过电流保护电路动作时的电流波形的图。即使使输出电流保持一定,由于输入电压的影响,峰值电压也不同。因此,在先有的过电流保护电路的结构中,将流过电感元件206的电流的峰值Ip控制为一定,于是,成为输出电流Iout与输出电压Vout或输入电压Vin的变化一起发生变化的特性。图14是表示先有的过电流保护电路中的过电流下降特性的波形图。如图14所示,在输出电压Vout降低时,输出电流Iout急剧地增加。特别是在电感元件206的电感值Lf小时,流过电感元件206的电流的变化幅度ΔI增大,从而其峰值Ip与平均值Iav的差值增大。结果,这时的下降特性进一步恶化,从而输出电流Iout增加。这样,由于输出电流Iout的增加,流过开关元件204和整流二极管205的电流便增加。因此,对于先有的过电流保护电路中的开关元件204和整流二极管205,必须使用具有大的耐破坏强度,从而电路就存在高价而大型化的问题。
发明内容
本发明就是为了解决上述先有的过电流保护电路的问题而提案的,目的旨在提供特别是在电路元件的电感小的电路中输入电压或输出电压变化时也将输出电流限制为一定从而可以稳定而可靠地进行过电流保护的安全性高的开关电源装置。
为了达到上述目的,本发明的开关电源装置,其特征在于:具有通过通断动作将输入电压形成为矩形波电压的开关电路、利用电感元件和电容器对上述矩形波电压进行平滑处理而形成输出电压的平滑电路和检测流过上述开关电路的电流的峰值电流而进行输出电流的限制的过电流保护电路,上述过电流保护电路具有:将开关电路的通断比和输出电压相乘的乘法器,算出与所述乘法器的乘积值和输出电压的差成比例的误差信号的差动放大电路,将检测出的峰值电流与所述误差信号相加、与基准值比较的比较器,以及根据所述比较器的比较结果通断控制所述开关电路并将输出电流控制为恒定的控制电路。
这样构成的本发明的开关电源装置,在电路元件的电感小的电路中,输入电压或输出电压变化时也可以将输出电流限制为一定从而可以稳定而可靠地进行过电流保护。
另外,在本发明的开关电源装置中,为了形成误差信号,也可以使用乘法器。
此外,在本发明的开关电源装置中,上述过电流保护单元进而可以具有峰值电压保持单元。
另一发明的开关电源装置,其特征在于:包括通过通断动作将输入电压形成为矩形波电压的开关电路、具有所述开关电路连接的初级绕组和与输出端子连接的次级绕组的变压器、与上述次级绕组连接的利用整流单元和电感元件以及电容器进行整流平滑处理从而形成输出电压的输出电压形成电路和检测流过上述开关电路的电流的峰值电流而进行输出电流的限制的过电流保护电路,上述过电流保护电路具有:将开关电路的通断比和输出电压相乘的乘法器,算出与所述乘法器的乘积值和输出电压的差成比例的误差信号的差动放大电路,将检测出的峰值电流与所述误差信号相加、与基准值比较的比较器,以及根据所述比较器的比较结果通断控制所述开关电路并将输出电流控制为恒定的控制电路。
这样构成的本发明的开关电源装置,可以与输入电压和输出电压的变化无关地使过电流保护单元动作时的输出电流保持一定。
另外,本发明的开关电源装置,为了形成误差信号,也可以使用乘法器。
此外,本发明的开关电源装置可以具有绝缘型的变压器,也可以用全桥式转换器构成。
另外,本发明的开关电源装置也可以由具有交替地反复通断的第1开关单元和第2开关单元而通过第1接续点串联连接的第1串联电路、具有交替地反复通断的第3开关单元和第4开关单元而通过第2接续点串联连接的第2串联电路、具有连接在上述第1接续点与上述第2接续点之间的初级绕组的变压器、将矩形波电压加到上述变压器的初级绕组上的矩形波电压施加单元、将在上述变压器的次级绕组上感应的电压进行整流的整流单元、利用电感元件和电容器将上述整流单元的矩形波电压进行平滑处理而输出的平滑电路和将上述第1接续点的电压平均化而形成与输出电压成正比的电压的电路构成。
另外,本发明的开关电源装置也可以由具有交替地反复通断的第1开关单元和第2开关单元而通过第1接续点串联连接的第1串联电路、具有交替地反复通断的第3开关单元和第4开关单元而通过第2接续点串联连接的第2串联电路、具有连接在上述第1接续点与上述第2接续点之间的初级绕组的变压器、将矩形波电压加到上述变压器的初级绕组上的矩形波电压施加单元、利用电感元件和电容器将在上述变压器的次级绕组上感应的矩形波电压进行平滑处理而输出的平滑电路、分别将上述第1接续点的电压和上述第2接续点的电压平均化从而形成与输出电压成正比的电压的平均化电路和在上述第1开关单元或第3开关单元处于导通状态时形成通过将上述输入电压与输出电压的差值电压平均化而得到的误差信号的误差信号形成电路构成。
另外,本发明的开关电源装置也可以利用D×(Vin-Vout)的值取代Vout-D×Vout的值来修正检测的峰值电流。
另外,本发明的开关电源装置也可以利用D×(Vin-N×Vout)的值取代Vout-D×Vout的值来修正检测的峰值电压。
另外,本发明的开关电源装置也可以利用与Vout-D×Vout成正比的值和与Vin-Vout成正比的值来修正检测的峰值电压。
另外,本发明的开关电源装置也可以利用与Vout-D×Vout成正比的值和与Vin-N×Vout成正比的值来修正检测的峰值电压。
另外,本发明的开关电源装置也可以利用与D×(Vin-Vout)成正比的值和与Vin-Vout成正比的值取代Vout-D×Vout的值来修正检测的峰值电压。
另外,本发明的开关电源装置也可以利用与D×(Vin-N×Vout)成正比的值和与Vin-N×Vout成正比的值取代Vout-D×Vout的值来修正检测的峰值电压。
另一观点的发明的开关电源装置具有通过通断动作将输入电压Vin形成矩形波电压的开关单元、在上述开关单元处于导通状态时加上输入电压积蓄励磁能量而在上述开关单元处于截止状态时输出积蓄的励磁能量的电感元件和检测流过上述开关单元的电流的峰值电流Ip从而进行输出电流的限制的过电流保护单元,在上述过电流保护单元中,对检测的峰值电流Ip,取K为常数,进行(1-D)×(Ip+K×Vout)的运算,决定上述开关单元的导通期间,以使该计算值为一定值。
发明的新的特征就是后面所附的权利要求中所述的特征,但是,关于结构和内容,通过结合其他目的或特征阅读附图和以下的详细说明,可以更好的理解和评价本发明。
附图的简单说明
图1是表示本发明实施例1的开关电源装置的过电流保护电路的结构的电路图。
图2是表示实施例1的过电流保护电路的过电流下降特性的说明图。
图3是表示实施例1的其他结构的过电流保护电路的电路图。
图4是表示本发明实施例2的开关电源装置的过电流保护电路的结构的电路图。
图5是表示实施例2的过电流保护电路的动作波形的说明图。
图6是表示本发明实施例3的开关电源装置的过电流保护电路的结构的电路图。
图7是表示本发明实施例4的开关电源装置的过电流保护电路的结构的电路图。
图8是表示实施例4的过电流保护电路的动作波形的说明图。
图9是表示本发明实施例5的开关电源装置的过电流保护电路的结构的电路图。
图10是表示本发明实施例6的开关电源装置的过电流保护电路的结构的电路图。
图11是表示本发明实施例6的开关电源装置的其他过电流保护电路的结构的电路图。
图12是表示先有的开关电源装置的过电流保护电路的结构的电路图。
图13是表示先有的开关电源装置的过电流保护电路的动作波形的说明图。
图14是表示先有的开关电源装置的过电流保护电路的下降特性的说明图。
附图的一部分或全部是通过以图示为目的的概要的表现来描绘的,不一定是忠实地描绘这里所示的要素的实际的相对大小和位置。
发明的具体实施方式
下面,参照附图说明本发明的开关电源装置的理想的实施例。
实施例1.
图1是表示本发明实施例1的开关电源装置的过电流保护电路的结构的电路图。
在图1中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成。该输入直流电源1与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。开关元件4的一端与变流器的初级绕组3a的另一端连接。开关元件4的另一端与整流二极管5的阴极和电感元件6的一端连接。这样连接的开关元件4根据后面所述的控制电路10的控制信号反复进行通断动作。整流二极管5的阳极与另一方的输入端子2b连接。
如图1所示,电感元件6和平滑电容器7串联连接,构成串联电路,该串联电路与整流二极管5的两端连接,构成平滑电路。该平滑电路将在整流二极管5的两端发生的矩形波电压进行平均化处理,形成直流电压。
从图1所示的实施例1的开关电源装置的过电流保护电路的输出端子8a、8b输出由平滑电容器7进行了平均化处理的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
控制电路10检测输出端子8a、8b的电压,发生控制开关元件4的通断比的控制信号,以使其输出稳定的电压。第1电阻11与变流器的次级绕组3b并联连接,在开关元件4截止的期间,励磁电流流过变流器3的次级绕组3b,消耗变流器3的励磁能量。
二极管12对在变流器2的次级绕组3b中感应的电流进行整流。第2电阻13实时的发生与流过变流器3的初级绕组3a的电流成正比的电压。
在开关元件4处于导通状态时,流过变流器3的初级绕组3a的电流变换为与变流器3的圈数比相应的电流,通过二极管12流入第2电阻13。这样,在第2电阻13的两端就发生与流过变流器3的初级绕组3a的电流成正比的电压Vs。
在第2电阻13的两端发生的电压Vs与后面所述的修正电压发生电路29的电压相加后输入比较电路15的一边的端子。基准电源14的基准电压输入比较电路15的另一边的端子。由修正电压发生电路29修正过的电压在比较电路15中与基准电压进行比较,修正过的电压达到基准电压时,就通过控制电路10使开关元件4断开。
下面,说明实施例1的修正电压发生电路29的结构。
在修正电压发生电路29中,输出电压Vout由第3电阻16和第4电阻17所分割。另外,由第5电阻18和第6电阻19阳极电容器20将作为控制电路10的通断信号的控制信号进行平均化处理,形成与通断比(占空比)D成正比的电压Vd。
电压Vd和与输出电压Vout成正比的电压Vo输入乘法器21,计算它们的乘积,并输出电压Vm。
如图1所示,在修正电压发生电路29中,设置了第7电阻22、第8电阻23、第9电阻24、第10电阻25和运算放大器26。第7电阻22连接在乘法器21与运算放大器26的输入端子之间。第9电阻24连接在输入电压Vo的乘法器21的输入端子与运算放大器26的反相输入端子之间。另外,第8电阻23连接在运算放大器26的反相输入端子与运算放大器26的输出端子之间。第10电阻25连接在运算放大器26的输入端子与地线之间。
利用这些电阻22、23、24、25和运算放大器26计算与输出电压Vout成正比的电压Vo与乘法器21的输出电压Vm的差值。加法器27计算在第2电阻13上发生的电压Vs与从运算放大器26输出的电压之和,并向比较电路15输出。加法器27的输出和基准电源14的基准电压Vr输入比较电路15。比较电路15将电压Va与基准电压Vr进行比较,决定开关元件4的断开时刻。
下面,说明上述结构的实施例1的开关电源装置的过电流保护电路的动作。
在开关元件4根据作为控制电路10的通断信号的控制信号而成为导通状态时,输入电压Vin通过变流器3的初级绕组3a和开关元件4加到电感元件6上。这时,电流值与流过电感元件6的电流相同的电流流过开关元件4和变流器3的初级绕组3a。这时,在变流器3的次级绕组3b中发生电压,二极管12导通。结果,变流器3的次级绕组3b的电流通过二极管12流入第2电阻13。第1电阻11相对于第2电阻13设定为非常大的电阻值,与第2电阻13相比,只有非常小的电流流过第1电阻11。
这时,设流过变流器3的初级绕组3a的电流为Ip、变流器3的圈数比为初级绕组(3a):次级绕组(3b)=1:Nc时,则在第2电阻13(电阻值Rs)上发生的电压V由下式(3)表示:
V s = 1 N c R s I p - - - ( 3 )
在(3)式中,若将圈数比Nc做得充分大,且将Rs设定得很小,则变流器3的初级绕组3a发生的电压相对于输入电压Vin充分小。因此,在电感元件6施加电压差(Vin-Vout),这时,流过电感元件6(电感值为Lf)的电流以(Vin-Vout)/Lf的斜率增加。
接着,通过控制电路10的控制信号使开关元件4截止,则通过流过电感元件6的电流整流二极管5导通,电感元件6施加电压Vout,该状态下,流过电感元件6的电流按Vout/Lf的斜率而减小。这时,电流不流过变流器3的初级绕组3a,变流器3的励磁电流流过第1电阻11,消耗励磁能量,从而复位到能量零的状态。设开关元件4的导通期间为Ton、截止期间为Toff时,通过使在电感元件6的导通期间增加的电流量与在截止期间减少的电流量相等,则下式(4)成立。
( V in - V out ) L f T on = V out L f T off - - - ( 4 )
因此,输出电压Vout如下式(5)所示的那样可以用开关元件4的通断比算出。
V out = T on T on + T off V in = DV in - - - ( 5 )
流过电感元件6的电流的峰值Ip如在上述先有技术的项目中说明的那样,可以用下式(6)表示。
I p = I av + ΔI 2 = I av + V out ( 1 - D ) T s 2 L f - - - ( 6 )
在式(6)中,流过电感元件6的电流的平均值Iav与输出电流Iout等价,所以,式(6)可以利用下式(7)表示。
I out = I p - V out ( 1 - D ) T s 2 L f = I p - ( T s 2 L f ) ( V out - V out D ) - - - ( 7 )
参照式(6)时,可知在过电流区域中为了将输出电流保持为一定,可以使银限制的电流的峰值Ip如式(6)所示的那样随输入电压Vin和输出电压Vout的变化而变化。
即,可以将式(6)的第2项的修正函数加到过电流的基准电压上,或者对实际检测的电流波形取与式(7)的第2项的值的差值。
在图1所示的过电流保护电路的修正电压发生电路29中,对检测的输出电压Vou t取修正函数输出的差值。从式(6)的第2项可知,为了得到修正量,需要检测输出电压Vout和占空比D。
在图1所示的修正电压发生电路29中,输出电压Vout利用与输出端子8a、8b连接的第3电阻16和第4电阻17进行分压而检测。占空比D通过将控制电路10的控制信号进行平均化处理而求出。在修正电压发生电路29中,利用第5电阻18和第6电阻19阳极电容器20对控制电路10的控制信号进行分压和平均化处理。式(6)的第2项所示的修正量,通过将占空比D与输出电压Vout相乘并利用该乘积值与输出电压Vout的差值而求出。因此,在实施例1的修正电压发生调29中,利用乘法器21进行乘法运算,利用由多个电阻22、23、24、25和运算放大器26构成的差动放大电路计算修正量。
图2是表示本发明实施例1的开关电源装置的修正电压发生电路29的过电流下降特性的波形图。图2表示在输入电压Vin和输出电压Vout发生变化而过电流保护电路动作时输出电流不增加而控制为一定的情况。
图3是表示本发明实施例1的其他开关电源装置的过电流保护电路的结构的电路图。在图3所示的过电流保护电路的结构中,与上述图1的过电流保护电路不同的地方是,设置了峰值保持电路28和由控制电路210将峰值保持电路28的输出与修正电压发生电路29的输出之和控制为一定。在图3所示的过电流保护电路中,符号215是误差放大器,210是控制电路。在该过电流保护电路中,将峰值保持电路28的输出与修正电压发生电路29的输出相加,将该相加的值与基准电源14的基准电压在误差放大器215中进行误差放大后输入控制电路210。控制电路210根据该误差放大信号将峰值保持电路28的输出与修正电压发生电路29的输出之和控制为一定。图3的过电流保护电路的其他结构与图1所示的过电流保持电路的结构相同,所以省略其说明。
在图3中,第1电阻11与变流器的次级绕组3b并联连接,在开关元件4的截止期间,励磁电流流过变流器3的次级绕组3b,消耗变流器3的励磁能量。二极管12对在变流器3的次级绕组3b中感应的电流进行整流,第2电阻13上发生与33a的电流成正比的电压。
如图3所示,峰值保持电路28由二极管281、电容器282和电阻283构成。这样构成的峰值保持电路28连接在第2电阻13的后级,保持与流过变流器3的初级绕组3a的电流成正比的电压的峰值电压。峰值保持电路28的输出电压输入加法器27的一边的端子。修正电压发生电路29的电压输入加法器27的另一边的端子。在图3所示的过电流保护电路中,对以第2电阻13的两端电压表示的通过与流过变流器3的初级绕组3a的电流成正比的电压的峰值充电而得到的峰值电压加上修正量进行过电流保护的控制。因此,图3的过电流保护电路可以可靠地将输出电流保持为一定。
图1所示的过电流保护电路在以比较电路15和开关元件4的截止延迟时间等接收到截止信号后,开关电流增加到实际截止时为止。因此,图1的过电流保护电路的输出电流增多。但是,在图3所示的过电流保护电路中,通过使用误差放大器215,利用负反馈可以可靠地使输出电流一定。
实施例2.
下面,参照图4说明本发明实施例2的开关电源装置的过电流保护电路。图4是表示实施例2的开关电源装置的过电流保护电路的结构的电路图。在图4中,功能和结构与上述实施例1的过电流保护电路的部件相同的部件标以相同的符号,并省略其说明。在以下的各实施例的说明中,过电流保护电路的各电阻元件,在功能上相同的均标以相同的符号,其名称的号码仅在各实施例中统一。
在图4中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成,与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。变流器3的初级绕组3a的另一端与由多个开关元件群36、37、38、39和变压器40构成的开关电路31连接。
第1电阻11与变流器3的次级绕组3b并联连接,二极管12将在变流器3的次级绕组3b中感应的电流进行整流,在第2电阻13的两端发生与流过变流器3的初级绕组3a的电流成正比的电压。
在开关电路31中,包括第1开关元件36与第2开关元件37的串联电路和第3开关元件38与第4开关元件39的串联电路。各个串联电路通过变流器3的初级绕组3a与输入端子2a、2b连接。第1开关元件36和第2开关元件37交替地反复进行通断动作。另外,第3开关元件38和第4开关元件39交替地反复进行通断动作。
变流器3的初级绕组3a的一端与输入端子2a连接,另一端与第1开关元件36和第3开关元件38的连接点连接。
变压器40具有初级绕组40a和第1次级绕组40b和第2次级绕组40c。初级绕组40a的一端与第1开关元件36和第2开关元件37的连接点连接,初级绕组40a的另一端与第3开关元件38和第4开关元件39的连接点连接。变压器40的第1次级绕组40b和第2次级绕组40c串联连接。
第1整流二极管41的阳极与变压器的第1次级绕组40b的一端连接。第2整流二极管42的阳极与变压器40的第2次级绕组40c的一端连接。第1整流二极管41和第2整流二极管42的阴极相互连接,构成整流电路。
另外,在变压器40的次级侧,设置了电感元件43与平滑电容器44的串联电路。由电感元件43和平滑电容器44的串联电路构成平滑电路。该平滑电路的一端与变压器40的第1次级绕组40b和第2次级绕组40c的连接点连接,平滑电路的另一端与第1整流二极管41和第2整流二极管42的连接点连接。平滑电容器44的两端与输出端子8a、8b连接。从输出端子8a、8b输出由平滑电容器44进行了平均化处理的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
在图4中,控制电路45输出决定开关电路31中各开关元件36、37、38、39的通断动作的控制信号。从控制电路45输出的控制信号使输出端子8a、8b的电压保持一定或者根据过电流的截止信号决定通断比。
在实施例2中,在修正电压发生电路30中,设置了第3电阻46、第4电阻47、第5电阻48和第1电容器49。第3电阻46和第5电阻48的串联电路的一端与第1开关元件36和第2开关元件37的连接点连接。另外,该串联电路的另一端与第2开关元件37和第4开关元件39的连接点连接。第1电容器49的一端与第2开关元件37和第4开关元件39的连接点连接,第1电容器49的另一端与第4电阻47连接。第4电阻47的一端与第3开关元件38和第4开关元件39的连接点连接。第4电阻47的另一端与第3电阻46和第5电阻48的连接点连接。在第1电容器49的两端,发生将第2开关元件37和第4开关元件39的两端电压分压后进行了平均化处理的电压。
另外,在实施例2的修正电压发生电路30中,设置了第6电阻50、第7电阻51和第8电阻52。第6电阻50和第8电阻52的串联电路的一端与控制电路45的第1输出端子45a连接,该串联电路的另一端与第2开关元件37和第4开关元件39的连接点连接。第7电阻51的一端与控制电路45的第2输出端子45b连接,第7电阻51的另一端与第6电阻50和第8电阻52的连接点连接。第2电容器53与第8电阻52并联连接。在第2电容器53的两端,发生将控制电路45的第1输出端子45a和第2输出端子45b的输出电压进行分压而平均化处理的与控制电路45的输出的通断比D成正比的电压。
乘法器21计算作为在第1电容器49上发生的电压Vo与在第2电容器53上发生的电压Vd的乘积的电压Vm。
另外,在实施例2的修正电压发生电路30中,和上述实施例1一样,设置了多个电阻22、23、24、25和运算放大器26,计算电压Vm与电压Vo的差值。在实施例2中,将与运算放大器26连接的这些电阻称为第9电阻22、第10电阻23、第11电阻24和第12电阻25。
加法器27输出在第2电阻13的两端发生的电压Vs与修正电压发生电路30的电压之和。基准电源14的基准电压和从加法器27输出的电压之和输入比较电路15,进行比较。通过该比较判定是过电流状态时,运算放大器15就向控制电路45输出截止信号。
下面,使用图4和图5说明上述结构的实施例2的开关电源装置的动作。图5是表示实施例2的开关电源装置的动作的波形图。
控制电路45(图4)检测输出端子8a、8b的电压,输出PWM信号,使输出电压保持一定。作为这时的控制信号的通断信号分别以180度的相位差动作,最大占空比设定为50%。控制电路45的PWM信号向第1驱动电路54和第2驱动电路55输出。第1驱动电路54与输入的第1PWM信号的通断的时刻同步地输出使第1开关元件36进行通断动作的驱动信号。同时,第1驱动电路54与第1PWM信号相辅的输出使第2开关元件37反复进行通断动作的驱动信号。同样,第2驱动电路55与第2PWM信号特同步地输出使第3开关元件38进行通断动作的驱动信号,与第2PWM信号相辅的输出使第4开关元件39反复进行通断动作的驱动信号。
如上述那样,控制电路45通过驱动控制第1驱动电路54和第2驱动电路55,加到第2开关元件37上的电压V2和加到第4开关元件39上的电压V4就成为图5的(5)和(6)所示的波形。因此,在第1开关元件36导通时(图5的(1)所示的[T0-T1]期间),第4开关元件39同时成为导通状态(参见图5的(4)),输入电压Vin加到变压器40的初级绕组40a上。这时,在变压器40的第1次级绕组40b和第2次级绕组40c上与变压器40的圈数比N相应地发生Vin/N的电压。第1整流二极管41由于在变压器40的第1次级绕组40b和第2次级绕组40c上发生的电压而成为导通状态,第2整流二极管成为截止状态。结果,与输出电压的差值电压Vin/N-Vout便加到电感元件43上。
如图5所示,在第1开关元件36(图5的(1))和第3开关元件38(图5的(3))都成为截止状态时,第2开关元件37(图5的(2))和第4开关元件39(图5的(4))就都是导通状态。这样,加到第2开关元件37上的电压V2和加到第4开关元件39上的电压V4便都成为0V,从而变压器40的初级绕组40a短路,电压成为0。结果,在变压器40的次级绕组40b、40c上就不发生电压。流过电感元件43的电流就在第1整流元件41和第2整流元件42上进行分流,所以,加到电感元件43上的电压就成为输出电压Vout。
在第3开关元件38为导通状态时(图5的(3)所示的[T2-T3]期间),第2开关元件37成为导通状态,所以,输入电压Vin与期间[T0-T1]方向相反地加到变压器40的初级绕组40a上。这样,在变压器40的次级绕组40b、40c上就发生方向相反的Vin/N,第1整流二极管41成为截止状态,第2整流二极管42成为导通状态,而Vin/N-Vout加到电感元件43上。
因此,在将第1开关元件36的导通期间和第3开关元件38的导通期间控制为相等而成为Ton时,第1开关元件36和第3开关元件38都成为截止状态的2个期间[T1-T2]、[T3-T4]将相等,成为Toff。在稳定状态下,电感元件43的励磁电流的增加和减小的量相等,所以,以下的公式成立。
T on · ( V in N - V out ) = T off · V out - - - ( 8 )
因此,输出电压Vout可以表为
V out = T on ( T on + T off ) N · V in - - - ( 9 )
另一方面,加到第2开关元件37上的电压V2仅在第1开关元件36导通的期间是输入电压,所以,电压V2的平均电压V2av可以表为
V 2 av = T on 2 ( T on + T off ) · V in - - - ( 10 )
因此,即使输入电压Vin或输出电压Vout变化,输出电压Vout与平均电压V2av也总是成正比。同样,电压V4的平均电压V4av也与输出电压Vout成正比。因此,由第3电阻46、第4电阻47、第5电阻48和第1电容器49将电压V2和电压V4进行分压和平均化处理而得到的电压Vo就与输出电压Vout成正比。
另外,控制电路45的PWM输出的平均值与通断比成正比,所以,由第6电阻50、第7电阻51、第8电阻52和第2电容器53进行分压和平均化处理而得到的电压就与PWM信号的通断比成正比。
在实施例2的开关电源装置的过电流保护电路中,在电感元件43的电感值小时,输出电流Iout与流过电感元件43的电流的峰值Ip不同,输出电流Iout与峰值Ip的关系随输入电压Vin和输出电压Vout而变化。流过电感元件43的电流通过变压器40向次级绕组40a传输,流入变流器3的初级绕组3a。因此,除了存在变压器40,与上述实施例1所述的内容基本上等价,为了修正该影响,通过利用与输出电压Vout成正比的电压和与通断比D成正比的电压如上述实施例1所述的那样进行修正,可以使下降特性成为恒定电流。
如上所述,在实施例2的过电流保护电路中,在第1电容器49上形成与输出电压Vout成正比的电压,在第2电容器53上形成与通断比D成正比的电压。这样,在图4所示实施例2的过电流保护电路中,通过计算考虑了输出电压Vout和通断比D的修正量,在过电流状态下也可以使输出电流Iout成为恒定电流。
在实施例2中,以全桥式转换器为例进行了说明,但是,只要其结构是具有与实施例2的电感元件43和平滑电容器44相当的结构要素的平滑电路并将矩形波电压进行平均化处理从而形成输出电压的装置,就可以得到和上述实施例相同的效果。另外,在实施例2中,是用将图4所示的电压V2和V4进行平均化处理而得到与输出电压成正比的电压的结构进行说明的。但是,本发明不限于这样的结构,也可以在变压器上增加辅助绕组,将在辅助绕组上发生的电压整流,通过用电感元件和平滑电容器进行平滑处理,得到与输出电压成正比的电压,并将该电压用于进行修正处理。
实施例3.
下面,参照图6说明本发明实施例3的开关电源装置的过电流保护电路。图6是表示实施例3的开关电源装置的过电流保护电路的结构的电路图。在图6中,功能和结构与上述实施例1的过电流保护电路的部件相同的部件标以相同的符号,并省略其说明。
在图6中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成,与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。变流器3的初级绕组3a的另一端与由多个开关元件群36、37、38、39和变压器40构成的开关电路31连接。
第1开关元件36和第2开关元件37的串联电路通过变流器3的初级绕组3a与输入端子2a连接,交替地反复进行通断动作。第3开关元件38和第4开关元件39的串联电路通过变流器3的初级绕组3a与输入端子2a连接,交替地反复进行通断动作。
绝缘型的变压器40具有初级绕组40a和第1次级绕组40b及第2次级绕组40c。初级绕组40a的一端与第1开关元件36和第2开关元件37的连接点(第1连接点)连接,初级绕组40a的另一端与第3开关元件38和第4开关元件39的连接点(第2连接点)连接。变压器40的第1次级绕组40b和第2次级绕组40c串联连接。第1二极管41的阳极与变压器40的第1次级绕组40b连接,第2整流二极管42的阳极与变压器40的第2次级绕组40c连接。第1整流二极管41的阴极和第2整流二极管42的阴极相互直接连接。
电感元件43和平滑电容器44串联连接,由电感元件43和平滑电容器44的串联电路构成平滑电路。该平滑电路的一端与变压器40的第1次级绕组40b和第2次级绕组40c的连接点连接。平滑电路的另一端与第1整流二极管41和第2整流二极管42的连接点连接。平滑电容器44的两端与输出端子8a、8b连接,输出平滑电容器44的两端的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
如上所述,实施例3的开关电源装置使用绝缘型的变压器40,由具有多个开关元件的全桥式转换器构成。
第1电阻11与变流器3的次级绕组3b并联连接,二极管12将在变流器3的次级绕组3b中感应的电流整流,在第2电阻13的两端,发生与流过变流器3的初级绕组3a的电流成正比的电压。
以上说明的实施例3的结构,与上述实施例2的开关电源装置的过电流保护电路的结构实际上相同。
第3电阻60和第4电阻61的串联电路与第2电阻13的两端连接,将在第2电阻13上发生的电压分压。第1电容器62与第4电阻61并联连接,吸收在第2电阻13上发生的峰值电压。
第5电阻63的一端与第1连接点连接,第6电阻64的一端与第2连接点连接。各个电阻63、64的另一端相互直接连接。由第5电阻63、第6电阻64和第2电容器65将第1连接点和第2连接点的电压进行平均化处理,在第2电容器65的两端发生与输出电压Vout成正比的电压NVout/2。
第7电阻66的一端与第1连接点连接,第2二极管67与第7电阻66的另一端连接。另外,第2二极管67、第3二极管68、第4二极管69和第8电阻70串联连接。在第1开关元件36为导通状态时,在第1连接点发生的输入电压Vin由第7电阻66和第8电阻70分压。第2~4二极管67~69是为了修正后面所述的晶体管和二极管的正向电压而设置的。
第1晶体管71使由第7电阻66和第8电阻70分压的电压实现低阻抗化后而输出。与第1晶体管71的发射极连接的第5二极管72在第1开关元件36为截止状态时反向旁路,阻止反向电流。与第5二极管72的阴极连接的第9电阻73与第2晶体管74的发射极连接。并且,在第1开关元件36为导通状态时,由第9电阻73将分压的电压与和输出电压成正比的电压NVout/2的差值电压变换为电流,从第2晶体管74的集电极输出。
这里,第2~第5二极管67、68、69、72中的电压降、第1晶体管71的正向旁路的基极-发射极间电压和第2晶体管74的正向旁路的基极-发射极间电压分别相等,设该电压为Vpn,并假定第1晶体管71和第2晶体管74的电流放大倍数非常大。这样假定时,则第1晶体管71的基极电压成为Vin/2+3Vpn,加到第9电阻73上的电压取消了Vpn,成为Vin/2-NVout/2。因此,仅在第1开关元件36处于导通状态的期间,(Vin-NVout)/2Rx的电流流过第2晶体管74的集电极。这里,设第9电阻73的电阻值为Rx。
和上述一样的电路结构也与第2连接点连接。第10电阻75与第2连接点连接,第6二极管76、第7二极管77、第8二极管78和第11电阻79与该第10电阻75串联连接。第9二极管81与第3晶体管80的发射极连接,第9二极管81的阴极通过第12电阻82与第4晶体管83的发射极连接。在第3开关元件38为导通状态的期间,如上述说明的那样,(Vin-NVout)/2Rx的电流流入第4晶体管83的集电极。但是,这里假定第12电阻82的电阻值是与第9电阻73的电阻值Rx相同。
与第2晶体管74和第4晶体管83的集电极连接的第13电阻84和第3电容器85将第2晶体管74和第4晶体管83的集电极电流相加,进行平均化处理。这样,通过将集电极电流进行平均化处理,可以得到与第1开关元件36和第3开关元件38导通期间的占空比D相应的电压D·Ry(Vin-NVout)/2Rx。但是,这里Ry表示第13电阻84的电阻值。
上述得到的电压D·Ry(Vin-N·Vout)/2Rx通过第5晶体管86和第14电阻87形成与该电压成正比的电流,对在第2电阻13中发生的电流信号进行修正。
如图6所示,在实施例3的开关电源装置的过电流保护电路中设置了控制电路88。控制电路88在通常动作时向第1驱动电路54和第2驱动电路55输出PWM信号,使在输出端子8a、8b上发生的输出电压保持一定。并且,控制电路88在输出端子8a、8b的电压大于一定电压时就瞬时地驱动控制第1驱动电路54和第2驱动电路55,使第1~第4开关元件36、37、38、39截止。
第1驱动电路54根据控制电路88的PWM信号控制第1开关元件36的通断动作,另外,控制第2开关元件37的通断动作,使之与第1开关元件36相辅的进行通断动作。第2驱动电路55根据控制电路88的通断比控制第3开关元件38的通断动作,另外,库第4开关元件39的通断动作,使之与第3开关元件38相辅的进行通断动作。
上述结构的实施例3的开关电源装置的过电流保护电路对检测的电流峰值可以利用与占空比D相应的电压D·Ry(Vin-NVout)/2Rx的值成正比的电流值进行修正,所以,可以得到与上述实施例1和实施例2相同的效果。
实施例4.
下面,参照图7说明本发明实施例4的开关电源装置的过电流保护电路。图7是表示实施例4的开关电源装置的过电流保护电路的结构的电路图。在图7中,功能和结构与上述实施例1的过电流保护电路的部件相同的部件标以相同的符号,并省略其说明。
在实施例4的开关电源装置的过电流保护电路中,与上述图1所示的实施例1的过电流保护电路不同的地方是,实施例4的基本电路结构是绝缘型的全桥式转换器、输出电压的检测方法不同和修正方法不同。
在图7中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成,与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。变流器3的初级绕组3a的另一端与变压器100的一方的初级绕组100a连接。变压器100具有初级绕组100a和次级绕组100b以及辅助绕组100c。变压器100的初级绕组100a通过开关元件4与另一方的输入端子2b连接。第1整流二极管101和平滑电容器7的串联电路与变压器100的次级绕组100b连接。平滑电容器7的两端分别与输出端子8a、8b连接。
图8表示流经变压器100的初级绕组100a的电流I1及流经次级绕组100b的电流I2的波形图。
在开关元件4为导通状态时,输入电压Vin通过变流器3的初级绕组3a加到变压器100的初级绕组100a上,积蓄励磁能量。在开关元件4为截止状态时,积蓄的励磁能量通过变压器100的次级绕组100b和整流二极管101,由平滑电容器7进行放电。这时,在变流器3的初级绕组3a上发生的电压,如上述实施例1所示的那样,设定为非常低的值。
平滑电容器7的两端与输出端子8a、8b连接,输出平滑电容器7的两端的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
第1电阻11与变流器3的次级绕组3b并联连接,二极管12将在变流器3的次级绕组3b中感应的电流整流,在第2电阻13的两端,发生与流过变流器3的初级绕组3a的电流成正比的电压。
由第3电阻16、第4电阻17、第5电阻18、第6电阻19、电容器20和运算电路106构成的修正电压发生电路与第2电阻13连接。比较电路15和基准电源14与该修正电压发生电路连接。
第2整流二极管102、第2平滑电容器103和第2负荷104与变压器100的辅助绕组100c连接。第2整流二极管102在开关元件4为截止状态时使在变压器100的辅助绕组100c上发生的电压在第2平滑电容器103上累积。第2负荷104模拟例如控制电路105的电力消耗。控制电路105与输出端子8a、8b连接,检测输出状态,进行开关元件4的通断控制。
在上述结构的过电流保护电路中,在整流二极管101为导通状态时,输出电压Vout加到变压器100的次级绕组100b上,在变压器100的辅助绕组100c上发生与输出电压Vout成正比的电压。向第2平滑电容器103充电,所以,在第2平滑电容器103上发生的电压成为与输出电压Vout成正比的电压。这样,在第2平滑电容器103上发生的电压就由第3电阻16和第4电阻17分压,形成与输出电压Vout成正比的电压Vo。
在图7所示的修正电压发生电路中,运算电路106根据后面所述的理论公式,使用与输出电压Vout成正比的电压Vo和与占空比D成正比的电压Vd将由第2电阻13发生的电压Vs进行变换。运算电路106的输出信号输入比较电路15,使变换后的电压的峰值保持一定。
在通常状态下,控制电路105决定开关元件4的通断比,向开关元件4输出通断信号,使输出端子8a、8b的电压稳定。在过电流时,控制电路105根据比较电路15的输出,发生通断信号,并向开关元件4输出。
下面,说明上述结构的实施例4的过电流保护电路的动作。首先,导出流过开关元件4的电流的峰值Ip与输出电流Iout的关系。输出电流Iout利用整流二极管101为导通状态时的变压器100的励磁电流的平均值Im给出,由以下的式(11)表示。
Iout=(1-D)Im                             (11)
即,平均值Im可以表为式(12)。
I m = I out ( 1 - D ) - - - ( 12 )
变压器100的励磁电流的变化幅度ΔIm由以下的式(13)表示。在式(13)中,Vin是输入电压,Ton是开关元件4的导通期间,Lm是变压器100的电感值。
ΔI m = V in T on L m - - - ( 13 )
因此,励磁电流的峰值即流过开关元件4的电流的峰值Ip可以表为下式(14)。
I p = I m + Δ I m 2 = I out ( 1 - D ) + V in T on 2 L m - - - ( 14 )
于是,输出电流Iout可以表为以下的式(15)。
I out = ( 1 - D ) I p + ( 1 - D ) V in T on 2 L m
= ( 1 - D ) ( I p + V in D 2 L m T s ) = ( 1 - D ) ( I p + V out ( 1 - D ) 2 L m T s ) - - - ( 15 )
但是,全桥式转换器的输入输出变换比由以下的式(16)表示。
NV out = D ( 1 - D ) V in - - - ( 16 )
因此,通过按照式(14)变更基准电压或对开关电流的检测波形进行式(15)所示的运算,将其峰值限制为一定,便可构成恒定电流特性的过电流保护电路。
在实施例4中使用的过电流保护电路的修正方法,在开关元件4的导通期间Ton将输入电压加到磁性部件(变压器100)上,积蓄能量,在截止期间Toff从磁性部件中取出能量,利用式(15)所示的修正式便可进行修正。
上述结构的实施例4的开关电源装置的过电流保护电路可以对检测的电流的峰值Ip适当地进行修正,所以,具有和上述实施例1、2及3相同的效果。
实施例5.
下面,参照图9说明本发明实施例5的开关电源装置的过电流保护电路。图9是表示实施例5的开关电源装置的过电流保护电路的结构的电路图。在图9中,功能和结构与上述实施例1的过电流保护电路的部件相同的部件标以相同的符号,并省略其说明。
在实施例5的开关电源装置的过电流保护电路中,与上述图1所示的实施例1的过电流保护电路不同的地方是,由于在实施例5中使用的修正式不同,所以,进行修正的电路结构也不同。
在图9中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成。该输入直流电源1与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。开关元件4的一端与变流器3的初级绕组3a的另一端连接。开关元件4的另一端与整流二极管5的阴极和电感元件6的一端连接。这样连接的开关元件4根据后面所述的控制电路10的控制信号反复进行通断动作。整流二极管5的阳极与另一方的输入端子2b连接。
如图9所示,电感元件6和平滑电容器7串联连接,构成串联电路,该串联电路与整流二极管5的两端连接,构成平滑电路。该平滑电路将在整流二极管5的两端发生的矩形波电压进行平均化处理,形成直流电压。
从图9所示的实施例5的开关电源装置的过电流保护电路的输出端子8a、8b输出由平滑电容器7进行了平均化处理的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
控制电路10检测输出端子8a、8b的电压,发生控制开关元件4的通断比的控制信号,使之输出稳定的电压。第1电阻11与变流器3的次级绕组3b并联连接,在开关元件4截止的期间,励磁电流流过变流器3的次级绕组3b,消耗变流器3的励磁能量。
二极管12将在变流器3的次级绕组3b中感应的电流进行整流。第2电阻13实时的发生与流过变流器3的初级绕组3a的电流成正比的电压。
在开关元件4为导通状态时,流过变流器3的初级绕组3a的电流变换为与变流器3的圈数比相应的电流,并通过二极管12流入第2电阻13。这样,在第2电阻13的两端就发生与流过变流器3的初级绕组3a的电流成正比的电压Vs。
在第2电阻13的两端发生的电压Vs与后面所述的修正电压发生电路94的电压相加后,输入比较电路15的一边的端子。基准电源14的基准电压输入比较电路15的另一边的端子。由修正电压发生电路94修正过的电压与基准电压在比较电路15中进行比较。在修正过的电压达到基准电压时,就通过控制电路10使开关元件4截止。
下面,说明实施例5的修正电压发生电路94的结构。
在修正电压发生电路94中,输出电压Vout由第3电阻16和第4电阻17进行分压,形成电压Vo。另外,由第5电阻18、第6电阻19和电容器20将作为控制电路10的通断信号的控制信号进行平均化处理,形成与通断比(占空比)D成正比的电压Vd。
另外,输入电压Vin由第9电阻89和第10电阻90进行分压,形成电压Vi。
另外,由第7电阻22、第8电阻25、第11电阻91、第12电阻92和运算放大器26构成差动放大电路,形成电压(Vi-Vo)。
电压Vd和差动放大电路的输出(Vi-Vo)输入乘法器21,计算其乘积Vd×(Vi-Vo)。
加法器93计算在第2电阻13上发生的电压Vs与从乘法器21输出的电压的反相信号的和,并向比较电路15输出。加法器93的输出和基准电源14的基准电压Vr输入比较电路15。比较电路15将电压Va与基准电压Vr进行比较,决定开关元件4的截止时刻。
下面,说明上述结构的实施例5的开关电源装置的过电流保护电路的动作。
根据开关元件4的通断动作,输入电压Vin变换为输出电压Vout的动作与实施例1的开关电源装置相同,所以,省略其动作的说明。同样,根据第2电阻13的两端的电压,可以实时的检测流过开关元件的电流。
这时,输出电流Iout与开关电流的峰值电流的关系,在上述实施例1中已说明了由式(7)表示。这里,如果使用式(5),可知式(7)与以下的式(17)等价。
I out = I p - V out ( 1 - D ) T s 2 L f = I p - ( T s 2 L f ) ( V in - V out ) D - - - ( 17 )
即,可知输出电压可以取将与由式(17)的第2项的修正函数得到的修正电流相当的修正电压与基准电压Vr相加的值,或者可以取和实际检测的电流波形成正比的电压Vs与和式(17)的第2项的修正电流的值相当的修正电压的差值。
由图9所示的过电流保护电路的修正电压发生电路94得到的修正信号表示式(17)的第2项所示的修正值,由此可知,可以得到所需要的修正量。用这样的电路结构计算修正量,由式(17)得到的修正量在本质上与由式(6)得到的修正量相同,所以,可以得到与实施例1相同的效果。
在实施例5中,以降压型的转换器为例进行了说明,但是,本发明也可以用在上述实施例2中所示的全桥式转换器为代表的正向转换器等绝缘型转换器构成。即,只要是具有与电感元件和平滑电容器相当的结构要素的平滑电路并将矩形波电压进行平均化处理从而形成输出电压的结构,设变压器的圈数比为N时,通过用修正式使与Vout相当的项成为N×Vout,就可以进行修正。这样的结构具有和上述实施例5相同的效果。
实施例6.
下面,参照图10说明本发明实施例6的开关电源装置的过电流保护电路。图10是表示实施例6的开关电源装置的过电流保护电路的结构的电路图。在图10中,功能和结构与上述实施例1的过电流保护电路的部件相同的部件标以相同的符号,并省略其说明。
在实施例6的开关电源装置的过电流保护电路中,与上述图1所示的实施例1的过电流保护电路不同的是,由于在实施例6中使用的修正式不同,所以,进行修正的电路结构也不同。
在图10中,输入直流电源1由将商用电源进行整流平滑处理的电路或电池构成。该输入直流电源1与输入端子2a、2b连接。变流器3具有初级绕组3a和次级绕组3b,初级绕组3a的一端与输入端子2a、2b的一方(2a)连接。开关元件4的一端与变流器3的初级绕组3a的另一端连接。开关元件4的另一端与整流二极管5的阴极和电感元件6的一端连接。这样的连接的开关元件4根据后面所述的控制电路10的控制信号反复进行通断动作。整流二极管5的阳极另一方的输入端子2b连接。
如图10所示,电感元件6和平滑电容器7串联连接,构成串联电路,该串联电路与整流二极管5的两端连接,构成平滑电路。该平滑电路将在整流二极管5的两端发生的矩形波电压进行平均化处理,形成直流电压。
从图10所示的实施例6的开关电源装置的过电流保护电路的输出端子8a、8b输出由平滑电容器7进行了平均化处理的电压。负荷9与输出端子8a、8b连接,消耗开关电源装置的过电流保护电路的电力。
控制电路10检测输出端子8a、8b的电压,发生控制开关元件4的通断比的控制信号,使其输出稳定的电压。第1电阻11与变流器3的次级绕组3b并联连接,在开关元件4截止的期间,励磁电流流过变流器3的次级绕组3b,消耗变流器3的励磁能量。
二极管12将在变流器3的次级绕组3b中感应的电流进行整流。第2电阻13实时地发生与流过变流器3的初级绕组3a的电流成正比的电压。
在开关元件4为导通状态时,流过变流器3的初级绕组3a的电流变换为与变流器3的圈数比相应的电流后,通过二极管12流入第2电阻13。这样,在第2电阻13的两端就发生与流过变流器3的初级绕组3a的电流成正比的电压Vs。
计算在第2电阻13的两端发生的电压Vs与后面所述的修正电压发生电路95的电压之差,并输入比较电路15的一边的端子。基准电源14的基准电压输入比较电路15的另一边的端子。由修正电压发生电路95修正过的电压和基准电压在比较电路15中进行比较。在修正过的电压达到基准电压时,就通过控制电路10使开关元件4截止。
下面,说明实施例6的修正电压发生电路95的结构。
实施例6的修正电压发生电路95,与上述实施例1的修正电压发生电路基本上相同。在修正电压发生电路95中,输出电压Vout由第3电阻16和第4电阻17进行分压,形成电压Vo。另外,由第5电阻18、第6电阻19和电容器20将作为控制电路10的通断信号的控制信号进行平均化处理,形成与通断比(占空比)D成正比的电压Vd。在图10中,除了第11电阻89和第12电阻90外,和图1的修正电压发生电路相同,所以,在修正电压发生电路95中形成式(7)所示的修正信号。
在实施例6中,输入电压Vin由第11电阻89和第12电阻90进行分压,形成电压Vi。
另外,通过调整第9电阻24的电阻值,将Vi和Vo加到运算放大器26上,可以将与电压Vi-Vo成正比的信号作为误差信号。
下面,说明上述结构的实施例6的开关电源装置的过电流保护电路的动作。
根据开关元件4的通断动作而输入电压Vin变换为输出电压Vout的动作与上述实施例1的开关电源装置相同,所以,这里省略其说明。和实施例1一样,根据第2电阻13的两端的电压可以实时的检测流过开关元件的电流。
如在实施例1中说明的那样,这时,开关电流的峰值电流由式(6)的第2项表示。
在以上的各实施例中,比较电路15、控制电路10和开关元件4的延迟时间与开关周期相比非常小,作为可以不考虑的情况来说明的。但是,在该延迟时间不能忽略时,即使修正过的电流信号达到了基准电压,流过开关元件4的电流也不能瞬时地截止,所以,开关电流的峰值与延迟时间Td对应地增加Td×(Vin-Vout)/Lf。为了与该峰值电压的增加对应,在实施例6中,通过增加预先增加的电流部分的修正量而降低过电流水平来进行对应。即,通过电阻将输入电压Vin加到运算放大器26的正输入端子上,同时通过电阻将输出电压Vout加到负输入端子上,可以得到与(Vin-Vout)的值成正比的修正量。通过这样处理,即使考虑了一定的延迟时间,也可以使过电流蓄特性保持一定。
图11是表示本发明实施例6的其他结构的开关电源装置的过电流保护电路的电路图。在该开关电源装置的过电流保护电路的的修正电压发生电路940中,倍增器300和加法器301设置在运算放大器26的输出侧。
下面,说明图11所示的修正电压发生电路940的结构。
在修正电压发生电路940中,和图10的修正电压发生电路95一样,输出电压Vout由第3电阻16和第4电阻17进行分压,形成电压Vo。另外,由第5电阻18、第6电阻19和电容器20将作为控制电路10的通断信号的控制信号进行平均化处理,形成与通断比(占空比)D成正比的电压Vd。
另外,输入电压Vin由第9电阻89和第10电阻90进行分压,形成电压Vi。由第7电阻22、第8电阻25、第11电阻91、第12电阻92和运算放大器26构成差动放大电路,形成电压(Vi-Vo)。
电压Vd和差动放大电路的输出(Vi-Vo)输入乘法器21,计算其乘积Vd×(Vi-Vo)。另外,差动放大电路的输出(Vi-Vo)输入倍增器300,倍增恒定的倍数后,向加法器301输出。乘法器21的输出电压Vd×(Vi-Vo)输入加法器301,与(Vi-Vo)相加。
加法器93计算在第2电阻13上发生的电压Vs与从加法器301输出的电压的反相信号的和,并向比较电路15输出。
加法器93的输出和基准电源14的基准电压Vr输入比较电路15。比较电路15将电压Va与基准电压Vr进行比较,决定开关元件4的截止时刻。
在上述结构的图11的开关电源装置的过电流保护电路中,根据开关元件4的通断动作,输入电压Vin变换为输出电压Vout的动作和实施例1的开关电源装置相同。因此,在该实施例中,输入电压Vin和输出电压Vout发生变化而过电流保护电路动作时,具有输出电流不增加、控制为一定的效果。
在上述实施例5中已表示出了,但是,在实施例6中也可以用以全桥式转换器为代表的正向转换器等绝缘型转换器构成。即,只要是具有与电感元件和平滑电容器相当的结构要素的平滑电路并将矩形波电压进行平均化处理从而形成输出电压的结构,设变压器的圈数比为N时,通过利用修正式使与Vout相当的项成为N×Vout,便可进行修正。这样的结构具有上述实施例6相同的效果。
根据以上对实施例详细的说明可知,本发明具有以下的效果。
按照本发明,可以使过电流保护电路动作时的输出电流与输入电压Vin和输出电压Vout的变化无关地保持一定,所以,可以提供安全而稳定的开关电源装置。
本发明解决了先有的过电流保护电路中的各种问题,特别是在电路元件的电感小的电路中,即使输入电压或输出电压变化时也可以将输出电流限制为一定,从而可以提供可以稳定而可靠地进行过电流保护的安全性高的开关电源装置的过电流保护电路。
以上,以某种程度的详细性就极好的实施例说明了本发明,但是,这些极好的实施例展示的内容,在结构的细部方面是变化的,各要素的组合及顺序的变化只要不脱离本发明的范围和思想就可以实现。

Claims (7)

1.一种开关电源装置,其特征在于:具有通过通断动作将输入电压形成为矩形波电压的开关电路、利用电感元件和电容器对上述矩形波电压进行平滑处理而形成输出电压的平滑电路和检测流过上述开关电路的电流的峰值电流而进行输出电流的限制的过电流保护电路,上述过电流保护电路具有:将开关电路的通断比和输出电压相乘的乘法器,算出与所述乘法器的乘积值和输出电压的差成比例的误差信号的差动放大电路,将检测出的峰值电流与所述误差信号相加、与基准值比较的比较器,以及根据所述比较器的比较结果通断控制所述开关电路并将输出电流控制为恒定的控制电路。
2.按权利要求1所述的开关电源装置,其特征在于:所述过电流保护电路还具有保持与所检测的峰值电流成比例的峰值电压的峰值电压保持电路,所述峰值电压保持电路的输出与误差信号相加。
3.按权利要求1所述的开关电源装置,其特征在于:所述控制电路根据所述比较器的比较结果开关控制所述开关电路,同时根据与输入电压和输出电压的差成比例的值开关控制所述开关电路。
4.一种开关电源装置,其特征在于:包括通过通断动作将输入电压形成为矩形波电压的开关电路、具有所述开关电路连接的初级绕组和与输出端子连接的次级绕组的变压器、与上述次级绕组连接的利用整流单元和电感元件以及电容器进行整流平滑处理从而形成输出电压的输出电压形成电路和检测流过上述开关电路的电流的峰值电流而进行输出电流的限制的过电流保护电路,上述过电流保护电路具有:将开关电路的通断比和输出电压相乘的乘法器,算出与所述乘法器的乘积值和输出电压的差成比例的误差信号的差动放大电路,将检测出的峰值电流与所述误差信号相加、与基准值比较的比较器,以及根据所述比较器的比较结果通断控制所述开关电路并将输出电流控制为恒定的控制电路。
5.按权利要求4所述的开关电源装置,其特征在于:开关电源装置由全桥式转换器构成。
6.一种开关电源装置,其特征在于:具有:包括交替地反复进行通断动作的第1开关电路和第2开关电路,所述第1开关电路和第2开关电路通过第1连接点串联连接的第1串联电路;包括交替地反复进行通断动作的第3开关电路和第4开关电路,所述第3开关电路和第4开关电路通过第2连接点串联连接的第2串联电路;具有连接在上述第1连接点与上述第2连接点之间的初级绕组的变压器;用于驱动控制所述第1串联电路的所述所述第1开关电路和第2开关电路与所述第2串联电路的所述第3开关电路和第4开关电路以将矩形波电压加到上述变压器的初级绕组上的驱动电路;将在上述变压器的次级绕组上感应的电压进行整流的整流电路;利用电感元件和电容器将上述整流电路的矩形波电压进行平滑处理而输出的平滑电路;以及在上述第1连接点和地之间串连连接多个电阻、将所述第1连接点的电压分压、将所分压的电压通过电容器平均化而形成与输出电压成比例的电压的校正电压发生电路。
7.按权利要求6所述的开关电源装置,其特征在于:所述校正电压发生电路在上述第2连接点和地之间串连连接多个电阻、将所述第2连接点的电压分压、将所分压的电压通过电容器平均化而形成与输出电压成比例的电压,并且,所述第1开关电路或者所述第3开关电路为导通状态时,将所述第1连接点相关的平均电压或者第2连接点相关的平均电压和与通断比成比例的电压相乘、该乘得的电压和所述平均电压的差成为校正电压。
CNB021033390A 2001-01-31 2002-01-31 开关电源装置 Expired - Fee Related CN1260876C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24465/01 2001-01-31
JP2001024465 2001-01-31

Publications (2)

Publication Number Publication Date
CN1369953A CN1369953A (zh) 2002-09-18
CN1260876C true CN1260876C (zh) 2006-06-21

Family

ID=18889602

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021033390A Expired - Fee Related CN1260876C (zh) 2001-01-31 2002-01-31 开关电源装置

Country Status (4)

Country Link
US (1) US6646848B2 (zh)
EP (1) EP1229634B1 (zh)
CN (1) CN1260876C (zh)
DE (1) DE60210217T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672897B (zh) * 2019-01-18 2019-09-21 宏碁股份有限公司 電壓轉換器

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710700B2 (en) * 2005-01-10 2010-05-04 Linear Technology Corporation DC/DC converter with current limit protection
WO2008012722A2 (en) * 2006-07-21 2008-01-31 Philips Intellectual Property & Standards Gmbh Determining output voltage or current in an smps
US7667408B2 (en) * 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US7804256B2 (en) * 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US8723438B2 (en) * 2007-03-12 2014-05-13 Cirrus Logic, Inc. Switch power converter control with spread spectrum based electromagnetic interference reduction
US8076920B1 (en) 2007-03-12 2011-12-13 Cirrus Logic, Inc. Switching power converter and control system
US8018171B1 (en) 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US7817391B2 (en) * 2007-04-26 2010-10-19 Polar Semiconductor, Inc. Over-current protection device for a switched-mode power supply
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US8102127B2 (en) 2007-06-24 2012-01-24 Cirrus Logic, Inc. Hybrid gas discharge lamp-LED lighting system
US8576589B2 (en) 2008-01-30 2013-11-05 Cirrus Logic, Inc. Switch state controller with a sense current generated operating voltage
US8022683B2 (en) 2008-01-30 2011-09-20 Cirrus Logic, Inc. Powering a power supply integrated circuit with sense current
US8008898B2 (en) 2008-01-30 2011-08-30 Cirrus Logic, Inc. Switching regulator with boosted auxiliary winding supply
US8008902B2 (en) 2008-06-25 2011-08-30 Cirrus Logic, Inc. Hysteretic buck converter having dynamic thresholds
US8344707B2 (en) 2008-07-25 2013-01-01 Cirrus Logic, Inc. Current sensing in a switching power converter
US8212491B2 (en) 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8330434B2 (en) 2008-07-25 2012-12-11 Cirrus Logic, Inc. Power supply that determines energy consumption and outputs a signal indicative of energy consumption
US8487546B2 (en) * 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
US8222872B1 (en) 2008-09-30 2012-07-17 Cirrus Logic, Inc. Switching power converter with selectable mode auxiliary power supply
US8179110B2 (en) 2008-09-30 2012-05-15 Cirrus Logic Inc. Adjustable constant current source with continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operation
US8288954B2 (en) * 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
US8299722B2 (en) 2008-12-12 2012-10-30 Cirrus Logic, Inc. Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US8362707B2 (en) * 2008-12-12 2013-01-29 Cirrus Logic, Inc. Light emitting diode based lighting system with time division ambient light feedback response
US7994863B2 (en) * 2008-12-31 2011-08-09 Cirrus Logic, Inc. Electronic system having common mode voltage range enhancement
US8482223B2 (en) 2009-04-30 2013-07-09 Cirrus Logic, Inc. Calibration of lamps
US8198874B2 (en) * 2009-06-30 2012-06-12 Cirrus Logic, Inc. Switching power converter with current sensing transformer auxiliary power supply
US8212493B2 (en) * 2009-06-30 2012-07-03 Cirrus Logic, Inc. Low energy transfer mode for auxiliary power supply operation in a cascaded switching power converter
US8248145B2 (en) 2009-06-30 2012-08-21 Cirrus Logic, Inc. Cascode configured switching using at least one low breakdown voltage internal, integrated circuit switch to control at least one high breakdown voltage external switch
US8963535B1 (en) 2009-06-30 2015-02-24 Cirrus Logic, Inc. Switch controlled current sensing using a hall effect sensor
TWI384736B (zh) * 2009-07-15 2013-02-01 Delta Eletronics Inc 具電流檢測電路之無橋功率因數校正電路系統及其方法
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US9178415B1 (en) 2009-10-15 2015-11-03 Cirrus Logic, Inc. Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter
CN102055315B (zh) * 2009-10-30 2013-12-04 万国半导体(开曼)股份有限公司 电感式转换装置及能量控制方法
US8654483B2 (en) 2009-11-09 2014-02-18 Cirrus Logic, Inc. Power system having voltage-based monitoring for over current protection
JP5457927B2 (ja) * 2010-04-23 2014-04-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 発光素子の制御回路
US8536799B1 (en) 2010-07-30 2013-09-17 Cirrus Logic, Inc. Dimmer detection
US8569972B2 (en) 2010-08-17 2013-10-29 Cirrus Logic, Inc. Dimmer output emulation
US8729811B2 (en) 2010-07-30 2014-05-20 Cirrus Logic, Inc. Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element
JP5306306B2 (ja) 2010-10-19 2013-10-02 オムロンオートモーティブエレクトロニクス株式会社 スイッチング電源装置
CN102591390B (zh) * 2011-01-17 2013-12-25 产晶集成电路股份有限公司 电源侦测调节装置
WO2013090852A2 (en) 2011-12-14 2013-06-20 Cirrus Logic, Inc. Adaptive current control timing and responsive current control for interfacing with a dimmer
JP5891940B2 (ja) * 2012-05-17 2016-03-23 富士電機株式会社 3レベルユニットインバータ
CN103809007A (zh) * 2012-11-13 2014-05-21 中兴通讯股份有限公司 无桥pfc电路电感电流采样装置及方法
WO2014176721A1 (en) * 2013-04-28 2014-11-06 Tridonic Gmbh & Co Kg Regulator, buck converter and controlling method
KR20150071575A (ko) * 2013-12-18 2015-06-26 엘에스산전 주식회사 Ldc의 입력 전류 정보를 이용한 ldc 제어 장치
CN103812374B (zh) * 2013-12-30 2016-01-27 扬州双鸿电子有限公司 一种全桥逆变器桥臂功率开关管过流保护电路
US9161401B1 (en) 2014-03-20 2015-10-13 Cirrus Logic, Inc. LED (light-emitting diode) string derived controller power supply
CN104779583B (zh) * 2015-04-30 2017-09-29 西安科技大学 开关电源电压型输出短路保护电路的设计方法
CN105186459B (zh) * 2015-09-30 2018-03-06 广州金升阳科技有限公司 一种开关电源的输出短路保护方法及电路
JP6436177B2 (ja) * 2017-02-17 2018-12-12 サンケン電気株式会社 スイッチング電源装置
CN107528450A (zh) * 2017-08-29 2017-12-29 深圳市稳先微电子有限公司 电压比较器、控制芯片及开关电源
US10123384B1 (en) 2017-09-22 2018-11-06 Linear Technology Holding, LLC LED dimming
US10201052B1 (en) * 2017-09-22 2019-02-05 Linear Technology Holding, LLC LED dimming
US10136488B1 (en) 2017-10-05 2018-11-20 Linear Technology Holding, LLC LED dimming
JP6906566B2 (ja) * 2019-06-20 2021-07-21 三菱電機株式会社 電力変換装置
CN115664204B (zh) * 2022-12-22 2023-04-07 珠海智融科技股份有限公司 开关电源电路、电源设备及开关电源控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1287103C (en) * 1986-04-22 1991-07-30 Jim Pinard Cmos latch-up recovery circuit
US4819117A (en) * 1987-08-25 1989-04-04 Trw Inc. Method and apparatus for detecting excessive current draw in an electrical load
US4763014A (en) * 1987-09-21 1988-08-09 American Telephone And Telegraph Company, At&T Bell Laboratories Backup protection switch to prevent reverse power flow in a UPS
US4891744A (en) * 1987-11-20 1990-01-02 Mitsubishi Denki Kaubshiki Kaisha Power converter control circuit
US4974141A (en) * 1988-05-18 1990-11-27 Viteq Corporation AC to DC power converter with input current waveform control for buck-boost regualtion of output
JPH0783587B2 (ja) 1990-10-12 1995-09-06 東洋電機製造株式会社 Dc―dcコンバータの過電流制限方法
FR2674074A1 (fr) * 1991-03-14 1992-09-18 Telemecanique Procede et dispositif pour la protection contre les surcharges, d'un circuit de conversion electrique.
US5734259A (en) * 1995-09-29 1998-03-31 Cherry Semiconductor Corporation Balanced delta current method for current control in a hysteretic power supply
US6031749A (en) * 1999-03-31 2000-02-29 Vari-Lite, Inc. Universal power module
JP3446654B2 (ja) * 1999-04-02 2003-09-16 株式会社村田製作所 スイッチング電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672897B (zh) * 2019-01-18 2019-09-21 宏碁股份有限公司 電壓轉換器

Also Published As

Publication number Publication date
US6646848B2 (en) 2003-11-11
DE60210217D1 (de) 2006-05-18
DE60210217T2 (de) 2006-11-16
EP1229634A2 (en) 2002-08-07
US20020131224A1 (en) 2002-09-19
EP1229634A3 (en) 2003-11-26
CN1369953A (zh) 2002-09-18
EP1229634B1 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
CN1260876C (zh) 开关电源装置
CN1054240C (zh) 脉宽调制控制变换器的控制装置
CN1316821A (zh) 电力变换装置
CN1101293C (zh) 用于电阻焊机的控制装置
CN1175553C (zh) 电源装置和使用该电源装置的空气调节器
CN1280976C (zh) 开关电源装置
CN1183654C (zh) 电源装置及使用了该电源的空调机
CN1701496A (zh) 功率因数改善电路
CN1088282C (zh) 电力变换装置
CN101056067A (zh) 开关电源电路
CN1521930A (zh) 开关电源装置
CN1302610C (zh) Dc-dc变换器
CN1407701A (zh) 开关电源装置
CN1783686A (zh) 用于抑制有源变换器中的二次谐波电流的方法和装置
CN101039080A (zh) 开关电源电路
CN1595759A (zh) 电池充电控制电路、电池充电设备和电池充电控制方法
CN1543057A (zh) 驱动电动机的逆变控制器和使用逆变控制器的空气调节机
CN1318896A (zh) 开关电源电路
CN1531179A (zh) 功率变换装置和电源装置
CN1374752A (zh) 电动机控制装置
CN101060285A (zh) 一种实现隔离高频开关dc-dc变换的系统及方法
CN1578078A (zh) 串联交错升压变换器功率因数校正电源
CN1241317A (zh) 功率转换装置以及使用它的空调机
CN1482727A (zh) 直流—直流变换器
CN1759525A (zh) 开关电源设备

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060621

Termination date: 20140131