CN1191586C - 存储单元装置及其作为磁性ram与联合存储器的应用 - Google Patents

存储单元装置及其作为磁性ram与联合存储器的应用 Download PDF

Info

Publication number
CN1191586C
CN1191586C CNB988092301A CN98809230A CN1191586C CN 1191586 C CN1191586 C CN 1191586C CN B988092301 A CNB988092301 A CN B988092301A CN 98809230 A CN98809230 A CN 98809230A CN 1191586 C CN1191586 C CN 1191586C
Authority
CN
China
Prior art keywords
memory unit
bit line
bli
memory
word line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988092301A
Other languages
English (en)
Other versions
CN1270696A (zh
Inventor
T·拉姆克
W·勒斯纳
L·里施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN1270696A publication Critical patent/CN1270696A/zh
Application granted granted Critical
Publication of CN1191586C publication Critical patent/CN1191586C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/02Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using magnetic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
    • G11C15/046Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements using non-volatile storage elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种存储单元装置,带有字线(WLj)及与之垂直的位线(BLi)。在每个字线与位线之间接有一个磁阻效应(GMR)极大的存储元件(Si,j)。位线(BLi)均接在一个读放大器(OPi)上,利用该读放大器,各位线(BLi)的电位可调整为一个参考电位,且在读放大器上可量取一个输出信号。这种存储单元装置既可装配成MRAM,也装配成联合存储器。

Description

存储单元装置及其作为 磁性RAM与联合存储器的应用
本发明涉及一种存储单元装置,它的存储元件具有一种巨磁阻效应(GMR)的层状结构。
在专业领域内,采用GMR元件概念作为层状结构,该层状结构至少带有两个铁磁层,在两个铁磁层之间装有一个非磁性层,而且,这种层状结构具有所谓的GMR(巨磁阻)效应,也就是说,其磁阻效应极大。在GMR效应下,GMR元件的电阻处决于两铁磁层中的磁化作用是否达到平行或不平行。
文章(作为例子,参考D.D.Tang等人,IEDM95,第997-999页,D.D.Tang等人,IEEE关于磁学的学术报告,卷31,Nr.6,1995,第3206-3208页,F.W.Patten等人,国际非易失存储器技术参考,1996,第1-2页)中曾建议在一种存储单元装置中采用此类GMR元件作为存储元件。对此,GMR元件被用作存储元件,典型地,其铁磁层的磁化方向由附近的反铁磁层进行定位。存储元件通过位线进行列连接。字线与列线垂直,它们与列线及存储元件之间都是绝缘的。由于字线内的电流作用,字线上的信号将引发一个磁场,该磁场便对位于其中的存储元件产生作用。为了写入信息,在交叉位于所写存储单元之上的位线及字线中载入信号,这些信号在交叉点上产生一个足够大的磁场,以起到反复磁化作用。为了读出信息,在字线上加载了一个脉冲信号,相关的存储单元利用该脉冲信号可以在两种磁化状态之间切入或切出。通过位线测量出电流值,由这些电流值便可测出相应存储元件的电阻值。
在S.Tehrani等人,IEDM96,第193ff.页中,建议采用一种GMR元件作为存储元件,该GMR元件带有厚度各不相同的铁磁层。为写入信息,磁场作如下测定,即磁场只在两个铁磁层中较薄的一层中产生作用。磁化对两铁磁层中较厚的一层不产生作用。
对于这种存储单元装置,在利用脉冲信号进行读出的过程中,将需要很高的电路费用。
本发明的问题在于,提供一种带GMR元件的存储单元装置,其读出的电路费用可以很低。
这个问题可根据权利要求1所述的存储单元装置来实现。发明的其它构成方式由剩余的权利要求给出。
这种存储单元装置带有基本相互平行的字线及基本相互平行的位线,其中,字线同位线互相垂直。它的存储元件具有一种磁阻效应极大(GMR)的层状结构,亦称GMR元件,这些元件均接于字线与位线之间,且其电阻比字线与位线高得多。位线均与一种读放大器相连,通过该读放大器,每个位线可将电位调整到参考电位值,并可在读放大器上量取一个输出信号。为读出这种存储单元装置,所有未选定的字线都处于参考电位位置。而选定字线上的信号为另一种电位值。为此,电流通径为从选定的字线流向所有位线。根据各读放大器的输出信号,可由位于字线和各位线交叉点上的存储元件电阻来确定该读放大器的电气参数,如反馈电阻、参考电位、位线电阻等等。在读出这种存储单元装置时不需要脉冲信号。
优选地,读放大器内带有一种带反馈的运算放大器。运算放大器的非反相输入端同参考电位,如大地相连。位线与反相输入端相连。若参考电位为0V,在运算放大器安全的情况下,位线的电位即为0V。运算放大器的输出信号为所选存储元件电阻的一个测定标度。
在两种磁化状态下,假使GMR元件的电阻比位线及字线的电阻都要大得多,那么大家熟悉的所有GMR元件都可用来作为存储元件。电流在垂直流过叠层时所产生的GMR效应要比电流平行流过各层时大。
优选地,存储元件都带有两个铁磁层,在两个铁磁层之间装设一个非磁性的绝缘层。两个铁磁层中有一层装设在一种反铁磁层附近,由该反铁磁层来确定附近铁磁层中磁化作用的极化方向。每个存储元件均有两种磁化状态。采用绝缘非磁性层是比较有利的,其原因在于,在该构造中,通过在两个铁磁层之间装设一种绝缘非磁性层,便可利用自旋极化隧道电流来产生GMR效应,该效应比采用非绝缘非磁性层时要大得多。因此,可更好地区别不同的电阻值,在该存储单元装置中,电阻值设置为两个不同的逻辑值0与1。
替换的,存储元件也可都带两个铁磁层,在两个铁磁层之间装设一个非磁性绝缘层,两铁磁层中,其中一个比另一个铁磁层厚,或者,两铁磁层由磁性能各不相同的不同材料组成,或者,存储元件还带有一个非磁性的非绝缘层。
其它材料也可适用于这种铁磁层,它们至少含有下述元素之一,Fe、Ni、Co、Cr、Mn、Gd。铁磁层的最大厚度为20nm,优选地,其值位于2-10nm之间。对于用作隧道绝缘体的非磁性层来说,Al2O3、NiO、HfO2或TiO2、NbO、SiO2等绝缘材料比较适合。作为非绝缘材料,Cu或Ag适合用作非磁性层。非磁性层的厚度位于1-4nm之间,优选地为2-3nm。
为了往一个存储元件中写入信息,可在相关的字线与相关的位线上载入一个信号。由此,便有电流流经字线和位线,它们分别感应出一个磁场。在字线与位线的交叉点上有一个总磁场,它由两个磁场叠加产生,其大小能够使得该处的存储元件产生反复磁化作用。交叉点之外的单个磁场对该处的存储元件只产生极小的反复磁化作用。
在应用中,为了进行写入工作,需要一个较高的磁场,或使磁场达到一个期望值,另外,还可带有相互平行的写入线,如,这些写入线与位线基本保持平行,这也属于本发明的框架范围之内。写入线对着字线,且与位线保持绝缘。通过在相应的写入线上加载一个信号,交叉点上的磁场就可利用选定的字线进行放大,由此便补充了写入过程。
这种存储单元装置适合用作磁性RAM(MRAM)。
此外,该存储单元装置还可用作联合存储器进行工作。对此,每个位线都配给一种阈值元件,阈值元件同各个位线的读放大器输出端相接。
在一种联合存储器中,典型地,如K.Goser等人,IEEE Micro,9(1989)6,第28-44页所公布的,所有字线上都同时加有一个输入信号。输入信号与字线的位数相同。各个位线上有一个总电流,并利用阈值元件形成一个输出信号。在Goser等人,IEEE Micro,9(1989)6,第28-44页公布的联合存储器中,存储单元由一个常规的电阻或晶体管组成,并且交叉连接于字线与位线之间。在工作期间,该常规电阻及晶体管的值是不会改变的,这样存储器就不具备学习能力。同时,这种存储单元可实现为一种EEPROM单元,以实现编程的目的,然而它的制造费用较高。
如果采用本发明存储单元装置作为联合存储器,它会产生一个优点,即在工作期间,存储元件内的GMR元件可以随意进行频繁的反复编程。由此,联合存储器在工作期间可以学习到信息。
在本发明的另一种实施方案中,每两个位线带有一个差分放大器。差分放大器的输入端接在相关位线的读放大器输出端子上。该存储单元装置同样可优选地用作联合存储器,其中,每个存储元件都接在两个位线之间,且接有相同的字线,各存储元件相互互补地进行编程。读出时,在一个位线上形成另一个位线的互补信号。在差分放大器内,由这些互补信号形成输出信号。这种差分法改善了抗干扰性能,以防止过程变化太大。
下面根据附图所述的实施例来详细阐明本发明。
附图1为一种MRAM-装置的构造图。
附图2展示了一种带有相关位线、字线及写入线的存储元件。
附图3展示了一种联合存储器,它的每个位线都与一个阈值元件相连。
附图4展示了一种联合存储器,其中,每两个相邻的位线互补地进行编程,且同一个差分放大器相连。
存储单元装置带有相互基本平行的位线BLi,i=1,2,...n。与之垂直的为字线WLj,j=1,2,...m。字线WLj同样也相互基本平行。在位线BLi与字线WLj的交叉点上均布有一个存储元件Si,j(参考附图1)。
各个位线BLi都连接在运算放大器OPi,i=1,2,...n的反相输入端上。运算放大器OPi的非反相输入端接在地电位上。运算放大器OPi带有反馈功能,其反馈电阻为Rki。每个运算放大器OPi还带有一个输出端Ai。
存储元件Si,j均带有第一个铁磁层1、非磁性层2、第二个铁磁层3以及反铁磁层4(参考附图2)。第一个铁磁层1、非磁性层2、第二个铁磁层3表现为一种层状结构。典型地,第一个铁磁层1与第二个铁磁层3含有NiFe,其厚度为10nm。非磁性层2含有Al2O3,其厚度为2-3nm。反铁磁层4含有FeMn,其厚度为10-20nm。在由位线BLi与字线WLj夹紧的平面内,存储元件Si,j的典型截面积为0.25μm×0.25μm。
位线BLi及字线WLi均由Al、Cu组成,在确定其厚度时,Al中的电流密度不超过106A/cm2
第一个铁磁层1邻接在字线WLj上。反铁磁层4邻接在位线BLi上。位线BLi位于字线WLj的上方。当然,位线BLi也可位于字线WLj的下方。
字线WLj的下方为绝缘层5,典型地,它由SiO2组成,且厚度为10nm。该绝缘层将字线WLj和与其垂直的写入线SLi隔离开来。写入线SLi,i=1...n相互间基本平行。写入线SLi位于位线BLi的下方。
在这种存储单元装置中,存储元件Si,j均为逻辑值0与1配置了一个电阻值。
为了读出存储单元装置内所存储的信息,需要对字线WLj进行控制,以读出存于存储元件Si,j内的信息。对此,字线WLj被设为一种电位,如+1V。而其它所有的字线WL1,1≠j被设为0V。同样,所有位线BLi,i=1...n的电位也为0V,其原因在于,它们是连接在带反馈的运算放大器的反相输入端上,而该输入端总是调整在0V状态。运算放大器OPi的输出端Ai上可量取一个电压
Uout=1V*R/(Rx+R1)
在此,R为反馈电阻Rki的电阻值,Rx为存储元件Si,j的电阻值,而R1为字线WLj与位线BLi的导电元件电阻值,在该导电元件中流经有电流。由于其它值都已经知道,所以根据上述电压值可计算出存储元件Si,j的电阻值Rx。
位线BLi及字线WLj由金属组成,因此它们的电阻都很小。反馈电阻RKi典型地为100KΩ。如果第一个铁磁层1与第二个铁磁层3的磁化方向平行,则存储元件Si,j的电阻Rx约为100KΩ,如果第一个铁磁层1与第二个铁磁层3的磁化方向不平行,则存储元件Si,j的电阻Rx为110KΩ。位线BLi有100根,字线WLj有10000根。由此,根据上述存储元件Si,j的电阻值,输出信号的变化为100mV。若电阻比值R/(Rx+R1)为10,运算放大器OPi输出端Ai的电压值可放大到1V。
由于所有位线BLi的电压为0V,所以位线BLi之间不会产生寄生电流。电路路径只是在选定的字线WLj与所有位线之间流动。因而它有以下优点,即采用的字线WLj数目要多于位线BLi的数目。优选地,对于1Mbit的存储单元装置,它可由n=100个位线BLi与m=10000个字线构成。为此,只需要100个读放大器。100个存储元件Si,j都带有一个约为1KΩ的电阻,这些存储元件组成的并联电路将产生一种电流流入选定的字线WLj。由于此处的位线BLi不需要再充电,所以它们的长度并不重要。
为了往存储单元Si,j中写入信息,写入线SLi及字线WLj均要加入一定毫安级的电流。该电流在写入线SLi及字线WLj的周围分别感应出一个磁场,此磁场则在写入线SLi与字线WLj的交叉点上对第一个铁磁层1产生磁化作用。第二个铁磁层3的磁化作用由其附近的反铁磁层4来确定。
当然,写入线SLi也可同字线WLj保持平行。在这种情形下,通过控制位线BLi与写入线来写入信息。
在一种可作为联合存储器装配的存储单元装置中,带有相互平行的字线WL’j,j=1...m,以及与之垂直的基本相互平行的位线BL’i,i=1...n(参考附图3)。在位线BL’i与字线WL’j的交叉点上均装有一个存储元件S’i,j。存储元件S’i,j的构造类似于附图2所述的存储元件Si,j。位线BL’i均连接在运算放大器OP’i的反相输入端上,而放大器的非反相输入端与地电位相连,且带有反馈。运算放大器OP’i带有一个反馈电阻RK’i。运算放大器OP’i的输出端同阈值元件SWi的输入端相接。典型地,阈值元件SWi为一种高放大倍数的运算放大器,如放大倍数>100,或者为施密特触发器。运算放大器0P’i的测定方法与附图1及2所述的实施范例一样。
存储元件S’i,j可进行自由编程。此时有电流流经位线BL’I及字线WL’j。由此在位线BL’i与字线WL’j的周围感应出一个磁场。上述电流作如下选择,即该电流在位线BL’i与字线WL’j的交叉点处,也即在存储元件S’i,j处产生的磁场应当能够对存储元件S’i,j的第一个铁磁层产生磁化作用,并由此引起存储元件S’i,j的电阻变化。而在位线BL’i与字线WL’j的其它所有存储元件处的磁场都不足够产生磁化和引起电阻变化。根据电流方向,这种较大或较小的电阻值被编入存储元件S’i,j之中。
为了读出存储单元装置,在字线WL’j,j=1...m上加入一个信号,其形式为一种带m个分量的输入向量X。在此,X的分量设定为0V或Vdd。例如,Vdd采取1V。经过存储元件S’i,j,j=1...m有一个电流流入位线BL’i。这种总电流将流经反馈电阻RK’i,原因是,运算放大器OP’i的输入电阻极高,譬如大于100兆欧,而且调整电压Ui使得位线BL’i的电压为0V。根据运算放大器OP’i的电压Ui,阈值元件SWi形成一个输出值Yi,其大小可设为0V或Vdd。
另外还有一种存储单元装置,它同样适合用作联合存储器,它带有相互基本平行的字线WL”j,j=1...m,以及与之垂直的基本相互平行的位线BL”i,i=1...n(参考附图4)。在位线BL”i与字线WL”j的交叉点上均装有一个存储元件S”i,j,其构成形式类似于上文实施例。位线BL”i均连接在运算放大器OP”i的反相输入端上,而放大器的非反相输入端与地电位相连,且带有反馈。运算放大器OP”i带有一个反馈电阻RK”i。相邻位线BL”i,BL”i+1的运算放大器OP”i,OP”i+1其输出端接在差分放大器DVi,i=1,3,5...n-1的输入端子上(参考附图4)。
往这种存储单元装置内写入信息其过程类似于附图3所述的例子。在此,相邻位线BL”I、BL”i+1的存储元件S”i,j、S”i+1,j接在同一个差分放大器DVi上,且它们互补地进行编程。
在读出时,其过程类似于附图3所述的实施范例,在位线BL”i上将产生另一个位线BL”i+1的互补信号。运算放大器OP”I、OP”i+1的输出电压Ui,Ui+1给到差分放大器DVi上,以产生输出信号Yi。由此,一些干扰影响,如返回到过程变化的影响等可得到消除。

Claims (12)

1.一种存储单元装置,其中
—带有多个相互基本平行的字线(WLj)和多个相互基本平行的位线(BLi),且字线(WLj)与位线(BLi)垂直,
—存储元件(Si,j)具有一种巨磁阻效应(GMR)的层状结构,且连接在一个字线(WLj)与一个位线(BLi)之间,它的电阻要比字线(WLj)和位线(BLi)高,
—所述多个位线(BLi)分别与一个读放大器(OPi)相连接,利用读放大器(OPi)将每个位线(BLi)上的电位调整为一个参考电位,并且在读放大器上量取一个输出信号。
2.根据权利要求1的存储单元装置,其读放大器含有一个带反馈的运算放大器(OPi)。
3.根据权利要求1的存储单元装置,其中
—存储元件(Si,j)均带有两个铁磁层(1,3),且在两个铁磁层(1,3)之间装有一个非磁性层(2),
—带有一个反铁磁层(4),该反铁磁层位于一个铁磁层(3)的附近,并由它来确定附近铁磁层(3)中磁化作用的极化方向,
-—存储元件(Si,j)均具有两种磁化状态。
4.根据权利要求3的存储单元装置,其中
—每个铁磁层(1,3)含有下述元素中的一种或者多种,即Fe、Ni、Co、Cr、Mn、Gd,
—铁磁层(1,3)的厚度均小于或等于20nm,
—非磁性层(2)含有下述材料中的一种或者多种,即Al2O3、NiO、HfO2、TiO2、NbO、SiO2,其厚度位于1-4nm之间。
5.根据权利要求1-4之一的存储单元装置,其中,存储元件(Si,j)在字线(WLj)与位线(BLi)所夹紧的平面内的尺寸范围为0.1μm×0.1μm-2μm×20μm。
6.根据权利要求1-4之一的存储单元装置,其中,字线(WLj)的数目要多于位线(BLi)的数目。
7.根据权利要求1-4之一的存储单元装置,其中,带有基本平行的写入线(SLi),该写入线同字线(WLj)及位线(BLi)保持绝缘。
8.根据权利要求1-4之一的存储单元装置,其中,对于位线(BL’i)提供有阈值元件(SWi),而这些阈值元件(SWi)分别连接在读放大器(OP’i)的输出端上。
9.根据权利要求1-4之一的存储单元装置,其中,对于每两个位线(BL”i,BL”i+1)都提供有一个差分放大器(DVi),而差分放大器(DVi)的输入端分别连接在相关位线(BL”i)的读放大器(OP”i)的输出端上。
10.按照权利要求1-4之一的存储单元装置,所述存储单元装置被用作磁性RAM。
11.按照权利要求8的存储单元装置,所述存储单元装置被用作联合存储器。
12.按照权利要求9的存储单元装置,所述存储单元装置被用作联合存储器。
CNB988092301A 1997-09-17 1998-09-02 存储单元装置及其作为磁性ram与联合存储器的应用 Expired - Fee Related CN1191586C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19740942.3 1997-09-17
DE19740942 1997-09-17

Publications (2)

Publication Number Publication Date
CN1270696A CN1270696A (zh) 2000-10-18
CN1191586C true CN1191586C (zh) 2005-03-02

Family

ID=7842684

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988092301A Expired - Fee Related CN1191586C (zh) 1997-09-17 1998-09-02 存储单元装置及其作为磁性ram与联合存储器的应用

Country Status (8)

Country Link
US (1) US6490190B1 (zh)
EP (1) EP1016087B1 (zh)
JP (1) JP4187925B2 (zh)
KR (1) KR100564663B1 (zh)
CN (1) CN1191586C (zh)
DE (1) DE59804346D1 (zh)
TW (1) TW411471B (zh)
WO (1) WO1999014760A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853447A1 (de) * 1998-11-19 2000-05-25 Siemens Ag Magnetischer Speicher
GB9921752D0 (en) * 1999-09-15 1999-11-17 Wang Frank Z Diode-free cross-point array architecture for magnetic random access memories
US6473336B2 (en) * 1999-12-16 2002-10-29 Kabushiki Kaisha Toshiba Magnetic memory device
DE10010457A1 (de) * 2000-03-03 2001-09-20 Infineon Technologies Ag Integrierter Speicher mit Speicherzellen mit magnetoresistivem Speichereffekt
DE10030234C2 (de) 2000-06-20 2003-03-27 Infineon Technologies Ag Integrierter Speicher mit Speicherzellen mit magnetoresistivem Speichereffekt
DE10032275A1 (de) 2000-07-03 2002-01-24 Infineon Technologies Ag Integrierter Speicher mit Speicherzellen mit magnetoresistivem Speichereffekt und Verfahren zum Betrieb eines solchen Speichers
DE10032274A1 (de) * 2000-07-03 2002-01-24 Infineon Technologies Ag Integrierte Speicher mit Speicherzellen mit magnetoresistivem Speichereffekt
DE10034083C1 (de) 2000-07-13 2002-03-14 Infineon Technologies Ag Halbleiterspeicher mit wahlfreiem Zugeriff mit reduziertem Signalüberkoppeln
DE10034062A1 (de) 2000-07-13 2002-01-24 Infineon Technologies Ag Integrierter Halbleiterspeicher mit Speicherzellen in mehre-ren Speicherzellenfeldern und Verfahren zur Reparatur eines solchen Speichers
DE10037976C2 (de) * 2000-08-03 2003-01-30 Infineon Technologies Ag Anordnung zum verlustarmen Schreiben eines MRAMs
EP1187103A3 (en) 2000-08-04 2003-01-08 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element
TW531846B (en) 2000-08-09 2003-05-11 Infineon Technologies Ag Memory element and method for fabricating a memory element
DE10043440C2 (de) * 2000-09-04 2002-08-29 Infineon Technologies Ag Magnetoresistiver Speicher und Verfahren zu seinem Auslesen
DE10051173C2 (de) * 2000-10-16 2002-09-12 Infineon Technologies Ag Anordnung und Verfahren zur Verringerung des Spannungsabfalles entlang einer Wortleitung/Bitleitung eines MRAM-Speichers
DE10053965A1 (de) * 2000-10-31 2002-06-20 Infineon Technologies Ag Verfahren zur Verhinderung unerwünschter Programmierungen in einer MRAM-Anordnung
DE10058047A1 (de) * 2000-11-23 2002-06-13 Infineon Technologies Ag Integrierter Speicher mit einer Anordnung von nicht-flüchtigen Speicherzellen und Verfahren zur Herstellung und zum Betrieb des integrierten Speichers
DE10060432A1 (de) * 2000-12-05 2002-07-25 Infineon Technologies Ag Magnetoresistiver Speicher und Verfahren zu seinem Auslesen
JP3667244B2 (ja) * 2001-03-19 2005-07-06 キヤノン株式会社 磁気抵抗素子、それを用いたメモリ素子、磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの記録再生方法
DE10118197C2 (de) 2001-04-11 2003-04-03 Infineon Technologies Ag Integrierte magnetoresistive Halbleiterspeicheranordnung und Verfahren zum Beschreiben derselben
JP5019681B2 (ja) 2001-04-26 2012-09-05 ルネサスエレクトロニクス株式会社 薄膜磁性体記憶装置
JP2002353533A (ja) * 2001-05-29 2002-12-06 Sony Corp 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、および磁気メモリ
US6385079B1 (en) * 2001-08-31 2002-05-07 Hewlett-Packard Company Methods and structure for maximizing signal to noise ratio in resistive array
DE10144385C2 (de) * 2001-09-10 2003-07-24 Siemens Ag Standardzellenanordnung für ein magneto-resistives Bauelement und hierauf aufbauende elektronisch magneto-resistive Bauelemente
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
DE10158795B4 (de) 2001-11-30 2005-12-22 Infineon Technologies Ag Magnetoresistive Speicherzelle mit dynamischer Referenzschicht
KR100450794B1 (ko) * 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
DE60227907D1 (de) 2001-12-21 2008-09-11 Toshiba Kk Magnetischer Direktzugriffsspeicher
EP1321941B1 (en) * 2001-12-21 2005-08-17 Kabushiki Kaisha Toshiba Magnetic random access memory with stacked memory cells
US6795334B2 (en) 2001-12-21 2004-09-21 Kabushiki Kaisha Toshiba Magnetic random access memory
US6525957B1 (en) * 2001-12-21 2003-02-25 Motorola, Inc. Magnetic memory cell having magnetic flux wrapping around a bit line and method of manufacturing thereof
US6839269B2 (en) * 2001-12-28 2005-01-04 Kabushiki Kaisha Toshiba Magnetic random access memory
JP4040414B2 (ja) 2001-12-28 2008-01-30 株式会社東芝 磁気メモリ
KR100827518B1 (ko) * 2001-12-29 2008-05-06 주식회사 하이닉스반도체 전압 팔로워를 이용한 상변환 메모리 장치
JP2003242771A (ja) 2002-02-15 2003-08-29 Toshiba Corp 半導体記憶装置
US6665205B2 (en) 2002-02-20 2003-12-16 Hewlett-Packard Development Company, Lp. Shared global word line magnetic random access memory
KR100447141B1 (ko) * 2002-03-09 2004-09-07 (주)멜파스 차폐수단을 포함하는 반도체 지문감지장치
US6809981B2 (en) * 2002-04-10 2004-10-26 Micron Technology, Inc. Wordline driven method for sensing data in a resistive memory array
JP3873015B2 (ja) 2002-09-30 2007-01-24 株式会社東芝 磁気メモリ
US7986548B2 (en) * 2002-11-27 2011-07-26 Nxp B.V. Current re-routing scheme for serial-programmed MRAM
US6947313B2 (en) * 2003-08-27 2005-09-20 Hewlett-Packard Development Company, L.P. Method and apparatus of coupling conductors in magnetic memory
US7102916B2 (en) * 2004-06-30 2006-09-05 International Business Machines Corporation Method and structure for selecting anisotropy axis angle of MRAM device for reduced power consumption
JPWO2007043358A1 (ja) * 2005-10-07 2009-04-16 コニカミノルタオプト株式会社 セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置
US7236389B2 (en) * 2005-11-17 2007-06-26 Sharp Laboratories Of America, Inc. Cross-point RRAM memory array having low bit line crosstalk
US8159870B2 (en) 2008-04-04 2012-04-17 Qualcomm Incorporated Array structural design of magnetoresistive random access memory (MRAM) bit cells
US9929211B2 (en) * 2008-09-24 2018-03-27 Qualcomm Incorporated Reducing spin pumping induced damping of a free layer of a memory device
JP6481667B2 (ja) * 2016-07-20 2019-03-13 株式会社デンソー ニューラルネットワーク回路
US10256273B2 (en) * 2016-09-29 2019-04-09 Globalfoundries Singapore Pte. Ltd. High density cross point resistive memory structures and methods for fabricating the same
US10586598B2 (en) * 2017-09-14 2020-03-10 Silicon Storage Technology, Inc. System and method for implementing inference engine by optimizing programming operation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173873A (en) * 1990-06-28 1992-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High speed magneto-resistive random access memory
US5343422A (en) * 1993-02-23 1994-08-30 International Business Machines Corporation Nonvolatile magnetoresistive storage device using spin valve effect
JPH0766033A (ja) * 1993-08-30 1995-03-10 Mitsubishi Electric Corp 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
JP2774243B2 (ja) * 1994-05-27 1998-07-09 富士通株式会社 記憶装置
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
US5872739A (en) * 1997-04-17 1999-02-16 Radiant Technologies Sense amplifier for low read-voltage memory cells
US5838608A (en) * 1997-06-16 1998-11-17 Motorola, Inc. Multi-layer magnetic random access memory and method for fabricating thereof
DE19744095A1 (de) * 1997-10-06 1999-04-15 Siemens Ag Speicherzellenanordnung

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8505620B2 (en) 1998-11-20 2013-08-13 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8376052B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for surface production of gas from a subterranean zone
US8297377B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8316966B2 (en) 1998-11-20 2012-11-27 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8434568B2 (en) 1998-11-20 2013-05-07 Vitruvian Exploration, Llc Method and system for circulating fluid in a well system
US8371399B2 (en) 1998-11-20 2013-02-12 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8297350B2 (en) 1998-11-20 2012-10-30 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8376039B2 (en) 1998-11-20 2013-02-19 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US9551209B2 (en) 1998-11-20 2017-01-24 Effective Exploration, LLC System and method for accessing subterranean deposits
US8464784B2 (en) 1998-11-20 2013-06-18 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8469119B2 (en) 1998-11-20 2013-06-25 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8479812B2 (en) 1998-11-20 2013-07-09 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8291974B2 (en) 1998-11-20 2012-10-23 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface and tools therefor
US8511372B2 (en) 1998-11-20 2013-08-20 Vitruvian Exploration, Llc Method and system for accessing subterranean deposits from the surface
US8813840B2 (en) 1998-11-20 2014-08-26 Efective Exploration, LLC Method and system for accessing subterranean deposits from the surface and tools therefor
US8333245B2 (en) 2002-09-17 2012-12-18 Vitruvian Exploration, Llc Accelerated production of gas from a subterranean zone

Also Published As

Publication number Publication date
JP2001516933A (ja) 2001-10-02
KR100564663B1 (ko) 2006-03-29
EP1016087B1 (de) 2002-06-05
JP4187925B2 (ja) 2008-11-26
EP1016087A1 (de) 2000-07-05
TW411471B (en) 2000-11-11
KR20010024102A (ko) 2001-03-26
DE59804346D1 (de) 2002-07-11
WO1999014760A1 (de) 1999-03-25
US6490190B1 (en) 2002-12-03
CN1270696A (zh) 2000-10-18

Similar Documents

Publication Publication Date Title
CN1191586C (zh) 存储单元装置及其作为磁性ram与联合存储器的应用
US8711608B2 (en) Memory with separate read and write paths
US7936580B2 (en) MRAM diode array and access method
US7961509B2 (en) Spin-transfer torque memory self-reference read and write assist methods
US5343422A (en) Nonvolatile magnetoresistive storage device using spin valve effect
US8406041B2 (en) Scalable magnetic memory cell with reduced write current
WO2020149939A1 (en) Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
EP1993098A1 (en) MRAM cell with multiple storage elements
KR100997023B1 (ko) 스핀 토크 자기 메모리 및 그 오프셋 자계 보정 방법
JP2010507907A (ja) 垂直磁化及び相互作用相殺中間層を備えた磁気デバイス
CN1842873A (zh) 向多态磁随机访问存储器单元进行写入的方法
US20060056223A1 (en) Mram-cell and array-architecture with maximum read-out signal and reduced electromagnetic interference
US6667901B1 (en) Dual-junction magnetic memory device and read method
KR100439653B1 (ko) 메모리 셀 배열 및 그 동작 방법
US7312506B2 (en) Memory cell structure
JP2007305823A (ja) 磁気抵抗効果素子を用いたメモリおよびその駆動方法
WO2010041719A1 (ja) 記憶素子
JP4110132B2 (ja) 磁気抵抗効果素子
CN116801706A (zh) 抗磁场干扰的自旋轨道磁性随机存储器及信息存储方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: INFINEON TECHNOLOGIES AG

Free format text: FORMER NAME: INFENNIAN TECHNOLOGIES AG

CP01 Change in the name or title of a patent holder

Address after: Munich, Germany

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: INFINEON TECHNOLOGIES AG

TR01 Transfer of patent right

Effective date of registration: 20120120

Address after: Munich, Germany

Patentee after: QIMONDA AG

Address before: Munich, Germany

Patentee before: Infineon Technologies AG

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151228

Address after: German Berg, Laura Ibiza

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: QIMONDA AG

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050302

Termination date: 20160902

CF01 Termination of patent right due to non-payment of annual fee