CN1208953A - 阻挡层的形成方法 - Google Patents

阻挡层的形成方法 Download PDF

Info

Publication number
CN1208953A
CN1208953A CN97126177.6A CN97126177A CN1208953A CN 1208953 A CN1208953 A CN 1208953A CN 97126177 A CN97126177 A CN 97126177A CN 1208953 A CN1208953 A CN 1208953A
Authority
CN
China
Prior art keywords
layer
barrier layer
nitrogen
oxygen
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97126177.6A
Other languages
English (en)
Other versions
CN1110844C (zh
Inventor
C·D·多布森
M·G·M·哈里斯
K·E·布查恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trikon Equipments Ltd
Original Assignee
Trikon Equipments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9624343.1A external-priority patent/GB9624343D0/en
Priority claimed from GBGB9702410.3A external-priority patent/GB9702410D0/en
Priority claimed from GBGB9710356.8A external-priority patent/GB9710356D0/en
Priority claimed from GB9715282A external-priority patent/GB9715282D0/en
Application filed by Trikon Equipments Ltd filed Critical Trikon Equipments Ltd
Publication of CN1208953A publication Critical patent/CN1208953A/zh
Application granted granted Critical
Publication of CN1110844C publication Critical patent/CN1110844C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/586Nitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及形成阻挡层的方法,包括淀积氮化钛层,随后使该层表面氮化。在某些实施例中在氮化步骤之前使氮化钛层暴露于氧。

Description

阻挡层的形成方法
本发明涉及阻挡层的形成方法。
制造半导体器件时经常需要淀积阻挡层。通常是钛或钛合金,其目的一般是提供与表面层良好的粘附性,避免连接层与表面层之间产生不期望的合金化,特别是避免铝合金形成穿过接触结的“钉”(spiking)。众所周知,使阻挡层暴露于氧气可以改善该层的机械性能,但是本发明人已经证实,当在这种层上淀积铝或铝合金时氧对铝或铝合金的晶粒结构有害。
美国专利5552341公开了另一种对阻挡层的处理工艺,改善后续的铝层,通过采用氢化硅的等离子体处理,在阻挡层表面形成硅烷化层。通过已知的氧处理填充晶界改善了阻挡层。
根据一个方案,本发明构成在半导体表面上形成阻挡层的方法,包括,淀积氮化钛层,使该层暴露于氧气,和至少使被氧化的层表面氮化。
为了方便,对于本说明书的目的,对阻挡层的这些处理无论是否涉及氧均将被认为是激活。
氮化步骤可通过含氮等离子体来进行。另外,也可以在存在氮的情况下使阻挡层暴露于产生的等离子体或者紫外线原子氢,使阻挡层中的所有氧化材料氮化。另外,可以顺序地进行利用原子氢和氮化步骤来去除氧。采用目前的设备至少难以实现在纯氮气氛中氮化。氢∶氮比例可以在1∶10和3∶1之间。可以NH3的形式提供氢,此时NH3至少可以提供某种氮化氮。
阻挡层基本上包含钛和氮原子,但是氮化钛形成柱状晶结构,它从上到下存在于晶界。由于氮化钛起物理阻挡层作用,这是一种固有缺陷,但是众所周知,通过在形成氮化钛的过程中添加氧、或者使氮化钛暴露于氧(例如通过暴露于空气),可以减轻此缺陷。也就是说用氧“填充”晶界。
于是,最好向氮化钛添加氧(改善阻挡层质量),但是如果顶表面含有某些原子氧则存在问题。
在TiN上的氧杂质的影响是在典型条件下会存在氧化表面,由与钛外层键合的氧原子组成,其将与铝紧密接触并容易与其形成化学键,因此妨碍在一定处理中的材料的流动或转移。
使用氧是为了利用通称为“氧填充”的工艺,通过阻塞晶界或缺陷处的扩散通道,从而改善阻挡层。作为工艺步骤的一部分,例如众所周知存在少量氧的氮气退火、氧等离子体工艺等或者作为暴露于空气的二次作用,氧可到达阻挡层。氮在退火处理中基本起对氧的稀释作用,在此处理中通常不与该层反应。
为了改善阻挡层的机械性能仅需要极少量的氧。由于氧化钛是不良导体,不一定增强电性能。而且如果在含氧阻挡层的表面淀积铝,则铝的晶粒结构变差。
根据另一方案,本发明构成在工件例如半导体晶片的表面形成阻挡层的方法,包括,淀积氮化钛层,随后使该层表面暴露于激活的氮气,从而使该层中的所有自由表面钛被氮化,形成氮化钛。
最好该表面暴露于高能NH3,特别是暴露于NH3等离子体。在氮化步骤之前TiN层可暴露于氧,而且可以进行额外或另外的氧退火。在氮化钛层的淀积和氮化步骤之间可以有真空间断。
特别是,进一步的实验证实,通过氨等离子体处理进行氮化,即使不暴露于氧也能改善阻挡层的机械性能。而且由于不形成氧,所以该工艺对电性能无害。
此结果与预料的和已有技术的指教相反。
以上说明了用氨等离子体处理的其他改善。
本发明人仅就涉及的精确机理做一假设。已经观察到TiN阻挡层强于在顶部淀积Ti的TiN阻挡层。可能的解释是由于存在自由的Ti使得TiN阻挡层变弱。暴露于氧约束了自由Ti,形成钛的氧化物。使阻挡层暴露于氮气热处理或者例如通过含氮等离子体暴露于激活的氮气,似乎如氧处理一样有效,这是因为自由的Ti已经被键合为氧化钛或氮化物或TiN,而不是象先前提到的氧‘填充晶界’(见美国专利5552341,例如第4栏第25~31行和第63~64行对该发明的已有技术的说明,第8栏第26~31行表明在阻挡层中使用氧以便“可以保持填充效果”对于该发明仍旧需要)。
本发明还包括如下方法,在包括初始淀积了氮化钛阻挡层的工件上,淀积导电层例如铝、铝合金或铜膜,激活阻挡层和淀积导电层。
可以采用物理汽相淀积来淀积阻挡层,其本身可位于纯钛层上。
正如上述一个方案所述,已经发现通过至少用氮置换表面氧原子,可以制造适合后续工艺的含氧的阻挡层。
这已经通过多种方式得以实现,特别是使用含氮和氢的等离子体。对其机理的可能解释如下。
对使用含氮等离子体的适当解释是产生等离子体的形式、例如离子辅助型、有利于使氧化的阻挡层表面氮化。
此反应仅在625℃以上才稍有利。
使用等离子体—或者紫外线产生的原子氢在化学上更有利,不需要离子辅助:
如果在存在氮的情况下进行此反应,最终的阻挡层表面将同时被氮化。
化学汽相淀积(CVD)TiN的性能优于物理汽相淀积(PVD)TiN的性能。但是,当晶片从CVD设备输送至PVD设备进行金属化处理时,可以存在真空间断。
在存在来源于混合气体或者含有氮和氢(可能还有其他元素)的单一气体的原子氢和原子氮的情况下,对表面的氧化钛进行再氮化。利用原子氢和氮的混合物发生再氮化,主要是通过氢对氧化钛的初始还原,以及之后的氮与钛的反应。
通过提高还原工艺的水副产物留在衬底表面的速度,升高温度适当地提高了反应速度,由此减少了表面再次氧化的可能性。
在这些温度,由于原子氢可使钛与氮反应,因而使反应得以进行。因此,在含氮的环境气氛中,随着原子氢浓度从零增大,氧化钛向氮化物的转换速率也增大。
由于在恒定温度和压力下的任何给定体积中,只存在固定的气体分子数,自然将到达这样的程度,即还原的氧化钛的氮化成为速率受限的反应。
当温度低于存在原子氮的情况下可使氧化钛直接反应成为氮化钛时,进行此工艺,将存在原子氢和氮的最佳混合物。使用含氢和氮的气体分子,对于这两种分离气体的混合物来说是最佳的,这是因为在被反应的衬底表面上的固定体积气体中,可以存在更多的氢和氮原子。
例如在相同体积中,完全分解时:
而且众所周知,在等离子态,含氮气体例如氨是比分子氮更为易得的原子氮的来源。还可确信NH3作为汽相将比氢或氮更为易于“粘附”于衬底,在高能轰击下释放原子氮和氢,促进所需的表面反应。
实验结果是,把分子氮对氢气的浓度提高到10∶1,可提高氮化率,但此氮化率仍低于使用其氮与氢的原子比为1∶3的氨的情况。这是因为由分子氮产生的原子氮是氮化率的一个限制因素。
还已观察到,氢中的分子氮浓度进一步提高超过某一点时,氮化率再降低,仍旧不是与氮和氢的化合物例如氨相同的比率。对此可能的解释是氧化钛还原目前是限制因素。可能分子氢在分子氮中被如此地稀释,因为存在大量的(未反应)氮分子,而不能与衬底表面足够地紧密接触,以致原子氢形成时,其与衬底表面的反应被物理地阻碍。
可以各种方式实施本发明,以下将说明特定实施例:
图1是涉及实验1的结果的表。
图2是根据一种工艺填充的通道的SEM。
图3是根据另一种工艺填充的通道的SEM。
实验1
在氧化硅层上淀积阻挡层和铝合金层,氧化硅层是预先淀积在硅晶片上并含有孔。这些孔使硅晶片暴露于阻挡层。在结果图1所示的基体上进行各种处理。
对每个阻挡层做过热应力破坏性测试。通过腐蚀掉氧化硅和淀积的阻挡层和铝合金层,考察硅表面,得到测试结果。如果铝已穿破阻挡层,则证据是其存在于硅晶片上氧化硅层原来有孔之处。
在此实验中,除了不可期望改善的“对比”工艺之外,在使用氨(NH3)对阻挡层做等离子体处理之前,进行各种氧暴露技术。选择NH3作为适合的含氮气体,但是在适于使氮与阻挡层反应的条件下,也可使用含氮气体或纯氮。
氧暴露技术包括:
使工件暴露于大气(真空间断)
氧退火(热处理)
包含微量氧的氮退火(热处理)
氧等离子体
在用含氮等离子体或其他激活氮处理(如氨等离子体处理)之前,在TiN阻挡层上进行上述氧暴露,由于已知的“氧填充”效应,预计晶片会呈现最好的阻挡性能。
但是,正如从图1可见,在无硅晶片的氧处理的情况下,65小时的热应力之后氨等离子体提供良好的阻挡能力,此能力与那些已经进行了大气暴露,随后进行氧等离子体和氨等离子体处理的晶片(24小时热应力之后)相同。正如以上所述,后者电性能较差。
已经测试处理室中无氧,证明在分析灵敏度以下。但是,两种氧暴露(真空间断和氧等离子体)均符合这样一种预期的趋势,即两者结合使用比单独用一种效果要好,从而导致人们认为更多的氧暴露会获得更好的阻挡层。因此,即使存在微量的氧,也会使“NH3等离子体”晶片劣于通过大气间断、氧等离子体、氧退火或者氮(有微量氧)退火暴露于大量氧的晶片。
实验细节
一般程序
由具有带孔的SiO2层的硅晶片碎片组成的测试碎片具有淀积于其上的阻挡层,这是采用不同的阻挡层条件,并保持脱气和铝步骤不变。对比坯片一直在检测机器的连续性。对这些坯片进行炉烘焙,对阻挡层施加应力。最后去除淀积层和SiO2,检查硅衬底钉的形成迹象。
晶片和测试结构
采用包含大量孔阵列的测试晶片(100mm)进行所有测试,孔直径为1.3μm、深0.9μm、间隔为8.5μm。打碎晶片,并在硅载体背侧使用约2cm×1cm的碎片或裂片。
工艺细节
对所有的晶片进行相同的脱气和铝步骤如下:
脱气:5分钟,3kW
Al:45秒回填冷却,1μm,6kW,200℃
对比阻挡层
由于大孔尺寸,对比阻挡层具有Ti和TiN薄层。
Ti:100,6kW,400℃,20sccm Ar
TiN:300,12kW,400℃,20sccm Ar,70sccm N2,600W偏置
光栅:12kW,15秒,100sccm Ar
阻挡层裂片
图1(结果部分)鉴定各阻挡层裂片。测试的阻挡层裂片已经通过分别和组合的氨等离子体、大气暴露、氧等离子体、氮气和氧气炉的退火进行了处理,期望由此产生良好的阻挡层性能。
炉烘焙对阻挡层施加应力
打碎每次实验的碎片,经受时间长度不同的525℃的炉温,以便诱发钉的形成,并确定阻挡层裂片的相对强度。
去除处理
通过去除淀积层和介电层并考察硅衬底,可以确定钉的形成的程度。
钉的形成则呈现方形或矩形孔。如果未发生钉的形成,则仅能见到孔的圆形基底。
腐蚀工序
1. 5分钟的KOH去除Al
2. 5分钟的缓冲HF10%腐蚀TiN
3. 2小时的H2O2去除TiN
4. 1小时的缓冲HF10%去除SiO2
5. 1分钟的丙烷-2-醇清洗晶片
光学工序
在光学显微镜下采用干涉衬度方式观察去除处理后的碎片。拍摄典型孔区域的照片,从照片计数形成钉的孔的百分比(%钉的形成)。
结果
图1展示了每个裂片经受的处理和在氮气氛中525℃下烘焙后所见的钉的形成百分此。还需要进一步的工作来确定氧气炉处理是否好于现场NH3等离子体,这是因为从图1可看出此裂片仅接受了24小时的烘焙,而不是象其他所有裂片那样接受了65小时的烘焙。按阻挡层强度顺序展示了结果。
结果的讨论
按强于或弱于标准氮气炉退火工艺(含残余的氧)来对阻挡层裂片分组,该工艺等同于公知的“晶界填充”的已有技术。
强于N2炉
Ti/TiN/NH3等离子体
Ti/TiN/真空间断/O2炉/NH3等离子体
Ti/TiN/真空间断/NH3等离子体
Ti/TiN/O2等离子体/NH3等离子体
弱于N2炉
Ti/TiN
Ti/NH3等离子体
Ti/NH3等离子体/TiN
从这些结果可以得到以下结论:
(a)较强的阻挡层裂片具有在TiN之后的NH3等离子体处理。
(b)NH3等离子体效果相当于与NH3等离子体组合的O2炉处理。
由TiN NH3 等离子体处理的晶片的SEM分析
采用具有300Ti/750 TiN阻挡层、大高宽比(2∶1)孔的晶片,对比因NH3等离子体处理而引起的TiN结构变化。
经过和不经过NH3等离子体的TiN的SEM分析,场区域的结构未呈现明显变化。
在孔壁上存在Al/TiN界面的差异。在无NH3等离子体的情况,靠近孔壁可见大晶粒(图2)。在采用SEM之前已经分析了这些晶粒。这些晶粒可能是TiAl3。对于NH3等离子体处理后的晶片,良好地确定了Al/TiN界面,未见晶粒(图3)。
阻挡层增强的机理
结果表明TiN中的Ti可能导致了阻挡层的变弱。
炉处理具有通过形成氧化钛或氮化物使任何自由Ti钝化的效果。
利用NH3等离子体处理TiN的阻挡层,在强度上可与氧处理和NH3等离子体的组合比拟,这一事实表明自由Ti的存在具有使阻挡层变弱的较强效应,而不是填充柱状结构的空位。在先的工作已表明在Ti/TiN阻挡层上淀积的Ti降低了阻挡层的强度。
试验2
在具有1.2μm宽×0.8μm深的接触结构的晶片上重复试验1。淀积包括10nmTi、20nmTiN和100nmAl 0.5%Cu的金属堆叠。然后在500℃烘焙晶片4小时,去除处理到仅剩Si,完成对>10000个孔的光学检测。结果如下:
处理                                     %钉的形成
现场NH3等离子体                              ≤1
O2炉(450℃/45分钟)+NH3等离子体               5
N2炉(450℃/45分钟)                            30
现场N2等离子体                                35
本发明人还证实了如下令人惊奇的效果,激活处理可以对紧密织构的铝或铝合金<111>膜引晶。这种铝合金的紧密织构一般与改善的电迁移电阻相关,但是这些铝合金膜过去在氮化钛阻挡层上的淀积不导致紧密织构,事实上,它们比仅在钛上淀积的这些膜几乎少21/2倍。
测试数据表明,在已通过物理汽相淀积了阻挡层的情况这种改善特别惊人。
还可发现,如果按上述处理晶片,则令人惊奇的是晶片的预热不必如此之热。
把在一种气体环境(例如大气)的工件预先放入真空或另一种气体环境,会导致工件脱气,因为气体和蒸汽离开此表面并进入真空或新的气体环境。
此脱气在等离子体处理中是特别不希望发生的,因为该处理是在由减压的气体环境构成的部分真空中进行的,选择该气体环境按特定方式反应或不反应。
处理时压力越低,脱气对处理就越存在潜在的危害,因为脱气将占总气体的更高比例,或者使得不提高抽真空的速度就不能实现低压,或者将要求提高抽真空速度因而造成昂贵。
在特定的溅射中,采用惰性低气压环境例如氩气进行处理。氩气在辉光放电中被离子化,一般是向电极施加适当的负电压,由此提供离子“原料”,在负电位的影响下撞击位于靶材料上的电极表面。利用离子撞击,靶材料经过氩等离子体环境溅射出去,并落在靠近放置的工件上。
经常选用氩气是因为它是具有相当大质量离子的最具经济吸引力的惰性气体。
但是,如果有任何存在于氩气环境的潜在反应气体或蒸汽,也可通过辉光放电来离子化,成为反应性的,并在飞越环境气体的过程中在靶表面或者在其他表面与溅射材料反应。
当仔细选择的,此工艺为“反应溅射”时,用来溅射如氮化钛材料,其中向惰性溅射原料添加氮。但是,当以非控制方式发生此种情况时,作为水蒸气、氮气、氧气和其他大气成分的结果,通过与靶材料的反应在工件上淀积或形成不期望的氧化物、氮化物和其他材料。这对于铝及其合金是特别不期望的,因为这提高了电阻率。因而,对于溅射工艺脱气是不期望的。
当工件被连续放入预先已具有大气或其他气体环境(例如干燥氮气)的处理室时,脱气的主要源是工件本身。脱气是耗费时间的工艺,对此工艺的任何增速都是期望的。使此工艺增速的公知方式是加热和紫外线,实用中通常采用加热。加热越高,脱气越快。
但是,晶片具有热聚集,通过预加热可以有效地避免之。
本申请人发现具有已被激活的阻挡层的晶片,对于许多处理要求低的预加热温度。在迄今进行的试验中,是采用氨等离子体来激活。
实现此结果的准确原因并不知晓,但是并不能简单地认为是等离子体“调节”、加热和晶片表面的高能轰击的结果,因为在所有的情况下,在预加热之后和溅射之前,晶片经受作为“溅射腐蚀”工艺的一部分的氩气(惰性)等离子体。在溅射腐蚀工艺之前还进行氨等离子体处理。
预加热温度的降低也会消除底金属向通道的任何挤压。
如果在Ti/TiN淀积之后包括了激活步骤,则在某些试验中预加热温度从550℃降至350℃。

Claims (19)

1.一种在半导体表面形成阻挡层的方法,包括淀积氮化钛层,使该层暴露于氧,至少使氧化层表面氮化。
2.根据权利要求1的方法,其中采用含氮等离子体进行氮化步骤。
3.根据权利要求1或2的方法,其中在存在氮的情况下使阻挡层暴露于产生的等离子体或者紫外线原子氢,使阻挡层中的所有氧化材料氮化。
4.根据权利要求1或2的方法,其中包括采用原子氢从阻挡层表面去除氧,随后使该层氮化。
5.根据权利要求3的方法,其中氢∶氮比例在1∶10与3∶1之间。
6.根据权利要求3-5中任一项的方法,其中以NH3的形式提供氢。
7.根据权利要求6的方法,其中NH3提供至少某些氮化用的氮。
8.一种在工件表面形成阻挡层的方法,包括淀积氮化钛层,随后使该层表面暴露于激活氮,以便使该层中的任何自由的表面钛氮化,形成氮化钛。
9.根据权利要求8的方法,其中表面暴露于高能NH3
10.根据权利要求9的方法,其中表面暴露于NH3等离子体。
11.根据权利要求8-10中任一项的方法,其中在氮化步骤之前使氮化钛层暴露于氧。
12.根据权利要求8-11中任一项的方法,其中在氮化步骤之前对表面进行氧退火。
13.根据权利要求8-10中任一项的方法,其中在氮化钛层淀积与氮化步骤之间包括真空间断。
14.一种在工件上淀积导电材料的方法,包括最初淀积氮化钛阻挡层,激活该阻挡层,淀积导电材料。
15.根据权利要求14的方法,其中采用物理汽相淀积法淀积阻挡层。
16.根据权利要求14或15的方法,其中阻挡层均淀积在纯钛层上。
17.根据权利要求14-16中任一项的方法,其中采用NH3激活阻挡层。
18.根据前述权利要求中任何一项的方法,其中工件是半导体晶片。
19.根据权利要求18的方法,其中在阻挡层上沉积导电层之前,通过预加热至不超过约350℃的温度,对工件脱气。
CN97126177.6A 1996-11-22 1997-11-21 阻挡层的形成方法 Expired - Lifetime CN1110844C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB9624343.1 1996-11-22
GBGB9624343.1A GB9624343D0 (en) 1996-11-22 1996-11-22 Method and apparatus for treating a semiconductor wafer
GBGB9702410.3A GB9702410D0 (en) 1997-02-06 1997-02-06 Method and apparatus for treating a semiconductor wafer
GB9702410.3 1997-02-06
GB9710356.8 1997-05-21
GBGB9710356.8A GB9710356D0 (en) 1997-05-21 1997-05-21 Methods of treating a workpiece
GB9715282.1 1997-07-22
GB9715282A GB9715282D0 (en) 1997-07-22 1997-07-22 Methods of treating a workpiece

Publications (2)

Publication Number Publication Date
CN1208953A true CN1208953A (zh) 1999-02-24
CN1110844C CN1110844C (zh) 2003-06-04

Family

ID=27451559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97126177.6A Expired - Lifetime CN1110844C (zh) 1996-11-22 1997-11-21 阻挡层的形成方法

Country Status (5)

Country Link
US (1) US6174823B1 (zh)
JP (1) JPH10199831A (zh)
CN (1) CN1110844C (zh)
DE (1) DE19751784A1 (zh)
GB (1) GB2319533B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137549A (zh) * 2011-12-02 2013-06-05 中芯国际集成电路制造(上海)有限公司 阻挡层的形成方法和半导体器件

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547934B2 (en) 1998-05-18 2003-04-15 Applied Materials, Inc. Reduction of metal oxide in a dual frequency etch chamber
US6297147B1 (en) 1998-06-05 2001-10-02 Applied Materials, Inc. Plasma treatment for ex-situ contact fill
US20010049181A1 (en) 1998-11-17 2001-12-06 Sudha Rathi Plasma treatment for cooper oxide reduction
US6355571B1 (en) 1998-11-17 2002-03-12 Applied Materials, Inc. Method and apparatus for reducing copper oxidation and contamination in a semiconductor device
US7053002B2 (en) 1998-12-04 2006-05-30 Applied Materials, Inc Plasma preclean with argon, helium, and hydrogen gases
EP1265276B1 (en) * 2000-03-13 2011-06-22 Tadahiro Ohmi Method for forming dielectric film
US6794311B2 (en) 2000-07-14 2004-09-21 Applied Materials Inc. Method and apparatus for treating low k dielectric layers to reduce diffusion
US6670267B2 (en) 2001-06-13 2003-12-30 Mosel Vitelic Inc. Formation of tungstein-based interconnect using thin physically vapor deposited titanium nitride layer
DE10134900B4 (de) * 2001-07-18 2007-03-15 Infineon Technologies Ag Haltevorrichtung mit Diffusionssperrschicht für Halbleitereinrichtungen
US6503824B1 (en) 2001-10-12 2003-01-07 Mosel Vitelic, Inc. Forming conductive layers on insulators by physical vapor deposition
KR20030050672A (ko) * 2001-12-19 2003-06-25 주식회사 하이닉스반도체 원자층증착법을 이용한 티타늄나이트라이드막의 형성 방법및 그를 이용한 금속배선의 제조 방법
KR20050087840A (ko) * 2002-12-20 2005-08-31 에이저 시스템즈 인크 구리 상호 접속 구조체로의 본딩 구조체 및 방법
CN101457338B (zh) * 2003-02-14 2011-04-27 应用材料股份有限公司 利用含氢自由基清洁自生氧化物的方法和设备
US7294565B2 (en) * 2003-10-01 2007-11-13 International Business Machines Corporation Method of fabricating a wire bond pad with Ni/Au metallization
US20100270262A1 (en) * 2009-04-22 2010-10-28 Applied Materials, Inc. Etching low-k dielectric or removing resist with a filtered ionized gas
US8178445B2 (en) * 2009-06-10 2012-05-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus and manufacturing method of semiconductor device using plasma generation
KR20100135521A (ko) * 2009-06-17 2010-12-27 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
EP2290123A1 (en) * 2009-09-01 2011-03-02 Universität des Saarlandes Wissens- und Technologietransfer GmbH Processes for producing thin metal nitride layers, inter alia making use of a selective decomposition of alcoholates, processes for hardening a surface, for obtaining thin oxygen compound layers, articles comprising said layers and uses thereof, and a process for obtaining metal hydrides and aldehydes/ketones
CN104465357B (zh) * 2014-12-31 2017-08-08 上海华虹宏力半导体制造有限公司 肖特基二极管阻挡层的形成方法
US20230029002A1 (en) * 2021-07-23 2023-01-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor Devices with a Nitrided Capping Layer

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137367A (ja) 1984-12-10 1986-06-25 Hitachi Ltd 半導体集積回路装置の製造方法
US4884123A (en) 1987-02-19 1989-11-28 Advanced Micro Devices, Inc. Contact plug and interconnect employing a barrier lining and a backfilled conductor material
KR900005038B1 (ko) 1987-07-31 1990-07-18 삼성전자 주식회사 고저항 다결정 실리콘의 제조방법
US4943558A (en) 1988-04-15 1990-07-24 Ford Motor Company Preparation of superconducting oxide films using a pre-oxygen nitrogen anneal
US4920073A (en) * 1989-05-11 1990-04-24 Texas Instruments, Incorporated Selective silicidation process using a titanium nitride protective layer
US5136362A (en) 1990-11-27 1992-08-04 Grief Malcolm K Electrical contact with diffusion barrier
US5175126A (en) * 1990-12-27 1992-12-29 Intel Corporation Process of making titanium nitride barrier layer
JPH04280425A (ja) 1991-03-07 1992-10-06 Sony Corp 配線形成方法
DE69233222T2 (de) 1991-05-28 2004-08-26 Trikon Technologies Ltd., Thornbury Verfahren zum Füllen eines Hohlraumes in einem Substrat
GB9414145D0 (en) 1994-07-13 1994-08-31 Electrotech Ltd Forming a layer
US5202152A (en) 1991-10-25 1993-04-13 Cornell Research Foundation, Inc. Synthesis of titanium nitride films
GB2263483A (en) * 1992-01-09 1993-07-28 Secr Defence Ceramic fibre reinforcements precoated with alternating layers of matrix material; reinforced composites
US5371042A (en) * 1992-06-16 1994-12-06 Applied Materials, Inc. Method of filling contacts in semiconductor devices
US5395461A (en) * 1992-06-18 1995-03-07 Nippon Mining & Metals Co., Ltd. Method of producing titanium material resistant to hydrogen absorption in aqueous hydrogen sulfide solution
US5378660A (en) * 1993-02-12 1995-01-03 Applied Materials, Inc. Barrier layers and aluminum contacts
US5416045A (en) * 1993-02-18 1995-05-16 Micron Technology, Inc. Method for chemical vapor depositing a titanium nitride layer on a semiconductor wafer and method of annealing tin films
US5514908A (en) * 1994-04-29 1996-05-07 Sgs-Thomson Microelectronics, Inc. Integrated circuit with a titanium nitride contact barrier having oxygen stuffed grain boundaries
AU1745695A (en) * 1994-06-03 1996-01-04 Materials Research Corporation A method of nitridization of titanium thin films
US5419787A (en) 1994-06-24 1995-05-30 The United States Of America As Represented By The Secretary Of The Air Force Stress reduced insulator
EP0732731A3 (en) * 1995-03-13 1997-10-08 Applied Materials Inc Treatment of a layer of titanium nitride to improve resistance to high temperatures
JP2789309B2 (ja) * 1995-03-20 1998-08-20 エルジイ・セミコン・カンパニイ・リミテッド 高融点金属窒化膜の形成方法
US5605724A (en) * 1995-03-20 1997-02-25 Texas Instruments Incorporated Method of forming a metal conductor and diffusion layer
US5567483A (en) * 1995-06-05 1996-10-22 Sony Corporation Process for plasma enhanced anneal of titanium nitride
US5972178A (en) * 1995-06-07 1999-10-26 Applied Materials, Inc. Continuous process for forming improved titanium nitride barrier layers
US5858184A (en) * 1995-06-07 1999-01-12 Applied Materials, Inc. Process for forming improved titanium-containing barrier layers
US5685960A (en) 1995-11-27 1997-11-11 Applied Materials, Inc. Method for forming aluminum contacts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137549A (zh) * 2011-12-02 2013-06-05 中芯国际集成电路制造(上海)有限公司 阻挡层的形成方法和半导体器件
CN103137549B (zh) * 2011-12-02 2015-03-11 中芯国际集成电路制造(上海)有限公司 阻挡层的形成方法和半导体器件

Also Published As

Publication number Publication date
GB2319533B (en) 2001-06-06
GB2319533A (en) 1998-05-27
CN1110844C (zh) 2003-06-04
GB9724440D0 (en) 1998-01-14
US6174823B1 (en) 2001-01-16
JPH10199831A (ja) 1998-07-31
DE19751784A1 (de) 1998-05-28

Similar Documents

Publication Publication Date Title
CN1110844C (zh) 阻挡层的形成方法
TWI413179B (zh) 用於溝槽與介層洞輪廓修飾之方法
JP5451018B2 (ja) 選択的酸化プロセスの酸化物成長速度の改良方法
JP3228746B2 (ja) シランを用いないcvdにより窒化チタン上にタングステンを核生成する方法
US6107182A (en) Semiconductor device and method of fabricating the same
CN1169199C (zh) 用于铜互连的阻挡层的形成方法
JP5046506B2 (ja) 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体
CN1806315A (zh) Ti膜及TiN膜的成膜方法、接触结构、计算机能够读取的存储介质以及计算机程序
CN1788336A (zh) 隔离膜的形成方法及电极膜的形成方法
TW200903600A (en) Substrate cleaning chamber and cleaning and conditioning methods
JP2000174026A (ja) 半導体フィ―チャの低温銅リフロ―を改善する構造と方法
CN101053083A (zh) 半导体装置的制造方法和等离子体氧化处理方法
CN1732287A (zh) 氮化钨膜的成膜方法
JPH09190986A (ja) 窒化チタンバリア層の形成のための連続プロセス
CN1836317A (zh) 成膜方法、半导体装置的制造方法、半导体装置、基板处理系统
CN1149644C (zh) 在工件表面层用导电材料填充凹槽的方法
JP2008004841A (ja) 半導体装置及び半導体装置の製造方法
KR101102739B1 (ko) 성막 방법, 기판 처리 장치, 및 반도체 장치
KR101941766B1 (ko) 기판 처리 방법 및 기억 매체
JP2012212899A (ja) Cu膜の形成方法
CN1759202A (zh) 铪合金靶及其制造方法
JPH1174227A (ja) 半導体装置および該装置を形成するためのプロセス
US20020162507A1 (en) Self-renewing coating for plasma enhanced processing systems
KR100510917B1 (ko) 장벽층형성방법
JPH07114203B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030604