CN1190449A - 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机 - Google Patents
液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机 Download PDFInfo
- Publication number
- CN1190449A CN1190449A CN96195047A CN96195047A CN1190449A CN 1190449 A CN1190449 A CN 1190449A CN 96195047 A CN96195047 A CN 96195047A CN 96195047 A CN96195047 A CN 96195047A CN 1190449 A CN1190449 A CN 1190449A
- Authority
- CN
- China
- Prior art keywords
- heat
- make
- gas
- gas turbine
- exchange fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007789 gas Substances 0.000 title claims abstract description 98
- 239000003949 liquefied natural gas Substances 0.000 title claims description 130
- 239000012530 fluid Substances 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000446 fuel Substances 0.000 claims abstract description 26
- 239000000567 combustion gas Substances 0.000 claims abstract description 15
- 239000006200 vaporizer Substances 0.000 claims description 52
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 45
- 238000009434 installation Methods 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 29
- 239000002918 waste heat Substances 0.000 claims description 18
- 238000010248 power generation Methods 0.000 claims description 15
- 239000002912 waste gas Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 239000002699 waste material Substances 0.000 claims description 10
- 238000000280 densification Methods 0.000 claims description 9
- 238000002309 gasification Methods 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 8
- 230000005494 condensation Effects 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 2
- 238000007906 compression Methods 0.000 claims 2
- 238000010304 firing Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 239000007859 condensation product Substances 0.000 claims 1
- 239000002351 wastewater Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 230000005611 electricity Effects 0.000 description 9
- 239000003345 natural gas Substances 0.000 description 7
- 238000005057 refrigeration Methods 0.000 description 6
- 239000011435 rock Substances 0.000 description 5
- 230000004087 circulation Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 239000000659 freezing mixture Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
- F02C7/143—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0316—Water heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/05—Regasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/07—Generating electrical power as side effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0581—Power plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
一种提高发电装置发电能力和效率的方法和系统。液化天然气系统(12)供给发电装置燃料。气化的液化天然气在燃烧器(30)中与从空气压缩机(28)来的空气混合,从而向燃气轮机(32)提供炽热的燃烧气体。利用液化天然气的膨胀来冷却(16)热交换流体例如水,该热交换流体冷却(24)和致密进入空气压缩机(28)的进入空气。随后在另一个热交换步骤(46)中应用该热交换流体,然后再被冷却并再循环,以冷却和致密进入空气。
Description
本发明涉及在混合循环发电装置(燃气轮机装置/蒸汽轮机装置)或燃气轮机装置中应用液化天然气。使液化天然气再气化并冷却热交换流体,该流体用于冷却进入燃气轮机的空气使其致密。然后在一个或多个热传输步骤中应用该热交换流体。再气化的液化天然气用作燃气轮机的燃料,也可送给其它发电装置及天燃气分配系统。
当今此领域的作法是应用带废热锅炉的燃气轮机并使燃气轮机装置与蒸汽轮机装置联用。燃气轮机和蒸汽轮机各自驱动它们自己的发电机或通过公共轴驱动一个发电机。这些称作混合循环装置的混合装置其特征一般是它们的转换效率高,其数值范围在50~52%。由于燃气轮机与至少一个蒸汽轮机配合操作所以得到这种高的效率。使燃气轮机的废气通过废热锅炉,利用这些废气中的潜在的余热产生蒸汽轮机所需的蒸汽。液化天然气已用在联合循环装置中作燃烧能量源。
液化天燃气通常用海运,以冷冻液体形式装在一个特制容器中。在到达目的地时,压力约为大气压而温度约为-260°F的这些冷冻液体必须重新气化,并在环境温度下和在适当的高压下例如通常可增压到80个大气压的条件下输送到分配系统。该液体被泵到要求的压力,使得在加热和重新气化时,不需要再压缩所形成的天然气。
虽然已提出许多建议和制造了一些装置来利用液化天然气的大量低温潜能,但在大多数收货目的地这种低温潜能被浪费了,液化天然气只是简单地用大量海水进行加热,该海水必须以防止结冰的方式进行加热。
在少数目的地,低温潜能被用于分离空气的装置中或类似的冷冻装置中,或用于冷冻和贮存食品的制冷。也已提出在发电循环中用液化天然气作冷源以产生电能。已经提出许多可能的循环来克服由于加热液化天然气过程的大的温差以及加热曲线的特殊形状所造成的困难。然而已经发现,采用相对简单的循环只能利用一小部分可利用的低温潜能。而增加效率的方案又需应用更复杂的循环,这种循环涉及许多在不同压力水平工作的涡轮机。
美国专利No.3,978,663概括地公开了一种方法,应用液化天然气冷却进入空气流以提高燃气轮机的效率。然而该过程要求将冷却剂与空气混合,以降低分离水的冰点。
美国专利No.4,036,028也公开了应用液化天然气来冷却燃气轮机的进入空气,但冷却剂仍需要与空气混合以防止分离水的结冰。
美国专利No.4,995,234公开了一种发电系统,该系统利用高压天然气和高压高温二氧化碳来驱动涡轮机。为冷却燃气轮机的进入空气,使进入空气与天然气形成直接的热交换关系。
在我们的原始申请中,该发明概括地实施一种系统和方法,该系统和方法可以提高联合循环装置的发电能力9%,装置的效率提高约2%,特别是大气温度超过60°F时。在该发明中,使一种液化天然气燃料输送系统与联合循环装置相结合。在一个两步过程中,初级热交换流体首先在天然气燃料输送系统中被冷却,然后在燃气轮机过程中被用来冷却进入燃气轮机的空气使其致密。初级热交换流体在蒸汽轮机过程中还用于冷凝从蒸汽轮机出来的废蒸汽。最后使初级热交换流体再回到液化天然气输送系统,在该系统中它又被重新冷却。该初级热交换流体流过一个封闭环路,冷却进入空气使其致密、冷凝从蒸汽轮机排出的蒸汽,然后再于液化天然气输送系中被冷却。
本申请公开了在我们的原始申请的发明中的另两个可替代的实施例,此实施例同样提高发电能力9%和效率2%。本申请在重新气化液化天然气时可以很有效地应用液化天然气的热能。热交换流体在液化天然气燃料输送系统中通过一个单一步骤被冷却,冷却的热交换流体最初用来冷却进入燃气轮机的空气和使其致密。该热交换流体随后在发电过程中的至少一个其它的热传输步骤中被利用,然后它再循环并由膨胀的液化天然气再冷却。在本发明的一个实施例中热交换流体在冷却进入的空气和使其致密之后流过与蒸汽轮机装置连接的冷凝器,随后再被冷却。在本发明的另一实施例中,热交换流体在冷却进入的空气和使其致密之后流过回收热量的热交换器,然后再被冷却。
更具体地,在本发明的一个实施例中,热交换流体即水/乙二醇混合物流过液化天然气燃料传输系统中的重新气化器/冷却器(热交换器)。该热交换流体然后流过在燃气轮机装置中的热交换器。以气化的液化天然气作燃料的燃气轮机装置驱动发电机。燃气轮机装置具有进入空气管、热交换器、水分离器、空气压缩机、燃烧器、燃气轮机和废气出口。该热交换器配置在进入空气管中。该热交换流体流过热交换器,供给冷的制冷剂流,用于冷却随后进入空气压缩机的空气流和使其致密。
废热锅炉位于燃气轮机的下游,与燃气轮机的排气口相通。燃气轮机的废气将通过锅炉的水流转换成高压蒸汽。
蒸汽轮机装置包括蒸汽轮机和排出的蒸汽的冷凝器。锅炉中来的蒸汽用于驱动蒸汽轮机。蒸汽轮机的排放蒸汽流过冷凝器。该热交换流体也流过冷凝器并使排放的蒸汽冷凝。热交换流体然后返回流过液化天然气燃料输送系统的再气化器/冷凝器。
在本发明的另一实施例中,热交换流体即水/乙二醇混合物流过液化天然气燃料输送系统中的再气化器/冷却器(热交换器)。液化天然气冷却随后流过燃气轮机装置中的热交换器的热交换流体。用气化的液化天然气作燃料的燃气轮机装置驱动发电机。燃气轮机装置具有空气进入管、热交换器、水分离器、空气压缩机、燃烧器、燃气轮机和废气出口。热交换器配置在空气进入管中。初级热交换流体流过该热交换器,并构成一种致冷流体,冷却流入空气压缩机的进入空气和使其致密。
回收热量的热交换器位于燃气轮机的下游并与燃气轮机的排气口连通。热交换流体流过回收热量的热交换器。随后热交换流体返回通过液化天然气燃料输送系统中的再气化器/冷却器。
图1是实施本发明的一种系统的流程图;
图2是实施本发明的另一种系统的流程图;以及
图3示出图1或图2系统中改进的再气化器/冷却器。
参照图1,本发明一个实施例系统包括液化天然气燃料输送系统10和混合循环的发电装置,该装置包括燃气轮机装置20、蒸汽轮机装置40和位于两个装置之间的废热锅炉36。热交换流体的循环泵未示出。
液化天然气燃料输送系统10包括供应罐12、泵14和再气化器/冷却器(热交换器)16。
从再气化器/冷却器16流出的天然气流到燃气轮机装置20和其它发电装置,和/或流到天然气分配系统。燃气轮机装置包括空气进入管22、装在该管中的热交换器24和位于空气压缩机28的上游的用于过滤水和杂质的下游过滤器26。
从液化天然气燃料输送系统10的再气化器/冷却器16流出的水流过热交换器24。进入空气流过热交换器24并被冷却变得致密。然后使冷却致密的空气流入空气压缩机28。
燃烧器30接收空气压缩机28来的进入空气,并使其与再气化器/冷却器16来的天然气混合,然后将炽热的燃烧气体送到燃气轮机32。
燃烧气体驱动燃气轮机32和相关的发电机34。空气压缩机28、燃气轮机32和发电机34最好装在同一驱动轴上。
燃气轮机32的废气流入废热锅炉36,在该处,流过盘管38的水被转化成高压蒸汽。
蒸汽轮机装置40包括蒸汽轮机42及相连的发电机44。该蒸汽轮机42和发电机44最好装在同一驱动轴上。或者在一个与燃气轮机和蒸汽轮机共用的轴上装一个较大的发电机。在蒸汽轮机42的下游是冷凝器46,热交换流体流过该冷凝器。如果液化天然气燃料输送系统脱机或不适合于要求的冷却功能,可以设置辅助冷凝器48。冷凝器46冷凝蒸汽轮机42的排出废蒸汽,冷凝后再使其流回废热锅炉36。然后热交换流体经缓冲罐50回到再气化器/冷却器16。
热交换流体(热水)流入缓冲罐50,该罐起着“飞轮”的作用,从该罐热交换流体被泵到再气化器/冷却器16。该缓冲罐中的流体也可用在其它需要约95°F低温热的地方。如果流体没有从混合循环装置获得热量,则可以用一个预备加热器(未示出)使流体被加温到足以提供需要的热量。
如果液化天然气的再气化器不工作,则混合循环装置可以用足够的外部冷却水来冷却整个的冷凝负载,其操作可以独立于液化天然气的再气化器。如果发电装置不工作,则液化天然气的再气化器可以脱离发电装置工作,此时只需采用外部预备加热器加热循环水。
参考图2,该图示出本发明另一实施例系统,该系统包括液化天然气燃料输送系统100、燃气轮机装置120和回收热量的热交换器136,该热交换器位于燃气轮机装置120和燃料输送系统100之间。未示出循环热交换流体用的循环泵。
液化天然气燃料输送系统10包括供应罐112、泵114和再气化器/冷却器116。
从再气化器/冷却器116流出的天然气流到燃气轮机装置120和其它发电装置,和/或天然气分配系统。燃气轮机装置包括空气进入管122、装在该管中的热交换器124和位于空气压缩机128上游的过滤水和杂质的下游过滤器126。
从液化天然气燃料输送系统100中的再气化器/冷却器116中流出的水流过热交换器124。进入空气穿过该热交换器并被冷却和变得致密。冷却致密的空气流入空气压缩机128。
燃烧器130接受空气压缩机128来的空气,并使其与再气化器/冷却器116来的天然气混合,随后将炽热的燃烧气体送入燃气轮机132。
燃烧气体驱动燃气轮机132及相连的发电机134。空气压缩机128、燃气轮机132和发电机134最好装在同一驱动轴上。
燃气轮机132排出的废气流过回收热量的热交换器136。热交换流体从热交换器124流出,流过盘管138,然后经缓冲罐150流入再气化器/冷却器116。
热交换流体(热水)流入缓冲罐150,该罐起着“飞轮”的作用,从该罐将热交换流体泵入再气化器/冷却器116。在缓冲罐150中的流体也可以用在其它需要约95°F或更低温度的“低度”热的地方。如果流体没有从回收热量的热交换器获得热量,则可以利用预备加热器(未示出)使水温升到足以提供需要的热量。
参考图3,在图1和图2所示系统的另一实施例中,再气化器/冷却器16(116)被改变,以便在热交换流体的一侧适应结冰条件。在水而不是水/乙二醇混合物被用作热交换流体时,这是特别需要的。具体是,从缓冲罐50(150)流出的约95°F的热水流过热交换器160,被冷却到约35°F并流过空气进入管22(122)。水/乙二醇混合物利用泵162泵过封闭环路中的热交换器160和再气化器/冷却器14(114),以冷却热的流体。再气化的液化天然气从供应罐12(112)流过再气化器/冷却器14(114),进入燃烧器30(130),其时温度约45°F。
对于本发明的两个实施例,热交换流体均在封闭环路中流动。
热交换流体最好是水/乙二醇混合物,以避免纯水在液化天然气燃气输送系统中结冰的可能性。水/乙二醇的比例可在4∶1到1∶1之间变化。
用于再气化液化天然气的热交换流体由液化天然气冷却到例如35°F的低温,然后返回燃气轮机装置,预冷燃气轮机的燃烧空气。如果大气在60F~100°F之间的温度进入空气进入管,则可控制图1和图2所示系统的能量和物质平衡,使进入空气的温度减小至约40~60°F之间。
在液化天然器再气化系统中的再气化器/冷却器(热交换器)是逆向流动装置,采用最小进入温度25°F。在冷端的壁温稍低于32°F。薄层冰将减小热传输系数,从而足以使冰的外部升到32°F。采用水/乙二醇混合物时,液化天然气的再气化器/冷却器中的流体的温度如下:
进入的水/乙二醇温度 95°F
流出的水/乙二醇温度 35°F
进入的液化天然气温度 -260°F
流出的天然气温度 45°F应用水时作为液化天然气的再气化器/冷却器中的流体的温度如下:
水的进入温度 95°F
水的流出温度 35°F
液化天然气进入温度 -260°F
天然气流出温度 45°F
调节流出口上的控制阀(未示出)便可控制流出再气化器/冷却器的热交换流体的温度,因此,当可用的制冷作用降低时即液化天然气的流量降低时,便可减小流体流量。
在再气化器/冷却器中冷却的热交换流体主要用于预冷却燃气轮机用的燃烧空气。冷却的流体也可以用于冷却各种装置,包括用在需要例如35°F或更高温度的“低度”冷却作用的其它地方。
液化天然气燃料输送系统可以提供大量制冷,用于冷却发电装置以及内部。相反发电装置却可以向液化天然气燃料输送系统提供大量热量而不降低装置的操作性能。在发电装置和液化天然气燃料输送系之间循环的热交换流体实现了这种热交换。
上述说明局限于本发明特定的实施例。但是显而易见的是,对此可以进行改变和变型,并同时获得本发明的一些或全部优点。因此所附权利要求书的目的是包含属于本发明实质精神和范围内的所有这些改变和变型。
Claims (24)
1.一种增加混合循环发电装置的发电能力和效率的方法,该方法包括以下步骤:
使液化天然气流入再气化器/冷却器;
使热交换流体流入再气化器/冷却器,从而再气化液化天然气并冷却热交换流体;
使冷却的热交换流体流过热交换区域,空气压缩机的进入空气流过该热交换区域,从而被冷却和变得致密;
在空气压缩机中压缩所述冷却的致密空气;
使再气化的液化天然气与压缩空气在燃烧室中混合,形成炽热的燃烧气体;
将炽热的燃烧气体送入燃气轮机以驱动该燃气轮机;
从燃气轮机排出废气;
使热交换流体流过冷凝器,从而冷凝从高压蒸汽轮机中排出的废蒸汽;
随后使热交换流体与再气化器/冷却器中的液化天然气构成热交换关系。
2.如权利要求1所述的方法,该方法包括:
使燃气轮机的废气从燃气轮机流到废热锅炉;
使水流过废热锅炉;
使废气与水形成热交换关系,从而使水转换成高压蒸汽;
从废气锅炉中放出高压蒸汽。
3.如权利要求2所述的方法,包括:
使高压蒸汽流到蒸汽轮机;
从蒸汽轮机中放出废蒸汽;以及
使热交换流体与废蒸汽形成热交换关系,从而冷凝该废蒸汽。
4.如权利要求1所述的方法,包括:将混合循环发电装置的发电能力提高达9%。
5.如权利要求1或4所述的方法,包括:将混合循环发电装置的发电效率提高约2%。
6.一种增加混合循环发电装置发电能力和效率的方法,该混合循环发电装置包括燃气轮机装置、废热锅炉和蒸汽轮机装置,该方法包括:
使液化天然气流入再气化器/冷凝器;
使热交换流体流入再气化器/冷却器,从而使液化天然气再气化和冷却热交换流体;
使再气化的液化天然气流入燃气轮机装置中的燃烧器;
使冷却的热交换流体流过热交换区域,燃气轮机装置中空气压缩机的进入空气流过该热交换区域,该热交换流体冷却该进入空气和使其致密;
使冷却的致密空气与燃烧器中的再气化的液化天然气混合,从而产生灼热的燃烧气体;
使灼热燃烧气体流过燃气轮机装置中的燃气轮机以驱动该燃气轮机;
从燃气轮机中放出灼热废气,并使该废气流入废热锅炉;
将通过该废热锅炉的水转变成蒸汽并放出上述蒸汽;
将上述蒸汽引入到蒸汽轮机装置中的蒸汽轮机,以驱动该蒸汽轮机并形成废蒸汽;
使该废蒸汽通过冷凝器;
使从空气压缩机上游的热交换区流出的热交换流体流过该冷凝器,从而冷凝废蒸汽;以及
使热交换流体从冷凝器流入再气化器/冷却器。
7.如权利要求6所述的方法,包括:使热交换流体与进入空气形成间接的热交换关系。
8.如权利要求6所述的方法,其特征在于,热交换流体是水/乙二醇混合物。
9.如权利要求8所述的方法,其特征在于,进入再气化器/冷却器的水/乙二醇混合物的温度约为95°F,流出再气化器/冷却器的水/乙二醇的温度约为35°F,流出再气化器/冷却器的气化的液化天然气的温度约为45°F。
10.如权利要求6所述的方法,包括:将混合循环发电装置的发电能力提高达9%。
11.如权利要求6所述的方法,包括:将混合循环发电装置的发电效率提高约2%。
12.一种液化天然气混合循环发电装置系统,该系统包括:
液化天然气燃料输送系统,该系统包括:
液化天然气源;
与液化天然气源流体相通的液化天然气的再气化器/冷却器;
使热交换流体流过再气化器/冷却器从而使热交换流体冷却的装置;
燃气轮机装置,该装置包括:
空气压缩机;
位于上述空气压缩机上游的空气进入管;
与空气进入系统形成热交换关系的热交换器;
使热交换流体流过热交换器从而冷却和致密该进入空气的装置,该进入空气经空气管进入压缩机;
燃气轮机;
位于空气压缩机和燃气轮机之间的燃烧器,该燃烧器提供能量驱动燃气轮机;
连接于燃气轮机的发电机;
使气体从燃气轮机排出的装置;
位于燃气轮机下游的废热锅炉,包括:
将燃气轮机的废气引入废热锅炉的装置;
产生高压蒸汽的装置;以及
将高压蒸汽从废热锅炉中放出的装置;
蒸汽轮机装置,包括:
蒸汽轮机,位于废热锅炉的下游,适合于接收废热锅炉中放出的高压蒸汽;
连接于蒸汽轮机并由该蒸汽轮机驱动的发电机;
冷凝器,冷凝蒸汽轮机排出的废蒸汽,所述初级热交换流体流过该冷凝器;
使冷凝物再返回废热锅炉的装置;
使热交换流体从冷凝器流到再气化器/冷却器的装置。
13.如权利要求12所述的系统,还包括:
使热交换流体与进入空气形成间接热交换关系的装置。
14.一种增加燃气轮机装置能力和效率的方法,该方法包括:
使液化天然气流入再气化器/冷却器;
使热交换流体流入再气化器/冷却器,以使液化天然气气化和冷却热交换流体;
使冷却的热交换流体流过热交换区,空气压缩机的进入空气流过该热交换区,从而被冷却和变得致密;
在空气压缩机中压缩冷却的致密空气;
使再气化的液化天然气与该压缩空气在燃烧器中混合,从而形成炽热的燃烧气体;
将炽热的燃烧气体送入燃气轮机,以驱动该燃气轮机;
使燃气轮机中排出的废气流入回收热量的热交换器;
使热交换流体流过回收热量的热交换器,从而加热热交换流体;以及
随后使热交换流体与再气化器/冷却器中的液化天然气形成热交换关系。
15.如权利要求14所述的方法,包括:将燃气轮机装置的能力提高达9%。
16.如权利要求14所述的方法,包括:将燃气轮机装置的效率提高约2%。
17.一种提高燃气轮机装置能力和效率的方法,该方法包括:
使液化天然气流入再气化器/冷却器;
使热交换流体流入再气化器/冷却器,以使液化天然气再气化并冷却热交换流体;
使再气化的液化天然气流入燃气轮机装置中的燃烧器;
使冷却的热交换流体流过热交换区,燃气轮机装置中的空气压缩机的进入空气流过该热交换区,该热交换流体冷却和致密进入空气;
使冷却的致密空气与再气化的液化天然气在燃烧室中混合,从而产生炽热的燃烧气体;
使炽热的燃烧气体流入燃气轮机装置中的燃气轮机,以驱动该燃气轮机;
从燃气轮机中放出灼热的废气,并使该废气流入回收热量的热交换器;
使从空气压缩机上游的热交换区流出的热交换流体流过回收热量的热交换器,使其被加热;以及
使从冷凝器流出的热交换流体流入再气化器/冷却器。
18.如权利要求17所述的方法,包括:
使热交换流体与进入空气形成间接热交换关系。
19.如权利要求17所述的方法,其特征在于,所述热交换流体是水/乙二醇混合物。
20.如权利要求19所述的方法,其特征在于,进入再气化器/冷却器的水/乙二醇混合物的温度约为95°F,流出再气化器/冷却器的水/乙二醇混合物的温度约为35°F,流出再气化器/冷却器的再气化的液化天然气约为45°F。
21.如权利要求17所述的方法,包括:将混合循环发电装置的发电能力提高达9%。
22.如权利要求17所述的方法,包括:将混合循环发电装置的发电效率提高约2%。
23.一种使用液化天然气的混合循环的发电装置系统,该系统包括:
液化天然气燃料输送系统,该系统包括:
液化天然气源;
与液化天然气气源流体相通的液化天然气的再气化器/冷却器;
使热交换流体流过再气化器/冷却器以冷却热交换流体的装置;
燃气轮机装置,该装置包括:
空气压缩机;
位于上述空气压缩机上游的空气进入管;
与空气进入系统形成热交换关系的热交换器;
使热交换流体流过该热交换器的装置,从而冷却和致密流过空气管进入压缩机的进入空气;
燃气轮机;
位于空气压缩机和燃气轮机之间的燃烧器,该燃烧器提供能量驱动燃气轮机;
连接于燃气轮机的发电机;以及
从燃气轮机中排出气体的装置;
位于燃气轮机下游的回收热量的热交换器,该热交换器包括:
使燃气轮机中的废气流入回收热量的热交换器的装置;
使热交换流体流过回收热量的热交换器的装置,从而加热该流体;
使热交换流体从回收热量的热交换器流入再气化器/冷却器的装置。
24.如权利要求23所述的系统,该系统包括:
使热交换流体与进入空气形成间接热传输关系的装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45660595A | 1995-06-01 | 1995-06-01 | |
US08/456,605 | 1995-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1190449A true CN1190449A (zh) | 1998-08-12 |
CN1112505C CN1112505C (zh) | 2003-06-25 |
Family
ID=23813436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN96195047A Expired - Fee Related CN1112505C (zh) | 1995-06-01 | 1996-05-03 | 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机 |
Country Status (11)
Country | Link |
---|---|
US (1) | US6374591B1 (zh) |
EP (1) | EP0828925B1 (zh) |
JP (1) | JP4166822B2 (zh) |
CN (1) | CN1112505C (zh) |
AU (1) | AU6146196A (zh) |
BR (1) | BR9609028A (zh) |
ES (1) | ES2219686T3 (zh) |
PT (1) | PT828925E (zh) |
TR (1) | TR199701473T1 (zh) |
TW (1) | TW358851B (zh) |
WO (1) | WO1996038656A1 (zh) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100462531C (zh) * | 2005-09-01 | 2009-02-18 | 西安交通大学 | 一种提高联合循环电厂效率的系统和方法 |
CN101806293A (zh) * | 2010-03-10 | 2010-08-18 | 华南理工大学 | 一种提高液化天然气冷能发电效率的集成优化方法 |
CN102203531A (zh) * | 2008-11-04 | 2011-09-28 | 海威气体系统公司 | 用于低温液化工艺中的组合式循环机械驱动的系统 |
CN1820163B (zh) * | 2003-06-05 | 2012-01-11 | 弗劳尔科技公司 | 具有液化天然气再气化的动力循环 |
CN102428311A (zh) * | 2009-05-14 | 2012-04-25 | 塞万海洋股份有限公司 | 与生产电能结合的液化天然气和液化石油气的再气化装置 |
CN101238321B (zh) * | 2005-01-21 | 2014-07-02 | 克里奥斯塔股份有限公司 | 天然气供应方法和装置 |
CN104110573A (zh) * | 2013-04-18 | 2014-10-22 | 气体科技能源概念公司 | 用于喷枪、燃料电池、热喷涂、热去毛刺和富勒烯制造设备的燃料模块 |
CN104583544A (zh) * | 2012-06-26 | 2015-04-29 | 萨克塞斯股份有限公司 | 利用一orc回路产生电能的装置 |
CN105115245A (zh) * | 2015-08-11 | 2015-12-02 | 中海油能源发展股份有限公司北京冷能利用研究所 | 利用液化天然气冷能捕集液化二氧化碳的系统装置及其方法 |
CN105840316A (zh) * | 2016-06-12 | 2016-08-10 | 华电郑州机械设计研究院有限公司 | 一种利用lng冷能进行燃气轮机进气冷却除湿的系统 |
CN106415143A (zh) * | 2014-05-30 | 2017-02-15 | 分布式存储技术有限责任公司 | 冷却系统和方法 |
CN108137145A (zh) * | 2015-10-16 | 2018-06-08 | 科莱斯达公司 | 为至少供应发动机的目的用于处理蒸发气体的方法和装置 |
CN108952966A (zh) * | 2017-05-25 | 2018-12-07 | 斗山重工业建设有限公司 | 联合循环发电设备 |
CN109812307A (zh) * | 2018-12-14 | 2019-05-28 | 浙江理工大学 | 天然气压力能回收装置及方法 |
CN109821341A (zh) * | 2019-03-20 | 2019-05-31 | 赫普科技发展(北京)有限公司 | 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法 |
CN109838684A (zh) * | 2019-01-25 | 2019-06-04 | 集美大学 | 水下航器废气的使用和储存装置及其方法 |
Families Citing this family (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19717267B4 (de) * | 1997-04-24 | 2008-08-14 | Alstom | Verfahren zur Aufbereitung von tiefgekühltem Flüssiggas |
DE19725822A1 (de) * | 1997-06-18 | 1998-12-24 | Linde Ag | Verfahren zum Betreiben eines Gas- oder Dampfturbinen-Kraftwerks |
DE19745272C2 (de) * | 1997-10-15 | 1999-08-12 | Siemens Ag | Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage |
EP1208293A4 (en) * | 1999-07-22 | 2005-10-05 | Bechtel Corp | METHOD AND APPARATUS FOR VAPORIZING A LIQUID GAS IN A COMBINED CYCLE POWER PLANT |
GB0129607D0 (en) * | 2001-12-11 | 2002-01-30 | Sui See C | Exhaust eater energy generator |
MXPA04008283A (es) * | 2002-02-27 | 2005-07-26 | Excelerate Ltd Partnership | Metodo y aparato para la regasificacion de gas natural licuado a bordo de un transportador. |
US7219502B2 (en) * | 2003-08-12 | 2007-05-22 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
US7028481B1 (en) | 2003-10-14 | 2006-04-18 | Sandia Corporation | High efficiency Brayton cycles using LNG |
WO2005041396A2 (en) * | 2003-10-22 | 2005-05-06 | Scherzer Paul L | Method and system for generating electricity utilizing naturally occurring gas |
US7119460B2 (en) * | 2004-03-04 | 2006-10-10 | Single Buoy Moorings, Inc. | Floating power generation system |
JP5202945B2 (ja) | 2004-07-14 | 2013-06-05 | フルオー・テクノロジーズ・コーポレイシヨン | Lng再ガス化と統合された発電のための構造及び方法 |
WO2006031362A1 (en) * | 2004-09-14 | 2006-03-23 | Exxonmobil Upstream Research Company | Method of extracting ethane from liquefied natural gas |
US7367177B2 (en) * | 2004-12-14 | 2008-05-06 | Siemens Power Generation, Inc. | Combined cycle power plant with auxiliary air-cooled condenser |
US7228682B2 (en) * | 2004-12-16 | 2007-06-12 | Yefim Kashler | System for augmented electric power generation with distilled water output |
JP4664376B2 (ja) | 2004-12-20 | 2011-04-06 | フルオー・テクノロジーズ・コーポレイシヨン | Lngを燃料とする発電所のための構成および方法 |
CA2600363C (en) * | 2005-03-30 | 2010-10-05 | Fluor Technologies Corporation | Configurations and methods for thermal integration of lng regasification and power plants |
US20060242969A1 (en) * | 2005-04-27 | 2006-11-02 | Black & Veatch Corporation | System and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant |
US20060260330A1 (en) * | 2005-05-19 | 2006-11-23 | Rosetta Martin J | Air vaporizor |
US20060283590A1 (en) * | 2005-06-20 | 2006-12-21 | Leendert Poldervaart | Enhanced floating power generation system |
US7458231B1 (en) * | 2005-08-19 | 2008-12-02 | Uop Llc | Simultaneous regasification of liquefied natural gas and desalination |
US20070044485A1 (en) * | 2005-08-26 | 2007-03-01 | George Mahl | Liquid Natural Gas Vaporization Using Warm and Low Temperature Ambient Air |
FI121745B (fi) | 2005-12-28 | 2011-03-31 | Waertsilae Finland Oy | Järjestely ja menetelmä jäähdytysenergian tuottamiseksi vesialuksen jäähdytysväliainepiiriin |
US20070214805A1 (en) * | 2006-03-15 | 2007-09-20 | Macmillan Adrian Armstrong | Onboard Regasification of LNG Using Ambient Air |
US20070214804A1 (en) * | 2006-03-15 | 2007-09-20 | Robert John Hannan | Onboard Regasification of LNG |
US8069677B2 (en) * | 2006-03-15 | 2011-12-06 | Woodside Energy Ltd. | Regasification of LNG using ambient air and supplemental heat |
JP5283514B2 (ja) | 2006-03-15 | 2013-09-04 | ウッドサイド エナジー リミテッド | Lngの船上再ガス化 |
ITMI20061149A1 (it) * | 2006-06-14 | 2007-12-15 | Eni Spa | Procedimento ed impianto per la rigassificazione di gas naturale liquefatto e il suom stoccaggio |
US8826673B2 (en) * | 2007-02-01 | 2014-09-09 | Fluor Technologies Corporation | Ambient air vaporizer |
EP2133515A4 (en) * | 2007-04-11 | 2014-07-30 | Hitachi Ltd | ENERGY SUPPLY DEVICE FOR A NATURAL GAS LIQUIDATION PLANT |
US20100205979A1 (en) * | 2007-11-30 | 2010-08-19 | Gentry Mark C | Integrated LNG Re-Gasification Apparatus |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US8950196B2 (en) * | 2008-07-17 | 2015-02-10 | Fluor Technologies Corporation | Configurations and methods for waste heat recovery and ambient air vaporizers in LNG regasification |
US8205451B2 (en) * | 2008-08-05 | 2012-06-26 | General Electric Company | System and assemblies for pre-heating fuel in a combined cycle power plant |
BRPI0920693A2 (pt) * | 2008-10-07 | 2015-12-29 | Ben M Enis | método, sistema e aparelho para melhorar a eficiência de um gerador de turbina a combustível. |
JP5580320B2 (ja) | 2008-10-14 | 2014-08-27 | エクソンモービル アップストリーム リサーチ カンパニー | 燃焼生成物を制御するための方法およびシステム |
KR101722792B1 (ko) * | 2009-04-17 | 2017-04-03 | 익셀러레이트 에너지 리미티드 파트너쉽 | 부두에서 선박과 선박의 lng 이송 |
AU2010264996B2 (en) * | 2009-06-26 | 2013-03-28 | Siemens Aktiengesellschaft | Steam power plant with a cooling system |
DE102009031843A1 (de) * | 2009-07-03 | 2011-01-05 | Rwe Power Ag | Verfahren zum Betrieb eines Kraftwerks mit einer Gasturbinenanlage |
CN102597418A (zh) | 2009-11-12 | 2012-07-18 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
EP2547580A4 (en) | 2010-05-20 | 2017-05-31 | Excelerate Energy Limited Partnership | Systems and methods for treatment of lng cargo tanks |
BR112012031153A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
US20120167619A1 (en) * | 2010-12-30 | 2012-07-05 | Chevron U.S.A. Inc. | Method to maximize lng plant capacity in all seasons |
SG191195A1 (en) | 2011-01-28 | 2013-07-31 | Exxonmobil Upstream Res Co | Regasification plant |
WO2012104202A1 (en) * | 2011-02-01 | 2012-08-09 | Alstom Technology Ltd | Combined cycle power plant with co2 capture plant |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
CN102505991B (zh) * | 2011-11-08 | 2013-08-28 | 上海交通大学 | 凝汽式双工质燃气透平循环系统发电装置 |
CN102505990B (zh) * | 2011-11-08 | 2013-09-25 | 上海交通大学 | 凝汽式双工质燃气透平循环系统发电方法 |
CN104428490B (zh) | 2011-12-20 | 2018-06-05 | 埃克森美孚上游研究公司 | 提高的煤层甲烷生产 |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
AU2013202572A1 (en) * | 2012-07-09 | 2014-01-23 | Just Energy Solutions Pty Ltd | Heat Engine System |
AU2012216352B2 (en) | 2012-08-22 | 2015-02-12 | Woodside Energy Technologies Pty Ltd | Modular LNG production facility |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US8857162B2 (en) | 2012-11-02 | 2014-10-14 | Caterpillar Inc. | Coolant warm-up using exhaust |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US10161312B2 (en) | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US20140130478A1 (en) * | 2012-11-09 | 2014-05-15 | General Electric Company | Gas turbomachine including a fuel pre-heat system |
US9938895B2 (en) * | 2012-11-20 | 2018-04-10 | Dresser-Rand Company | Dual reheat topping cycle for improved energy efficiency for compressed air energy storage plants with high air storage pressure |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
KR101487287B1 (ko) * | 2013-02-08 | 2015-01-28 | 삼성중공업 주식회사 | 발전장치 |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
DE102014216014A1 (de) | 2014-08-13 | 2016-02-18 | Siemens Aktiengesellschaft | Kraftwerksanlage mit Notbrennstoffsystem |
JP6519839B2 (ja) * | 2014-09-18 | 2019-05-29 | 三菱日立パワーシステムズ株式会社 | 冷却設備、及びこれを備えるコンバインドサイクルプラント |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
CN104929580B (zh) * | 2015-05-26 | 2017-08-25 | 中国石油集团渤海石油装备制造有限公司 | 一种洗井清蜡车及其清蜡方法 |
US10443927B2 (en) | 2015-09-09 | 2019-10-15 | Black & Veatch Holding Company | Mixed refrigerant distributed chilling scheme |
EP3184876A1 (en) | 2015-12-23 | 2017-06-28 | Shell Internationale Research Maatschappij B.V. | Liquid natural gas cogeneration regasification terminal |
US10830105B2 (en) * | 2016-12-12 | 2020-11-10 | General Electric Company | System and method for improving output and heat rate for a liquid natural gas combined cycle power plant |
WO2018144024A1 (en) * | 2017-02-05 | 2018-08-09 | Pcore Energy Llc | Liquid natural gas regasification and power generation heat optimization system |
JP6916061B2 (ja) * | 2017-08-10 | 2021-08-11 | 株式会社Ihiプラント | 熱交換システム |
KR102023003B1 (ko) * | 2017-10-16 | 2019-11-04 | 두산중공업 주식회사 | 압력차 발전을 이용한 복합 발전 시스템 |
US11261783B2 (en) * | 2017-10-30 | 2022-03-01 | Doosan Heavy Industries & Construction Co., Ltd. | Combined power generation system employing pressure difference power generation |
KR102403854B1 (ko) * | 2019-03-20 | 2022-05-31 | 삼성중공업 주식회사 | 액화가스 발전 시스템 |
JP7146070B2 (ja) * | 2019-03-29 | 2022-10-03 | 大阪瓦斯株式会社 | 移動体 |
PL3945239T3 (pl) * | 2020-07-27 | 2022-12-19 | Efficiency for LNG Applications, S.L. | Układ i proces do odzyskiwania chłodu skroplonego gazu ziemnego w zakładach regazyfikacji |
CN112254561B (zh) * | 2020-10-19 | 2021-10-26 | 中国科学院理化技术研究所 | 利用lng冷能和燃气调峰发电余热的液态空气储能系统 |
US20220290815A1 (en) * | 2021-03-11 | 2022-09-15 | Hanfei Tuo | System and method for cryogenic vaporization using circulating cooling loop |
US11643949B1 (en) | 2021-11-29 | 2023-05-09 | Trane International Inc. | Energy generation system for non-traditional combustible fluid source |
WO2023244179A1 (en) * | 2022-06-17 | 2023-12-21 | Twenty20 Energy Systems Pte Ltd | Power generation system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB933584A (en) | 1962-05-02 | 1963-08-08 | Conch Int Methane Ltd | A method of gasifying a liquefied gas while producing mechanical energy |
US3726085A (en) | 1971-06-07 | 1973-04-10 | Back Sivalls & Bryson Inc | Preventing thermal pollution of ambient water used as a process cooling medium |
CH573571A5 (zh) | 1974-01-11 | 1976-03-15 | Sulzer Ag | |
CH584837A5 (zh) * | 1974-11-22 | 1977-02-15 | Sulzer Ag | |
BE857421A (fr) * | 1977-08-03 | 1978-02-03 | Acec | Installation de production d'energie electrique comprenant des machines thermiques associees a la revaporisation d'un gaz liquefie |
JPS5491648A (en) | 1977-12-29 | 1979-07-20 | Toyokichi Nozawa | Lnggfleon generation system |
BE863558A (fr) * | 1978-02-02 | 1978-08-02 | Acec | Perfectionnements aux installations de production d'energie comprenant des moteurs a combustion interne associes a des turbines de detente a circuit ferme entrainant des generatrices de courant electrique |
JPS5554614A (en) * | 1978-09-18 | 1980-04-22 | Fluor Corp | Method of picking out mechanical or electrical energy |
JPS55148907A (en) * | 1979-05-08 | 1980-11-19 | Setsuo Yamamoto | Compound cycle plant |
JPS55160104A (en) * | 1979-05-28 | 1980-12-12 | Setsuo Yamamoto | Combined cycle plant |
JPS57122107A (en) * | 1981-01-21 | 1982-07-29 | Toshiba Corp | Combined cycle generator |
US4953479A (en) | 1989-06-09 | 1990-09-04 | Keller Leonard J | Methacoal integrated combined cycle power plants |
US4995234A (en) | 1989-10-02 | 1991-02-26 | Chicago Bridge & Iron Technical Services Company | Power generation from LNG |
BR9405757A (pt) * | 1993-12-10 | 1995-11-28 | Cabot Corp | Processo para aumentar capacidade e eficiencia de instalação de ciclos combinados e sistema de instalação de ciclo combinado de gás natural liquefeito |
-
1996
- 1996-05-03 CN CN96195047A patent/CN1112505C/zh not_active Expired - Fee Related
- 1996-05-28 TR TR97/01473T patent/TR199701473T1/xx unknown
- 1996-05-28 ES ES96919004T patent/ES2219686T3/es not_active Expired - Lifetime
- 1996-05-28 AU AU61461/96A patent/AU6146196A/en not_active Abandoned
- 1996-05-28 WO PCT/US1996/007738 patent/WO1996038656A1/en active IP Right Grant
- 1996-05-28 BR BR9609028A patent/BR9609028A/pt not_active IP Right Cessation
- 1996-05-28 JP JP53658496A patent/JP4166822B2/ja not_active Expired - Fee Related
- 1996-05-28 PT PT96919004T patent/PT828925E/pt unknown
- 1996-05-28 EP EP96919004A patent/EP0828925B1/en not_active Expired - Lifetime
- 1996-06-01 TW TW085106563A patent/TW358851B/zh not_active IP Right Cessation
-
1997
- 1997-07-31 US US08/903,576 patent/US6374591B1/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1820163B (zh) * | 2003-06-05 | 2012-01-11 | 弗劳尔科技公司 | 具有液化天然气再气化的动力循环 |
CN101238321B (zh) * | 2005-01-21 | 2014-07-02 | 克里奥斯塔股份有限公司 | 天然气供应方法和装置 |
CN100462531C (zh) * | 2005-09-01 | 2009-02-18 | 西安交通大学 | 一种提高联合循环电厂效率的系统和方法 |
CN102203531A (zh) * | 2008-11-04 | 2011-09-28 | 海威气体系统公司 | 用于低温液化工艺中的组合式循环机械驱动的系统 |
CN102428311A (zh) * | 2009-05-14 | 2012-04-25 | 塞万海洋股份有限公司 | 与生产电能结合的液化天然气和液化石油气的再气化装置 |
CN101806293A (zh) * | 2010-03-10 | 2010-08-18 | 华南理工大学 | 一种提高液化天然气冷能发电效率的集成优化方法 |
CN101806293B (zh) * | 2010-03-10 | 2012-03-28 | 华南理工大学 | 一种提高液化天然气冷能发电效率的集成优化方法 |
CN104583544A (zh) * | 2012-06-26 | 2015-04-29 | 萨克塞斯股份有限公司 | 利用一orc回路产生电能的装置 |
CN104110573B (zh) * | 2013-04-18 | 2017-09-26 | 气体科技能源概念公司 | 一种用于供应天然气至热喷涂设备的系统以及燃料系统 |
CN104110573A (zh) * | 2013-04-18 | 2014-10-22 | 气体科技能源概念公司 | 用于喷枪、燃料电池、热喷涂、热去毛刺和富勒烯制造设备的燃料模块 |
CN106415143A (zh) * | 2014-05-30 | 2017-02-15 | 分布式存储技术有限责任公司 | 冷却系统和方法 |
CN105115245A (zh) * | 2015-08-11 | 2015-12-02 | 中海油能源发展股份有限公司北京冷能利用研究所 | 利用液化天然气冷能捕集液化二氧化碳的系统装置及其方法 |
CN105115245B (zh) * | 2015-08-11 | 2017-07-11 | 中海油能源发展股份有限公司北京冷能利用研究所 | 利用液化天然气冷能捕集液化二氧化碳的系统装置及其方法 |
CN108137145A (zh) * | 2015-10-16 | 2018-06-08 | 科莱斯达公司 | 为至少供应发动机的目的用于处理蒸发气体的方法和装置 |
CN105840316B (zh) * | 2016-06-12 | 2018-05-08 | 华电郑州机械设计研究院有限公司 | 一种利用lng冷能进行燃气轮机进气冷却除湿的系统 |
CN105840316A (zh) * | 2016-06-12 | 2016-08-10 | 华电郑州机械设计研究院有限公司 | 一种利用lng冷能进行燃气轮机进气冷却除湿的系统 |
CN108952966A (zh) * | 2017-05-25 | 2018-12-07 | 斗山重工业建设有限公司 | 联合循环发电设备 |
US11359518B2 (en) | 2017-05-25 | 2022-06-14 | Doosan Heavy Industries & Construction Co., Ltd. | Combined cycle power plant |
CN108952966B (zh) * | 2017-05-25 | 2023-08-18 | 斗山重工业建设有限公司 | 联合循环发电设备 |
CN109812307A (zh) * | 2018-12-14 | 2019-05-28 | 浙江理工大学 | 天然气压力能回收装置及方法 |
CN109812307B (zh) * | 2018-12-14 | 2022-04-12 | 浙江理工大学 | 天然气压力能回收装置及方法 |
CN109838684A (zh) * | 2019-01-25 | 2019-06-04 | 集美大学 | 水下航器废气的使用和储存装置及其方法 |
CN109821341A (zh) * | 2019-03-20 | 2019-05-31 | 赫普科技发展(北京)有限公司 | 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法 |
Also Published As
Publication number | Publication date |
---|---|
AU6146196A (en) | 1996-12-18 |
JPH11506181A (ja) | 1999-06-02 |
TR199701473T1 (xx) | 1998-06-22 |
TW358851B (en) | 1999-05-21 |
CN1112505C (zh) | 2003-06-25 |
EP0828925B1 (en) | 2004-03-24 |
WO1996038656A1 (en) | 1996-12-05 |
US6374591B1 (en) | 2002-04-23 |
PT828925E (pt) | 2004-08-31 |
BR9609028A (pt) | 1998-12-15 |
EP0828925A1 (en) | 1998-03-18 |
JP4166822B2 (ja) | 2008-10-15 |
ES2219686T3 (es) | 2004-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1112505C (zh) | 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机 | |
CN1052053C (zh) | 一种改进的以液化天然气为燃料的联合循环发电设备 | |
US6367258B1 (en) | Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant | |
CN100462531C (zh) | 一种提高联合循环电厂效率的系统和方法 | |
CA1218240A (en) | Regenerative gas turbine cycle | |
CN101707880B (zh) | 液化天然气再气化和发电 | |
CN1231660C (zh) | 利用液化天然气冷分离二氧化碳的燃气轮机发电系统及流程 | |
US7398642B2 (en) | Gas turbine system including vaporization of liquefied natural gas | |
SU543360A3 (ru) | Установка дл вторичного сжижени газа | |
RU2215165C2 (ru) | Способ регенерации тепла выхлопных газов в преобразователе органической энергии с помощью промежуточного жидкостного цикла (варианты) и система регенерации тепла выхлопных газов | |
US6615585B2 (en) | Intake-air cooling type gas turbine power equipment and combined power plant using same | |
CN1218120C (zh) | 发动机 | |
EP0009387A1 (en) | Process for obtaining energy during the regasification of liquefied gases | |
CN1207726C (zh) | 热贮存型负荷正常化发电系统及其使用该系统的发电方法 | |
RU2698865C1 (ru) | Способ регулирования и установка для выработки механической и тепловой энергии | |
CN116399050B (zh) | 联合循环机组的冷端处理系统和方法 | |
JPH11343865A (ja) | 深冷タービン発電システム | |
JP3696931B2 (ja) | 液体空気利用発電設備 | |
JP2001159318A (ja) | 冷熱発電装置 | |
CN221373732U (zh) | 一种氨燃料的联合循环发电系统 | |
CN2161876Y (zh) | 非电力冷气之节约能源系统装置 | |
CN1122413A (zh) | 低温能源发电的方法及装置 | |
JPH11343864A (ja) | 深冷タービン発電システム | |
US20080282700A1 (en) | Compressed working fluid supply system for an expansion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: CABOT LNG CO. Free format text: FORMER OWNER: CABOT CORPORATION Effective date: 20020123 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20020123 Applicant after: Cabot LNG Applicant before: Cabot Corp. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030625 Termination date: 20140528 |