CN1223999C - 磁电阻传感器及其制造方法 - Google Patents

磁电阻传感器及其制造方法 Download PDF

Info

Publication number
CN1223999C
CN1223999C CNB021058016A CN02105801A CN1223999C CN 1223999 C CN1223999 C CN 1223999C CN B021058016 A CNB021058016 A CN B021058016A CN 02105801 A CN02105801 A CN 02105801A CN 1223999 C CN1223999 C CN 1223999C
Authority
CN
China
Prior art keywords
electrode layer
insulation
layer
lower electrode
conductting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021058016A
Other languages
English (en)
Other versions
CN1417774A (zh
Inventor
菅原贵彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1417774A publication Critical patent/CN1417774A/zh
Application granted granted Critical
Publication of CN1223999C publication Critical patent/CN1223999C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及一种磁电阻传感器及其制造方法,该磁电阻传感器包括:下电极层;由绝缘体基体和分散布置在所述绝缘体基体内的多个纳米管组成的纳米管结构膜;在纳米管结构膜上设置的磁电阻膜;以及在磁电阻膜上设置的上电极层。每个纳米管都包括圆管形非金属和被圆管形非金属包围的圆柱体金属。纳米管结构膜在其中央区域被局部蚀刻,从而通过磁电阻膜和位于中央区域中的每个纳米管的圆柱体金属而导通上电极层和下电极层。

Description

磁电阻传感器及其制造方法
技术领域
本发明涉及用于磁记录装置如磁盘驱动器和磁带驱动器中的磁电阻传感器。
背景技术
随着近年来磁盘驱动器的尺寸减小和记录密度增大,磁头滑块的浮动高度已变得更低,并且,希望实现接触记录/再现,以便磁头滑块在记录介质上以非常低的高度浮动或者与记录介质接触。而且,常规磁感应头有以下缺陷:随着磁盘记录介质的直径减小导致磁盘圆周速度(磁头和介质之间的相对速度)减小,从而磁感应头的再现输出减少。为了解决此缺陷,近来已广泛开发磁电阻磁头(MR磁头),其再现输出不依赖于所述圆周速度,并且即使在低圆周速度时也能获得大的输出。此种磁电阻磁头现在是主流磁头。进一步地,利用巨磁电阻(GMR)效应的磁头目前在工业上也是可行的。
随着磁盘驱动器记录密度的提高,一个数位的记录面积减少并且介质所产生的磁场也相应地变小。目前市场上磁盘驱动器的记录密度大约为10Gbit/in2,并且正以大约每年200%的速率增加。因此希望开发一种能支持微小磁场范围和能检测较小外部磁场的变化的磁电阻传感器和磁电阻磁头。
目前,利用自旋阀(spin valve)GMR效应的自旋阀磁电阻传感器广泛应用于磁头。在此种具有自旋阀结构的磁电阻传感器中,自由铁磁层(自由层)中的磁化方向被记录介质的信号磁场改变,从而此磁化方向与固定铁磁层(钉轧层)中磁化方向的相对角度改变,导致磁电阻传感器的电阻发生变化。在磁头中使用此磁电阻传感器的情况下,钉轧层中磁化方向固定为磁电阻元件的高度方向,而在不施加外部磁场的条件下自由层中的磁化方向一般设计为磁电阻元件的宽度方向,此方向与钉轧层正交。
相应地,根据磁记录介质的信号磁场方向与钉轧层的磁化方向是平行或是不平行,磁电阻传感器的电阻可线性增加或减小。此种线性电阻变化有利于磁盘驱动器中的信号处理。在常规磁电阻传感器中,检测电流沿与磁电阻元件的膜表面平行的方向通过,读取电阻随外部磁场的变化。在此种CIP(平面内电流)结构的情况中,电流沿与GMR膜表面平行的方向通过,传感器的输出随着由一对电极接线端所确定的传感器区域的减小而降低。进而,在具有CIP结构的自旋阀磁电阻传感器中,要求在GMR膜和上磁屏蔽之间与在GMR膜和下磁屏蔽之间有绝缘膜。
也就是说,上、下磁屏蔽之间的距离等于GMR膜的厚度与每个绝缘膜的两倍厚度之和。目前,绝缘膜的厚度最小为大约20nm。相应地,上、下磁屏蔽之间的距离等于GMR膜的厚度加上大约40nm。然而,由于具有此距离,难以支持减少记录介质上记录位的长度,并且,电流CIP自旋阀磁电阻传感器不能满足磁屏蔽间距减少到40nm或更小的要求。
在这些情况中认为,具有CIP结构的磁头可支持的记录密度最大为20-40Gbit/in2,此CIP结构利用自旋阀GMR效应。即使应用镜面散射最新技术,最大记录密度也才达到60Gbit/in2。如上所述,磁盘驱动器记录密度的增加迅速,希望记录密度到2002年能达到80Gbit/in2。当记录密度变为80Gbit/in2或更高时,考虑到输出和磁屏蔽之间的距离,即使使用采纳最新镜面散射的CIP自旋阀GMR磁头,也非常难以支持此种高记录密度。
对于用于解决上述问题的后自旋阀GMR,已提出隧道MR(TMR)和具有CPP(与平面正交的电流)结构的GMR,以使电流沿与GMR膜表面正交的方向通过。TMR具有在两个铁磁层之间夹有薄绝缘层的结构。通过绝缘层的隧道电流量随着两个铁磁层中的磁化方向而改变。TMR表现出非常大的电阻变化并具有良好的灵敏度,它有望成为有前景的后自旋阀GMR。
另一方面,在具有CPP结构的GMR情况中,输出随着其中通过检测电流的一部分GMR膜的横截面积的减少而增加。CPP结构的此特点是比CIP结构更好的优点。TMR还被认为是一种CPP结构,因为电流从一个铁磁层通过绝缘层到达另一铁磁层。因此,TMR也具有上述优点。
图1示出现有技术中具有CPP结构的磁电阻传感器2的横截面示意图。磁电阻传感器2由下电极层4、绝缘体基体6、磁电阻膜8和上电极层10组成。在绝缘体基体6基本中央的部分上形成接触孔12。磁电阻膜8在接触孔12与下电极层4接触。检测电流从上电极层10向着下电极层4的方向通过磁电阻膜8的接触孔12。
采用适合微观制作的干燥蚀刻形成接触孔12。磁电阻传感器2的输出ΔR和接触孔12的直径D之间的关系表达如下:
ΔR∝1/D2
在信息处理、通讯、磁记录、光学记录等领域中使用的大多数器件中,中间夹有绝缘体的两个导体之间的电连接由在绝缘体中形成的圆孔(接触孔)建立。接触孔一般通过适合器件微观制作的干燥蚀刻而形成。
干燥蚀刻工艺包括:分解等离子体产生的气体,产生诸如离子和原子团的活性物质;使基板暴露在活性物质下,使活性物质和待蚀刻的材料之间发生反应;随后执行构图和去除保护层。然而,由电流干燥蚀刻技术形成的接触孔的最小直径在使用i-线分档器的情况下是200nm,或者在使用FIB(聚焦离子束)的情况下是100nm。在后一情况中,固有的问题是金属原子粘附到侧壁上。
为了提高磁电阻传感器的性能和特性,要求纳米级的微观结构控制,因而需要形成微观接触孔。然而,此种微观接触孔无法由电流干燥蚀刻技术形成。另外,还要求对蚀刻均匀性和图案尺寸的可控制性。
发明内容
因此,本发明的目的是提供一种具有纳米级微观尺寸接触孔的磁电阻传感器。
根据本发明的一个方面,提供一种磁电阻传感器,其中包括:下电极层;设置在所述下电极层上的绝缘/导通层,通过在绝缘层中设置多个圆柱体而形成所述绝缘/导通层,每个所述圆柱体包括管状非金属和被所述管状非金属包围的圆柱体金属;所述绝缘/导通层具有第一区域和膜厚比所述第一区域小的第二区域;在所述绝缘/导通层上设置的磁电阻膜;以及设置在所述磁电阻膜上的上电极层;其中设置在所述第二区域上的所述圆柱体金属与所述下电极层和所述磁电阻膜直接接触。
优选地,管状非金属包含碳,圆柱体金属包含铬。绝缘体由SiO2形成。
根据本发明的还一方面,提供一种用于制造磁电阻传感器的方法,其中包括以下步骤:在衬底上淀积下电极层;在所述下电极层上形成多个圆柱体,每个圆柱体包括管状非金属和被所述管状非金属包围的圆柱体金属;在形成所述多个圆柱体之后,在所述下电极层上淀积绝缘体,从而在所述绝缘体中嵌入所述圆柱体以形成绝缘/导通层;在所述绝缘/导通层上形成抗蚀图形;通过使用所述抗蚀图形作为掩膜而蚀刻所述绝缘/导通层的中央区域,使得暴露所述中央区域上的每个圆柱体的顶部;在所述绝缘/导通层上淀积磁电阻膜;以及在所述磁电阻膜上淀积上电极层。
根据本发明的再一方面,提供一种磁电阻传感器,其中包括:下电极层;在所述下电极层上设置的绝缘/导通层,所述绝缘/导通层包括绝缘体基体和在所述绝缘体基体内分散布置的多个纳米管;在所述绝缘/导通层上设置的磁电阻膜;以及在所述磁电阻膜上设置的上电极层;每个所述纳米管都包括圆管形非金属和被所述圆管形非金属包围的圆柱体金属;所述绝缘/导通层在其中央区域被局部蚀刻,使得每个位于所述中央区域中的纳米管的所述圆柱体金属与所述磁电阻膜和和所述下电极接触。
优选地,管状非金属由碳形成,圆柱体金属由铬形成。绝缘体由SiO2形成。
根据本发明另一方面,提供一种用于制造磁电阻传感器的方法,其中包括以下步骤:在衬底上淀积下电极层;在所述下电极层上形成第一抗蚀图形;通过用所述第一抗蚀图形作为掩膜,蚀刻所述下电极层以使所述下电极层形成为所需的形状;在所述下电极层上形成多个Cr-C纳米管;在所述下电极层上淀积绝缘体基体,从而所述多个纳米管嵌入所述绝缘体基体中形成绝缘/导通层;在所述绝缘/导通层上形成第二抗蚀图形;通过用所述第二抗蚀图形作为掩摸而对所述绝缘/导通层进行蚀刻,以除去所述绝缘/导通层中不需要的部分;在所述绝缘/导通层上形成第三抗蚀图形;通过用所述第三抗蚀图形作为掩膜而蚀刻所述绝缘/导通层的中央区域,以便每个位于所述中央区域中的纳米管的顶部被暴露;在所述绝缘/导通层上淀积磁电阻膜;在所述磁电阻膜上淀积上电极层;在所述上电极层上形成第四抗蚀图形;以及通过用所述第四抗蚀图形作为掩膜而蚀刻所述上电极层,以使所述上电极层形成为所需的形状。
通过分析以下描述和后附权利要求并结合示出本发明一些优选实施例的附图中,本发明及其实现方法的以上的和其它的目的、特点和优点将更清楚,而且将更好地理解本发明。
附图说明
图1为现有技术磁电阻传感器的横截面示意图;
图2为根据本发明优选实施例的磁电阻传感器的横截面示意图;
图3为图2所示磁电阻传感器基本部分的放大了的横截面示意图;
图4为沿图3中直线IV-IV截取的剖面;
图5为纳米管的纵向截面视图;
图6a是通过透射电子显微镜观察的纳米管的照相视图;
图6b是图6a中箭头34所指部分的放大视图;
图6c是图6a中箭头36所指部分的放大视图。
具体实施方式
参照图2,示出根据本发明优选实施例的具有CPP结构的磁电阻传感器14的横截面示意图。磁电阻传感器14包括:下电极层16、在下电极层16上形成的纳米管结构膜18、在纳米管结构膜18上形成的磁电阻膜(MR膜)28、以及在MR膜28上形成的上电极层30。每个下电极层16和上电极层30都由Cu或由Cu和Au结合物形成。纳米管结构膜18包括例如由SiO2形成的绝缘体基体20、以及在绝缘体基体20中分散布置的多个纳米管22。
每个纳米管22由圆管状非金属24和被圆管状非金属24包围的圆柱体金属26组成。圆管状非金属24例如由碳形成,圆柱体金属26例如由铬形成。纳米管结构膜18在其中央区域被局部蚀刻,从而暴露出一部分纳米管22的顶部。上电极层30和下电极层16在此蚀刻区域通过磁电阻膜28和暴露纳米管22的圆柱体金属26导通。也就是说,位于纳米管结构膜18蚀刻区域中的纳米管22的圆柱体金属26形成接触孔。
图3是图2所示优选实施例的基本部分的放大横截面示意图,图4为沿图3中直线IV-IV截取的剖面,图5则是每个纳米管22的纵向截面视图。如图5所示,每个纳米管22的圆管状非金属24具有外径d1和内径d2,每个纳米管22的圆柱体金属26具有直径d2。每个纳米管22的长度为l。从图2-4很清楚,磁电阻膜28在纳米管结构膜18的蚀刻区域中通过纳米管22连接到下电极层16。相应地,当检测电流通过上电极层30和下电极层16之间时,检测电流在具有低电阻率的圆柱体金属26中同轴流动,而不是在每个都具有高电阻率的绝缘体基体20和圆管状非金属24中流动。结果,获得的效应有可能与通过减少接触孔直径而获得的相同。
图1所示的现有技术磁电阻传感器2提供的输出与形成得和下电极层4接触的磁电阻膜8部分的直径的平方成反比,即与接触孔12的直径的平方成反比。相反,如图2所示的根据优选实施例的磁电阻传感器14提供的输出与形成得与磁电阻膜28和下电极层16接触的圆柱体金属26的截面积和数量成反比。在上述结构包括纳米管结构膜18、形成得与纳米管结构膜18两相对表面中的一个接触的下电极层16以及形成得与纳米管结构膜18另一个表面接触的磁电阻膜28的配置中,现在计算圆柱体金属26和下电极层16之间接触部分的直径,即接触孔的视在直径D′。在计算中使用以下假设。
(1)形成得与磁电阻膜28和下电极层16接触的圆柱体金属26的数量为n。
(2)每个圆柱体金属26的直径都为d2
(3)每个形成得与磁电阻膜28和下电极层16接触的圆柱体金属26的接触部分都是圆形的。
根据以上假设,接触孔的视在直径D′表示如下:
D′=d2·n1/2         (1)
作为每个具有圆管状非金属24和被圆管状非金属24包围的圆柱体金属26的纳米管22的实例,已知有Cr-C。图6a示出通过透射电子显微镜观察的Cr-C的照相视图(碳纳米管的形成以及在离子-发射场阳极上用金属纤维填充碳纳米管:J.Appl.Phys.,84(3),1626(1998))。从图6a显而易见,Cr-C形成这样的结构:圆管状非金属C围绕圆柱体金属Cr,即形成所谓的纳米管。图6b为图6a中箭头34所指部分的放大视图,而图6c是图6a中箭头36所指部分的放大视图。从图6b显而易见,圆柱体金属Cr的直径为大约8nm。
下面描述根据本优选实施例的磁电阻传感器14制造方法。首先,用作下电极层16的500nm厚的Cu膜在衬底(未示出)上淀积,随后在Cu膜上形成抗蚀图形。接下来,通过使用抗蚀图形作为掩膜而蚀刻Cu膜,形成具有所需形状的下电极层16。然后,每个都为30nm长的多个Cr-C纳米管在下电极层16上形成。以下面方式形成纳米管22。其上形成有下电极层16的衬底在派列克斯耐热玻璃(Pyrex glass)容器中设置为阳极。
在对此容器抽真空到1×10-6乇之后,萘C10H8和六羰基化铬Cr(CO)6气体以指定比例混合,混合物以0.06乇的总压力引入到容器中。电极保持指定的高温如1100-1200℃,并在电极之间施加4-6KV的电压,从而在下电极层16上形成Cr-C纳米管22作为阳极。
在形成纳米管22之后,用作绝缘体基体20的50nm厚的SiO2膜通过溅射连续淀积。随后在SiO2膜上形成抗蚀图形,接着,通过用抗蚀图形作为掩膜而对SiO2膜进行蚀刻,除去不需要的SiO2膜部分。进一步地,在SiO2膜上再次形成抗蚀图形,然后通过用抗蚀图形作为掩膜而对SiO2膜进行局部蚀刻,形成纳米管结构膜18,纳米管结构膜18的中央区域作为接触孔具有10nm的厚度。
然后,40nm厚的磁电阻膜28用溅镀方法淀积在纳米管结构膜18上。磁电阻膜28包括至少一个低电阻膜和夹着此低电阻膜的至少两个铁磁膜。可替换地,磁电阻膜28具有铁磁隧道结型结构或具有由铁磁层和非磁性层组成的多层膜结构。换句话说,磁电阻膜28可由以下膜提供:自旋阀GMR膜,如NiFe/Cu/NiFe/IrMn多层膜;层叠的铁自旋阀GMR膜,如NiFe/Cu/CoFeB/Ru/CoFeB/PdPtMn多层膜;或者隧道结型MR膜(TMR膜),如NiFe/Al2O3/NiFe/PdPtMn多层膜。
接着,用作上电极层30的300nm厚的Cu膜用溅镀方法淀积在磁电阻膜28上。随后在Cu膜上形成抗蚀图形,然后,通过用抗蚀图形作为掩膜而对Cu膜进行蚀刻,形成具有所需形状的上电极层30。从而完成磁电阻传感器14。用以下方式制造作为比较例的磁电阻传感器。每个都为10nm长的多个Cr-C纳米管在下电极层上形成。接下来,在下电极层上淀积30nm厚的SiO2膜,以便完全覆盖纳米管,从而形成纳米管结构膜。随后不对纳米管结构膜进行蚀刻,而在纳米管结构膜上顺序淀积磁电阻膜和上电极层。
通过使用比较例和本发明的实例,用DC四接线端方法测量电阻。表1示出本发明、比较例和具有CPP结构的现有技术磁电阻传感器的输出和电阻的测量结果。输出的测量用普通四接线端方法在2mA电流和105A/m磁场的条件下进行。
[表1]
电阻(Ω·cm)  输出(mV)
  本发明   10nm长的Cr-C纳米管和10nm厚的SiO2膜用作磁电阻传感器内的接触孔   102   10
  比较例   10nm长的Cr-C纳米管和30nm厚的SiO2膜用作磁电阻传感器内的接触孔   104   0
  现有技术   具有CPP结构的磁电阻传感器   10   1
从表1清楚看出,本发明的磁电阻传感器获得10mV的输出,现有技术的磁电阻传感器获得1mV的输出。亦即,本发明的输出是现有技术磁电阻传感器输出的10倍。相应地证实,根据本发明的纳米管结构膜可减小接触孔的直径并可提高输出。在表1中,比较例的输出为零。因为所有用作接触孔的纳米管全部嵌入SiO2膜中,从而在磁电阻膜28和下电极层16之间不导通。
现在计算此优选实施例中纳米管结构膜内用作接触孔的纳米管的数量。现有技术磁电阻传感器中接触孔的直径是0.2μm。因此,本发明磁电阻传感器中接触孔的视在直径D′变为0.2×1/101/2≈0.063μm,其中本发明磁电阻传感器的输出是现有技术磁电阻传感器输出的10倍。假设每个纳米管22的圆柱体金属26的直径是8nm,那么用作接触孔的纳米管22的数量估算为0.0632/0.0082≈62。
根据以上描述的本发明,有可能提供具有CPP结构的磁电阻传感器,该传感器可减小接触孔的视在直径并提高输出。进而,通过考虑纳米管结构膜的形成条件,可控制作为接触孔的有效纳米管的尺寸和数量。

Claims (11)

1.一种磁电阻传感器,其中包括:
下电极层;
设置在所述下电极层上的绝缘/导通层,通过在绝缘层中设置多个圆柱体而形成所述绝缘/导通层,每个所述圆柱体包括管状非金属和被所述管状非金属包围的圆柱体金属;所述绝缘/导通层具有第一区域和膜厚比所述第一区域小的第二区域;
在所述绝缘/导通层上设置的磁电阻膜;以及
设置在所述磁电阻膜上的上电极层;
其中设置在所述第二区域上的所述圆柱体金属与所述下电极层和所述磁电阻膜直接接触。
2.如权利要求1所述的磁电阻传感器,其中,所述管状非金属由不同于所述绝缘层的材料形成。
3.如权利要求2所述的磁电阻传感器,其中,所述管状非金属包含碳。
4.如权利要求1所述的磁电阻传感器,其中,所述圆柱体金属包含铬。
5.如权利要求1所述的磁电阻传感器,其中,所述绝缘层由SiO2形成。
6.一种用于制造磁电阻传感器的方法,其中包括以下步骤:
在衬底上淀积下电极层;
在所述下电极层上形成多个圆柱体,每个圆柱体包括管状非金属和被所述管状非金属包围的圆柱体金属;
在形成所述多个圆柱体之后,在所述下电极层上淀积绝缘体,从而在所述绝缘体中嵌入所述圆柱体以形成绝缘/导通层;
在所述绝缘/导通层上形成抗蚀图形;
通过使用所述抗蚀图形作为掩膜而蚀刻所述绝缘/导通层的中央区域,使得暴露所述中央区域上的每个圆柱体的顶部;
在所述绝缘/导通层上淀积磁电阻膜;以及
在所述磁电阻膜上淀积上电极层。
7.一种磁电阻传感器,其中包括:
下电极层;
在所述下电极层上设置的绝缘/导通层,所述绝缘/导通层包括绝缘体基体和在所述绝缘体基体内分散布置的多个纳米管;
在所述绝缘/导通层上设置的磁电阻膜;以及
在所述磁电阻膜上设置的上电极层;
每个所述纳米管都包括圆管形非金属和被所述圆管形非金属包围的圆柱体金属;
所述绝缘/导通层在其中央区域被局部蚀刻,使得每个位于所述中央区域中的纳米管的所述圆柱体金属与所述磁电阻膜和所述下电极接触。
8.如权利要求7所述的磁电阻传感器,其中,所述圆管形非金属由碳形成,所述圆柱体金属由铬形成。
9.如权利要求8所述的磁电阻传感器,其中,所述绝缘体基体由SiO2形成。
10.一种用于制造磁电阻传感器的方法,其中包括以下步骤:
在衬底上淀积下电极层;
在所述下电极层上形成第一抗蚀图形;
通过用所述第一抗蚀图形作为掩膜,蚀刻所述下电极层以使所述下电极层形成为所需的形状;
在所述下电极层上形成多个Cr-C纳米管;
在所述下电极层上淀积绝缘体基体,从而所述多个纳米管嵌入所述绝缘体基体中形成绝缘/导通层;
在所述绝缘/导通层上形成第二抗蚀图形;
通过用所述第二抗蚀图形作为掩摸而对所述绝缘/导通层进行蚀刻,以除去所述绝缘/导通层中不需要的部分;
在所述绝缘/导通层上形成第三抗蚀图形;
通过用所述第三抗蚀图形作为掩膜而蚀刻所述绝缘/导通层的中央区域,以便每个位于所述中央区域中的纳米管的顶部被暴露;
在所述绝缘/导通层上淀积磁电阻膜;
在所述磁电阻膜上淀积上电极层;
在所述上电极层上形成第四抗蚀图形;以及
通过用所述第四抗蚀图形作为掩膜而蚀刻所述上电极层,以使所述上电极层形成为所需的形状。
11.如权利要求10所述的制造方法,其中,每个纳米管都包括由C形成的圆管和由Cr形成的圆柱体,所述圆柱体被所述圆管包围。
CNB021058016A 2001-11-05 2002-04-10 磁电阻传感器及其制造方法 Expired - Fee Related CN1223999C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001339416A JP2003142755A (ja) 2001-11-05 2001-11-05 磁気抵抗センサ及びその製造方法
JP339416/2001 2001-11-05

Publications (2)

Publication Number Publication Date
CN1417774A CN1417774A (zh) 2003-05-14
CN1223999C true CN1223999C (zh) 2005-10-19

Family

ID=19153765

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021058016A Expired - Fee Related CN1223999C (zh) 2001-11-05 2002-04-10 磁电阻传感器及其制造方法

Country Status (6)

Country Link
US (1) US6828039B2 (zh)
EP (1) EP1308741B1 (zh)
JP (1) JP2003142755A (zh)
KR (1) KR100797590B1 (zh)
CN (1) CN1223999C (zh)
DE (1) DE60202826T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161614A (zh) * 2015-09-07 2015-12-16 华中科技大学 一种磁隧道结纳米单元结构及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021976B2 (en) 2002-10-15 2011-09-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
US6937447B2 (en) * 2001-09-19 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
JP4079271B2 (ja) * 2002-03-28 2008-04-23 富士通株式会社 磁気抵抗センサの製造方法
JP2004031545A (ja) * 2002-06-25 2004-01-29 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US7288845B2 (en) * 2002-10-15 2007-10-30 Marvell Semiconductor, Inc. Fabrication of wire bond pads over underlying active devices, passive devices and/or dielectric layers in integrated circuits
US7045069B2 (en) * 2002-11-14 2006-05-16 Gennady Ozeryansky Microfabrication method based on metal matrix composite technology
US7466523B1 (en) * 2003-07-10 2008-12-16 Yingjian Chen Nanotube spin valve and method of producing the same
JP4689218B2 (ja) * 2003-09-12 2011-05-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE10345755B4 (de) * 2003-09-25 2006-08-31 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur Herstellung von strukturierten magnetischen Funktionselementen
JP2005305634A (ja) * 2004-03-26 2005-11-04 Fujitsu Ltd ナノホール構造体及びその製造方法、スタンパ及びその製造方法、磁気記録媒体及びその製造方法、並びに、磁気記録装置及び磁気記録方法
US7194912B2 (en) * 2004-07-13 2007-03-27 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for continually sensing changes in a structure
TW200631111A (en) * 2004-11-04 2006-09-01 Koninkl Philips Electronics Nv Nanotube-based circuit connection approach
KR100663881B1 (ko) * 2005-03-30 2007-01-03 한국과학기술연구원 나노 크기의 수직 전류 인가 메모리 소자 및 그 제조 방법
JP2007299880A (ja) 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
US7914915B2 (en) * 2007-03-06 2011-03-29 The United States of America as represented by the Secretary of the Commerce, The National Institutes of Standards and Technology Highly charged ion modified oxide device and method of making same
JP4388093B2 (ja) * 2007-03-27 2009-12-24 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置
JPWO2009050945A1 (ja) * 2007-10-15 2011-02-24 富士電機ホールディングス株式会社 スピンバルブ素子
US7872564B2 (en) * 2007-11-16 2011-01-18 Infineon Technologies Ag Integrated lateral short circuit for a beneficial modification of current distribution structure for xMR magnetoresistive sensors
JP5039007B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5039006B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5636654B2 (ja) * 2009-09-07 2014-12-10 富士通株式会社 カーボンナノチューブシート構造体およびその製造方法、半導体装置
CA2784997C (en) * 2009-12-30 2018-06-19 Jacques Beauvais Carbon nanotubes based sensing elements and system for monitoring and mapping force, strain and stress
US8829901B2 (en) * 2011-11-04 2014-09-09 Honeywell International Inc. Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields
US9666790B2 (en) * 2015-07-17 2017-05-30 Taiwan Semiconductor Manufacturing Co., Ltd. Manufacturing techniques and corresponding devices for magnetic tunnel junction devices
CN112750943A (zh) * 2019-10-30 2021-05-04 上海磁宇信息科技有限公司 磁性隧道结结构及制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546114B2 (ja) * 1992-12-22 1996-10-23 日本電気株式会社 異物質内包カーボンナノチューブとその製造方法
EP1052520B1 (en) * 1999-05-10 2005-07-27 Hitachi Europe Limited Magnetoelectric device
JP2001143227A (ja) * 1999-11-18 2001-05-25 Fujitsu Ltd 磁気センサ
US6560077B2 (en) * 2000-01-10 2003-05-06 The University Of Alabama CPP spin-valve device
US20020145826A1 (en) * 2001-04-09 2002-10-10 University Of Alabama Method for the preparation of nanometer scale particle arrays and the particle arrays prepared thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161614A (zh) * 2015-09-07 2015-12-16 华中科技大学 一种磁隧道结纳米单元结构及其制备方法

Also Published As

Publication number Publication date
DE60202826D1 (de) 2005-03-10
KR20030038302A (ko) 2003-05-16
CN1417774A (zh) 2003-05-14
JP2003142755A (ja) 2003-05-16
US20030087130A1 (en) 2003-05-08
DE60202826T2 (de) 2006-01-05
KR100797590B1 (ko) 2008-01-24
EP1308741A1 (en) 2003-05-07
US6828039B2 (en) 2004-12-07
EP1308741B1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
CN1223999C (zh) 磁电阻传感器及其制造方法
CN1068950C (zh) 磁传感器和磁盘记录系统
US6278593B1 (en) Magnetoresistance effect elements and magnetic heads using the tunneling magnetoresistive effect
US6943993B2 (en) Magnetic recording head with a side shield structure for controlling side reading of thin film read sensor
US7863700B2 (en) Magnetoresistive sensor with tunnel barrier and method
JP4082274B2 (ja) 磁気センサ及びそれを備える磁気ヘッド
US6373667B1 (en) Single stripe magnetoresistive (MR) head
CN101414657A (zh) 铁磁隧道结元件、磁记录装置以及磁存储器装置
EP1052520B1 (en) Magnetoelectric device
CN1237755A (zh) 有纵向和横向偏压的磁隧道结磁阻读出磁头
JP2005505932A (ja) スピンバルブを有した磁気抵抗デバイスならびに改良された性能
US20020181167A1 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
US7016168B2 (en) Method of increasing CPP GMR in a spin valve structure
CN1333534A (zh) 自旋阀及其制造方法
US7450348B2 (en) Electronic device, magnetoresistance effect element; magnetic head, recording/reproducing apparatus, memory element and manufacturing method for electronic device
CN1132158C (zh) 薄膜磁头
CN1460272A (zh) 具有改进的磁场范围的磁多层结构
JP2001143227A (ja) 磁気センサ
KR100795492B1 (ko) 자기 센서 및 자기 헤드
US7466523B1 (en) Nanotube spin valve and method of producing the same
US10446176B1 (en) Lateral spin valve reader with vertically-integrated two-dimensional semiconducting channel
JP3309922B2 (ja) 磁気抵抗素子用磁性薄膜およびその製造方法
US6441611B2 (en) Magnetic sensor having a GMR layer
US7215515B2 (en) Magnetoresistive sensor having a conducting path layer formed from a plurality of metal islands within an insulating matrix
JP2001014843A (ja) 磁性メモリ

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051019

Termination date: 20120410