CN1218120C - 发动机 - Google Patents

发动机 Download PDF

Info

Publication number
CN1218120C
CN1218120C CN018105300A CN01810530A CN1218120C CN 1218120 C CN1218120 C CN 1218120C CN 018105300 A CN018105300 A CN 018105300A CN 01810530 A CN01810530 A CN 01810530A CN 1218120 C CN1218120 C CN 1218120C
Authority
CN
China
Prior art keywords
heat exchanger
motor
air
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN018105300A
Other languages
English (en)
Other versions
CN1432102A (zh
Inventor
M·W·E·科尼
H·S·阿达拉赫
R·里查德斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RWE Generation UK PLC
Original Assignee
Innogy PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innogy PLC filed Critical Innogy PLC
Publication of CN1432102A publication Critical patent/CN1432102A/zh
Application granted granted Critical
Publication of CN1218120C publication Critical patent/CN1218120C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/443Heating of charging air, e.g. for facilitating the starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressor (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种发动机,其包括:等温空气压缩机(1),在空气受到的压缩时将液体喷到其中。燃烧室(4)接收并使液体除去后的压缩空气在其中膨胀以产生动力。预压缩机(21,27)在等温压缩机的上游对空气进行压缩。来自于等温压缩机(1)的压缩空气在初级热交换器(3)中吸收来自于燃烧室的废气中的热量。次级热交换器(31,45),用于在初级热交换器(3)的上游将从发动机的一部分回收来的热量传递给来自于等温压缩机(1)的压缩空气。

Description

发动机
技术领域
本发明涉及一种发动机,该发动机包括一容积式等温空气压缩机,该空气压缩机设有一喷液装置,该喷液装置在空气受到压缩时将液体喷进空气中,从而使得该压缩基本上是等温的;一燃烧室,压缩空气在该燃烧室内膨胀产生动力;将压缩空气从等温压缩机输送给燃烧室的装置;一分离器,其用于从燃烧室上游的压缩空气中除去液体;一初级热交换器,其用于将燃烧室的废气中的热量传递给燃烧室上游的压缩空气;一预压缩机,其用于压缩等温压缩机上游的空气;以及将来自预压缩机的空气输送到等温压缩机的装置。
背景技术
这种发动机在WO94/12785中有披露,该发动机在下面将被称之为“所述类型的发动机”。
在US5839270中披露了一种不同的热力发动机。在这种发动机中,环境空气直接被输送到单叶片压缩机中。在压缩过程中将水喷到空气中。随后水和压缩空气的混合物被输送到一分离器中,水和空气在该分离器中被分开。随后将空气输送到一燃烧室内,燃料被喷射到该燃烧室内,且燃料/空气混合物在该燃烧室内燃烧。燃烧气体随后被输送到一独立的膨胀器,燃烧气体在该膨胀器内绝热膨胀提供有效功并且还驱动压缩机。从该膨胀器中出来的废气被输送到一回流换热器中,这些废气在该换热器中对来自分离器的剩余的冷压缩空气进行预热。受到预热的压缩空气在燃烧室中与冷压缩空气混合。在一实例中,该膨胀器被来自于分离器的水冷却。离开分离器且温度升高的水随后被输送到一锅炉中,该锅炉用于产生蒸汽以便在一蒸汽膨胀器中提供有效功。因此,该文献既没有披露一压缩空气在其中可以膨胀的燃烧室,也没有披露一种预压缩机或一种将空气从预压缩机输送给等温压缩机的装置。因此不是所述类型的发动机。
为了使得WO94/12785中的燃烧室中的热量能够回收,通过使得分离器中的一小部分压缩空气穿过一围绕燃烧室的冷却套可以对其进行加热。该加热后的压缩空气随后在一缸体中膨胀以便提供有用功。不过,冷却剂的温度必需限制到该燃烧器的材料和/或润滑油能够经受得住的程度。因此,每单位质量的压缩空气在冷却套中所能吸收的热量十分小。为了使得该热量回收,需要等温压缩机输出大量的额外压缩功,由此降低热量回收的好处。
发明内容
根据本发明的第一方面,所述类型的发动机的特点在于,设有次级热交换器将回收的热量从发动机的一部分传递给初级热交换器的上游的等温压缩机中的压缩空气。
因此,本发明提供了一种比WO94/12785中披露的方法更为有效的热回收方法,因为该方法使得受到压缩的空气能得到更为经济地利用。这就节省了压缩功并增加了整体的效率。本发明使得来自于发动机的一部分的热量回收并利用该回收热来预热由等温压缩机产生的压缩空气。与WO94/12785中描述的发明不同的是,不需要对额外的空气进行压缩从而使得该热量回收。而且与WO94/12785不同的是,本发明不需要用于使空气膨胀的独立的膨胀腔来用于回收额外的热量。
通过次级热交换器回收的热量可以从该发动机的任何部分回收得采,包括废气。在后一种情况下,如果预压缩机布置成由废气驱动,例如借助于一种汽轮机或其它形式的膨胀器,用于驱动预压缩机的废气的温度依然可以保持足够的高度以便在次级热交换器处这些气体中能够有热量得到回收。不过,主要的目的是意在从燃烧室中和/或从经过预压缩机压缩的空气中回收热量,该热量进入到燃烧室的冷却系统中。
对于最有效的发动机循环而言,应该使燃烧室和来自预压缩机中的空气的热量都得到回收。在这种情况下,次级热交换器包括以并联方式连接的一预压缩机热交换器和一燃烧室热交换器,且其中,来自于等温压缩机的压缩空气被分成两股,其中一股输送给预压缩机热交换器以便吸收来自于预压缩机的空气中的热量,而另一股被输送给燃烧室热交换器以便吸收燃烧室的热量;该发动机还包括用于控制将来自于等温压缩机中的空气流分成两股的装置。
以并联方式设置两个能使得发动机的独立元件的热量得以再利用的热交换器的优点在于,从独立元件中所能获得热量的温度范围都基本上相似,但是可以随着发动机的负载而变化,串联结构预先假定一个热源的温度要始终地显著高于另一个的温度。来自于预压缩机的热量和来自于发动机冷却系统的热量不是这种情况,因为两者产生的热量超过这些温度范围。而并联结构在这种情况下具有更大的灵活性。
还有,尽管每个并联流动路径中空气流量得到降低,但是还是有可能通过向进入次级热交换器中的压缩空气加水来提供充分的能力,以便吸收大多数可以获得的热量,所加入的水量会在次级热交换器中蒸发。水的这种较高的潜热蒸发会使得大量的热量被少量的水吸收。蒸发水的益处在于它为发动机提供了附加的工作流体,其在没有任何额外压缩功的情况下获得。这就产生了较高的发动机效率和较高的动力输出量。通常如果该系统的结构使得在初级热交换器上游产生的水蒸气的总焓最大的话,可以获得最佳的循环效率。如果过量的液态水进入初级热交换器,尽管可能有益于能量输出,但是通常会有损于循环效率。
将液体加入压缩空气中会引起两相液流。当将该液流分配到次级热交换器内的多个热交换元件之中时,难以对该液流的构成成分进行控制。因此,优选的是,当次级热交换器的一些热交换器元件运送压缩空气时,液体直接被注入每个元件中。这就能够对整个热交换器的相成分进行直接控制。
该液体可以取自于任何源头。不过,该液体从分离器获取最为方便。
当热量从来自于预压缩机的空气和燃烧室中得以回收时,优选是将液体分别输送给预压缩机热交换器以及燃烧室热交换器中每个压缩空气流。在这种情况下,发动机还包括用于控制液体流向预压缩机热交换器和燃烧室热交换器的装置。
来自于预压缩机和燃烧室热交换器的液流可以被分别输送到初级热交换器中。不过,它们最好在初级热交换器的上游被合并。
优选的是,发动机包括冷却剂回路,该回路中含有从燃烧室中吸取热量并将次级热交换器中的热量传递给压缩空气的流体。当次级热交换器包括如上所述的预压缩机热交换器和燃烧室热交换器时,该冷却剂回路必然会在燃烧室热交换器中传递其热量。
与现有技术中的压缩空气相比,采用液态冷却剂能对燃烧室提供更为有效的冷却,由此使得发动机的功率得以增加。
冷却剂回路中的液体可以是未经加压的。不过,为了防止会降低热量传递和导致局部过热的沸腾,最好对该液体进行加压。
冷却剂回路最好具有液体泵,其用于驱动液体沿着回路流动。为了增强由冷却剂回路中的液体所产生的冷却的程度,最好在次级热交换器的下游设置一个附加的冷却器。
在其最简单的形式中,该冷却剂回路包括单个回路,该回路具有单个热交换器。该燃烧器通常将具有一受到润滑的部分,该受到润滑部分的温度必须维持在较低的温度(例如,低于200℃)以防止对润滑剂造成损害。另一方面,燃烧器通常会具有一不受润滑的部分,例如缸头,该部分可以容许达到较高的温度。如果采用单个的冷却剂回路,那么冷却剂回路就需要布置成该冷却剂在较热的未受润滑的表面之前就到达冷却器润滑表面。不过,为了对在金属表面和冷却剂之间具有相对较小温差并且额定功率较高的燃烧器提供充分的冷却,需要有较高的热传递系数,因此需要较高的流量。不幸的是,如果流量较高,那么,冷却剂的温度就不会上升太高,结果,冷却剂在次级热交换器处的最终温度就会太低。因此,对于许多应用场合,该发动机的结构为,次级热交换器包括一高温热交换器和一低温热交换器,并且该冷却剂回路包括一高温回路和一低温回路,该高温回路具有一高温泵,该高温泵用于使得液体循环经过燃烧室的温度相对较高的部分以通过该高温热交换器,该低温回路具有一低温泵,该低温泵布置成使得液体循环经过燃烧室的温度相对较低的部分以通过该低温热交换器,以及输送压缩空气的装置,该装置使得压缩空气从分离器进入初级热交换器之前,经低温热交换器以吸收热量,并随后经过高温热交换器以便进一步吸收热量。该燃烧器冷却剂的流量以及热传递系数在两个回路中都得以维持在较高的水准,而在每个回路中的温度变化相对较低。
在每一种情况下,最高的冷却剂温度都能被维持在受润滑表面和未受润滑表面分别所能接受的最高水准。
在这种情况下,发动机最好还包括将水添加到低温热交换器的独立元件中的压缩空气中的装置,所有的液体都在低温热交换器中蒸发;以及将水添加到高温热交换器的独立元件中的压缩空气中的装置,所有的液体都在高温热交换器中蒸发。这又解决了控制进入冷和高温热交换器中的气/液的相分布的问题。
作为上述具有低温和高温热交换器的结构的一种替代结构,该冷却剂回路可以包括:一主泵用于泵送液体使其沿主回路流动,该主回路包括该次级热交换器;一低温回路,该低温回路由主回路供给液体;一低温泵,其用于泵送液体沿该低温回路流动并经过燃烧室的一温度相对较低的部分;一高温回路,该高温回路被供给以来自低温回路的泄放液流;一高温泵,该高温泵用于泵送流体沿高温回路流动并经过燃烧室的一温度相对较高的部分;以及将泄放液流从高温回路输送给次级热交换器的装置。
这种结构使得高温和低温回路保持在其各自最高温度的附近,并使得流体以高流量流过燃烧器,同时还使得次级热交换器的初级侧具有适度的流量。这种情况具有优于前述结构的优点,即其仅仅需要单个热交换器。另一方面,则需要三个泵。因此选择这种系统在某种程度上主要依赖于元件的相对成本。
预压缩机可以布置成和在WO94/12785中一样完全由废气来驱动。不过,研究发现,如果预压缩机设置成仅仅部分由废气驱动,可以使得发动机的功率输出量得到显著地提高。而且还发现,如果该预压缩机具有一独立于废气的附加动力源,发动机在能够更迅速地改变负载方面会更为灵活。
发动机的输出功率主要由压缩系统输送到燃烧器缸中的空气的质量流量和最终的压力决定。空气质量流量越高,以燃料与空气的比例常数加入的燃料就越多,该常数受到发动机热负载极限的限制。而且,较高的压力会增加燃烧气体的膨胀范围,且能够增加燃料与空气的比例,该比例受到喷射极限的限制,以便利用这一点。假设燃烧过程其自身的效率得以保证的话,效率和输出功率随着燃料与空气的比例的增加而提升。
等温压缩机能够提供压缩系统的总压比的最大部分。用于本发明中的等温压缩机的最适合的压力比在大约10∶1到大约25∶1的范围之内。例如,如果需要的总压比为100∶1,那么如果等温压缩机提供25∶1而预压缩机提供4∶1就能实现该总压比。较高的压力比能够通过利用两个串联的等温压缩机来实现。这两个等温压缩机最好采用同一个曲柄驱动。
当入口空气压力为105Pa时,根据废气温度,传统的涡轮增压器能够向等温压缩机的入口提供大约4×105Pa压力,因此等温压缩机能提供大约107Pa压力,而不需要任何形式的辅助压缩。不过,如果等温压缩机的入口的压力在需要较高功率期间翻倍成8×105Pa,那么对于相同物理尺寸的等温压缩机来说就能在同一出口压力107Pa下提供两倍质量流量的空气。该发动机的效率会降低一些百分点,因为驱动辅助压缩机所需的功率会比通过将等温压缩机的压力比降低到12.5∶1所节约的功率要大。不过,通过这种方法所获得的输出功率的增加量合计为大约50%。这是一种增大功率输出量和灵活性的一个例子,这可以通过提供辅助压缩来实现。
由于辅助压缩不会完全依赖于在废气中所能获得的能量,因此会产生另一种优点。仅依赖涡轮增压器在往复运动单元的上游提供空气压缩的发动机会花费相当长的时间来对额外的功率要求作出响应。这是因为有一个时间滞后,这种时间滞后存在于增加燃料和因此带来的涡轮增压器的速度的增加之间。
采用辅助压缩还会产生一个主要的优点,因为它可能增加最大压力。这使得发动机能在获得较高效率的同时获得较高的动力输出量。
因此,这种结构提供了一种发动机,发动机的有效功率得以显著地提高,同时现有技术的较高循环效率或者得以维持或者不会受到太大的负面影响。而且,这种结构能够在发动机的响应的控制和速度方面提供实质性的改进。
除了采用废气进行驱动外,预压缩机还可以通过位于发动机循环之外的动力源进行驱动,例如电动马达,或者可以采用由作用在燃烧室中的活塞上的气体膨胀所产生的动力来进行驱动。在后一种情况下,当主曲柄由作用在燃烧室中的活塞上的气体来驱动时,该曲柄优选通过一传动箱用于驱动预压缩机。
还有一种替换方式是用于提供一种热源,例如燃烧炉,用于增加驱动预压缩机的废气的温度。这就提供了一种增加功率的简单方法,并且尤其适于短时间内增加功率。
预压缩机可以是一个带有双重动力源的单个压缩机。不过,优选的是,预压缩机包括两个串联的压缩机,其中一个采用废气驱动,而另一个则不是。在这种情况下,优选的是一个压缩机的压缩比高于另一个压缩机的压缩比,且其中热量在该一个压缩机的下游得以回收。换句话说,使用废气产生的压缩比要高于另一动力源产生的压缩比。通常,一个压缩机的压缩比至少是另一个的压缩比的两倍。
如果预压缩机包括两个串联设置的压缩机,其中一个采用废气驱动而另一个通过独立的动力源驱动,那么,就可能使得一个或另一个位于上游位置。这种选择可以根据合适元件的可获得性和压缩机元件在部分负载条件的范围上的压力和流量特性来作出。
该另一压缩机,即不采用废气进行驱动的压缩机可以是任何合适的压缩机。不过,对于另一压缩机来说比较好的是一旋转式压缩机,因为这种压缩机能够以相对较低的成本处理大体积流量。在这种情况下,旋转式压缩机优选是单级离心式压缩机。为了提供必要程度的控制,该另一压缩机可以采用变速马达驱动,或者该另一种压缩机是一种几何外形可变的压缩机。对于该另一压缩机还有一种选择是具有可变入口导流叶片,因为这些叶片可以通过改变该入口涡旋角而降低固定速度压缩机的压缩比。
为了提高预压缩机的效率,优选的是设置一个中间冷却器来冷却预压缩机的两个压缩机之间的空气。通过采用一种空气预冷却器来冷却预压缩机和等温压缩机之间的空气可以提供进一步的改进。这就确保进入等温压缩机的空气处于最低的可能温度。当次级热交换器使得来自于预压缩机的空气中的热量得以回收时,空气预冷却器位于次级热交换器的下游,而且通过一股喷射水可以对进入等温压缩机中的空气进行冷却,该喷射水对进入等温压缩机之前的空气进行冷却。
该容积式等温空气压缩机可以是例如一种滑动叶片或螺杆压缩机。不过,对于这种压缩机优选的是往复压缩机,其中活塞在缸体内往复运动从而压缩空气。
优选的是,为了提供一种易于能够应付在功率方面需要较大变化的发动机,需要提供一种存储腔、用于将压缩空气从等温压缩机输送给存储腔中的装置、用于将压缩空气从存储腔输送给燃烧室的装置、以及用于选择性地将压缩空气从等温压缩机输送给存储腔或输送给燃烧器以及用于选择性地将压缩空气从存储腔输送给燃烧室中的阀系统。
因此,在功率需求较低时,空气受到压缩并储存起来,例如存储在压力容器、高压管道或一种地下空穴中。这种压缩空气随后在功率需求较高的时间段内用于产生动力。该发动机特别适于存储压缩空气,因为从等温压缩机出来的空气处于能够用于燃烧器中的压力下,因此它能储存起来而不需要进行进一步压缩,并可直接使用而不会有浪费性的压力降。由于该发动机可以在系统压力范围内有效地运转,因此不需要将空气压缩到比其将被利用时的压力明显要高的压力,并且不需要随后在其被利用之前将空气节流到正确的操作压力。而且由于受到等温压缩机压缩的空气温度较低,因此没有必要储存之前进行散热。
为了进一步改善具有储存能力的系统的灵活性,等温压缩机和燃烧器优选通过一驱动轴连接起来,且马达/发生器与一对离合器之间的轴相联接。还有,可以设置一个由来自于发动机的废气驱动的发电机以及一个用于预压缩机的独立动力供给源。
如果设置一装置以从发动机的一部分中回收热量以并将该热量传递到发动机之外的一个位置,该发动机可以用作热电联供(CHP)系统。在这种情况下,优选的是在该系统具有一个用于控制发动机所产生的用于外部用途的动力和热量的相对量的装置。该热量可以从本发明的任何适当的部分得以回收。不过,目前的首选是提供一种旁通管路和旁通阀,该旁通管路运送一部分压缩空气和/或废气经过初级热交换器,该旁通阀用于控制旁通管路中的流量。这使得一些压缩空气直接输送给燃烧器而不会经过初级热交换器从而降低进入燃烧器中的压缩空气的温度。不过,该废气放出较少的热量,因此该废气以较高的温度离开初级热交换器。可以将这种较高温度的废气用于进行外部加热。通过使得能根据需要产生不同比例的热量或动力的灵活性,该阀可对旁通过初级热交换器的压缩空气的量进行控制。或者对于压缩空气的旁通管路,可以设置一个旁通管路,该旁通管路使得一部分废气旁通过初级热交换器。这对压缩空气旁通管路具有相似的效果。该旁通管路和阀还具有独立于CHP系统的值。其可以用来对燃烧器产生相似的效果,也就是说能够提高驱动预压缩机的废气的温度,能够快速调节发动机负载。
为了工业目的而提供较高等级的热量,初级热交换器可以包括一些与外部加热回路相连的流动通道。
本发明还涉及一种产生动力方法,该方法包括:压缩容积式压缩机中的空气;当空气被压缩时将液体喷射到该压缩机中,以使该压缩基本上为等温的;除去压缩空气中的流体;将压缩空气输送给燃烧室;喷射燃料;在燃烧室内燃料燃烧并且燃烧气体膨胀以产生动力;并将废气从燃烧室中输送给初级热交换器,以便在燃烧室上游加热压缩空气;其特征在于,从发动机的一部分中回收热量并在初级热交换器的上游将该热量传递给来自于等温压缩机的压缩空气。
优选的是,该方法还包括对预压缩机中的位于容积式压缩机上游的空气进行压缩的步骤,并且回收热量的步骤包括在一预压缩机热交换器中回收预压缩机中的热量以及在燃烧室热交换器中回收燃烧室中的热量。
在这种状态下,通过以下步骤可以改善热量的回收,这些步骤为:将来自于容积式压缩机的空气分成两股流;将其中一股流输送给预压缩机热交换器而另一股流输送给燃烧室热交换器能够;以及以一种使热量的回收最佳化的方式来控制空气被分成为两股气流。
为了优化这两个热交换器的性能,该方法优选包括:借助于一查询表来控制引入每股气流中的空气的比例,该查询表规定了作为相对预压缩机热交换器以及燃烧室热交换器的各种入口条件的函数分开的所需的空气。
通过将液体供给到两股流的其中一股流在各自热交换器上游并控制输送给每股流的液体量的步骤可以实现进一步的改进。
作为进一步改进,该方法可以包括以下这些步骤:在预压缩机热交换器和燃烧室热交换器中每一个的热端处监测输入流和输出流之间的温差,并控制流向每个热交换器的水流以便将该温差维持在理想的水平。
附图说明
将参照附图描述按照本发明构成的发动机的实例,这些附图为:
图1是表示采用本发明的发动机的各种基本元件的原理性示意图;
图2是表示第一发动机的各种部件的相互关系的原理性示意图;
图3是表示第二发动机的各种部件的相互关系的原理性示意图;
图4是表示第三发动机的各种部件的相互关系的原理性示意图;
图5是表示第四发动机的各种部件的相互关系的原理性示意图。
具体实施方式
发动机基本元件
采用本发明的发动机的基本元件如图1所示。该发动机包括四个基本元件,即等温压缩机1、分离器2、同流换热器3以及燃烧器4。
等温压缩机1是一种往复式等温压缩机,其包括单个气缸,一活塞在该气缸中往复运动。通过一喷射泵5提供喷射水,并且空气通过空气入口6进入该等温压缩机。设置适当的入口和出口阀,以便在活塞的向下行冲程时,空气经空气入口6被抽进等温压缩机中,以及在返回行程时,空气被压缩,同时控制液体的喷射以便使得该压缩尽可能接近于等温压缩。携带有水的冷压缩空气在压缩冲程末端经等温压缩机的出口7被排出。
等温压缩机在WO94/12785中进行了描述。该压缩机的进一步的细节尤其是用于喷射水的喷嘴的结构记载于WO98/16741中。
分离器2将输入气流分成水流8和冷压缩空气流9。该冷压缩空气流9随后被输送给同流换热器3,压缩空气在同流换热器中被来自于燃烧器4的废气流10中的废气加热。加热后的压缩空气作为热压缩空气流11离开同流换热器3,且该热压缩空气被输送给燃烧器4。
在燃烧器4中,热压缩空气与来自于燃料入口12的燃料混合并燃烧产生动力。燃烧器是一种往复内燃机,在该例中其包括三个气缸。由燃烧器4驱动的曲柄13与等温压缩机1相连,从而等温压缩机直接被该燃烧器驱动。
已经向冷压缩空气放出热量的废气作为一种被冷却的废气流14离开同流换热器,冷却后的废气流14可以就地释放到大气中,或者如下面所述的那样被利用。
参照图1所述的原理基本上是WO94/12785中的图4所披露的内容。
第一实例
按照本发明构造的发动机的第一实例如图2所示。该发动机包括前述图1中所限定的所有的特征,且在图2中所示的这些元件采用相同的附图标记进行表示。
图2中的实例包括一用于压缩等温压缩机1上游的进气的充气系统。
气体通过环境空气入口20进入充气系统并在一受到变速马达22驱动的电动风机21中进行初步压缩。该风机21是一种单级离心式压缩机,其类似于涡轮增压器中所采用的那种风机。或者,该风机可以是一种螺杆压缩机、罗茨风机、轴流式通风机、或一级或多级往复压缩机。该压缩可以是等温或绝热的。最合适的风机形式是旋转式压缩机,因为这种旋转式压缩机能够以较低的成本处理较大的体积流量。尽管能够增加级数以及物理尺寸和成本,但该风机可以在同步速度下而不是在较高速度下驱动。风机21可以采用机械装置而不是变速马达22来驱动,该机械装置或者由主发动机曲柄驱动或者由一些外部动力源驱动。
尽管从效率方面看变速马达22在部分负载时是优选的,但是从成本角度看,采用一种具有可变的入口导流叶片的固定速度的离心式压缩机可能更具有吸引力。入口导流叶片可以通过改变入口旋涡角来减小固定速度压缩机的压缩比。还减少了该风机的功率消耗,但是效率会下降,尤其是在导流叶片角较大时。与采用逆变器来提供变频交变电流来驱动马达的成本相比,因为可变入口导流叶片相对比较便宜,因此可以增加所节约的成本。如果风机通过齿轮传动箱由发动机驱动,就能够进一步节约成本。这样会节约电动机的成本。是否存在效率方面的改进依赖于马达的效率以及所需的附加传动机构的效率。
上述结构还包括可变扩散叶片以便改善灵活性。变速、可变进口导流叶片以及可变扩散叶片都是已知特征,这些特征有时被用来改善离心式压缩机的灵活性。
通常,该电动风机21设置成能够对输入空气提供2∶1的压缩比。
离开风机的空气沿着电动风机的排气管路23经中间冷却器24排出,该中间冷却器将热量经过冷却塔管路26排出给冷却塔25。尽管该热量并没有在该循环中被利用,但是所放出的热量的为温度平均大约为65℃,因此在回收该热量方面存在的益处很少或没有益处,除非该热量用于某些外部目的,例如对空间或水进行加热。
离开中间冷却器24的空气经中间冷却器排气管路28进入涡轮压缩机27。该涡轮压缩机27通常具有大约为4∶1的压缩比,并且起到对已经部分压缩过的空气进行进一步压缩的作用。该涡轮压缩机27直接由涡轮透平机29驱动,该涡轮机将如下面所述的一样由废气来驱动。来自于涡轮压缩机27的气体沿着涡轮压缩机排气管路30被输送给涡轮热交换器31,如下所述的那样,气体在该涡轮热交换器中将其热量释放到该循环的另一部分。在离开涡轮压缩机27时可以获得的热量要明显大于离开风机21所能获得的热量,这是因为在涡轮压缩机中的压缩比较高。
沿着涡轮热交换器的冷排气管路32离开涡轮热交换器31的空气穿过空气预冷却器33,该预冷却器通过沿着冷却塔第二管路34将所排出的热量都转移给冷却塔25而将该空气冷却到接近能够获得的最低温度。该热量的平均温度非常低,因此对效率产生的负面效果极少。
在离开空气预冷却器时,部分压缩的冷空气进入等温压缩机1,并按前所述的方式进行压缩。
在如图3和4所示的另一种结构中,通过涡轮压缩机27进行初始的预压缩。离开涡轮压缩机27的空气随后在通过中间冷却器24被输送给风机21以进行进一步压缩之前在涡轮热交换器31中释放其热量。该空气随后经空气预冷却器33如参照图2所示的那样被输送给等温压缩机1。
再参照图2中的实例,可以在在等温压缩机1的紧上游将水注入空气中,以及在进行如上所述的压缩期间将水注入等温压缩机1中。所示的注水系统具有一补充供水管路35以便在操作过程中补充供水系统中损失的水。来自于补充供水管路的水经一脱离子器36供应并经泵37进行泵送,以便通过紧位于等温压缩机1的上游的雾化喷嘴进入空气入口6。这就为处于该点处的空气提供了附加的冷却,因此使得每一冲程中被压缩的空气的质量最大化。在该点处增加补充水的另一个优点是补水泵只需要将水压缩到等温压缩机的入口压力。
水和压缩空气经等温压缩机出口7离开等温压缩机1并输送给分离器2。该分离器将水从压缩空气中分离出来,该水被分成第一水流8和第二水流38排出。
第一水流8在喷射水冷却器39中经过冷却塔第三管路40将其热量释放到冷却塔25中。冷却后的水随后通过如前所述喷射泵5从喷射水冷却器39中泵送到等温压缩机中。
在大量的液体借助于第一水流8返回时,同时提供一股泄放液流作为第二水流38。这样就分成两股流体,即涡轮热交换器水流41以及发动机热交换器水流42。同样,离开分离器的气流9也被分成一股涡轮热交换器气流43以及一股发动机热交换器气流44。
两股涡轮热交换器流体41、43随后在涡轮热交换器31中再次合并,并在该涡轮热交换器中吸收从涡轮压缩机27中排出的流体中的热量。同样,两股发动机热交换器流体42、44在发动机热交换器45中合并以便吸收来自于如下所述的发动机冷却系统中的热量。
添加到涡轮热交换器31和发动机热交换器45中的水几乎使得每个热交换器的两侧的热容量相等。所添加的液体的质量应小到足以使得所有的液体都能在热交换器中蒸发。空气和液体被分离开并随后再次在热交换器中合并在一起的原因是控制热交换器中的两相混合物的分布比较难。因此两种流体的再次合并仅仅发生在热交换器的各个元件中,由此能够精确地控制相成分。
下面将对控制空气流的分离和水的注入进行描述。空气流的分离根据使从涡轮热交换器31和发动机热交换器45中的热量回收最大化的要求来确定。利用在该控制系统中所使用的查询表可以实现最优,这就能够提供作为一些参数的函数的最优空气流分离,这些参数限定了入口边界条件。这些参数包括:来自于分离器的空气的压力、温度以及流量和初级侧流体的温度和流量。该查询表是由该循环的先前的分析导出的,以便找到最优的空气流分离,包括添加水的影响。
第二步是确定注入每个热交换器中的水流。例如,对每个热交换器可以采用独立的计量泵来注水。在各种情况下注水量的控制可根据在每个热交换器的热端处所获得的特定初级和次级温差来确定。如果所测量到的温差太低,那么,水量不足以使得热量的吸收最大化。如果所测量的温差太高,那么并不是所有的水都会蒸发或者蒸汽的焓太低,因此就应该降低注水的速度。
此外,可以根据特定热交换器的出口温度对注水量施加某种限制。在某种限制下(大约为120摄氏度),不必注水。因为在较低的温度下,例如由于控制系统的误操作,在压缩空气中可能发生非常少的蒸发并且其减少了注入过量水的可能性,因此施加这些限制。
采用在热交换器的出口处所测到温差的方法在这方面比较有效的原因在于,相对于初级侧的温度上升速度,在次级侧的温度上升的速度在紧接着完全蒸发之前比较低,这是因为蒸发的潜热。一旦完全蒸发,次级侧的温度就会急剧上升。这就会在紧接着完全蒸发完成之后在热交换器的初级侧和次级侧之间的温差快速缩小。这种缩小效果很容易被检测到并能用于以一种快速反馈以便将系统维持在最佳效率的方式来控制水的输入水量。
上述控制方法可以用于以一种有效的方式在负载条件范围内操作该发动机。例如,在较高负载下,从涡轮热交换器31和发动机热交换器45能获得相当多的热量,且两者之间的分支空气大致相等。向两类热交换器中注水速度也相对较高。在较低的负载下,涡轮压缩机27的增压会显著降低并且控制系统将不会将任何空气或水引入涡轮热交换器31中。上述系统将会在发动机操作条件的一较宽范围内自动最优化,该操作条件包括负载变化、操作压力、启动和停止、以及环境温度变化的影响或其它对发动机冷却要求的影响。
涡轮热交换器热排气流46与发动机热交换器排气流47合并成合并后的排气流48,该合并后的排气流48被输送给同流换热器3,该合并后的排气流从发动机废气流10中吸收热量,并随后作为热空气流11输送给燃烧器4。该热空气流与来自于燃料入口12的燃料合并,并且燃烧膨胀从而产生动力。
发动机冷却回路49用于冷却发动机并将回收的热量传送到发动机热交换器45,该热量在该交换器45中被传递给发动机热交换器的水流和空气流42、44。通过水泵50泵送以围绕该回路流动的水作为发动机冷却剂流体。如果需要对水进行进一步的冷却,可以在发动机热交换器45的下游设置一辅助发动机冷却器51。在辅助发动机冷却器51中排出的低量级的热量沿着冷却塔第四管路52转移到冷却塔25中。来自于一油冷却器53中的热量通过冷却塔第五管路54转移到一冷却塔中。
冷却后的废气流14离开同流换热器被输送给涡轮透平机29,该废气流在涡轮机中膨胀以驱动涡轮压缩机27。现在大部分有用能量但不是所有的有用能量已从将膨胀后的废气中提取出,该废气通过涡轮机排气管路55排出。
选择采用涡轮增压器作为唯一的预压缩机
最经济性的选择可能是这样一种选择方式,在该方式中,采用一个具有高压力比的涡轮增压器执行预压缩。该系统图示于图2中,其中除去元件22、21、23、24、26以及28。在这种情况下,入口空气20直接进入涡轮增压器压缩机28中。在这种具有一涡轮增压器和一表面能减小的同流换热器的系统中可以获得高于100∶1的总压比,该涡轮增压器具有一高性能的钛叶轮,该同流换热器将更多的能量留在该废气中。
选择性的废气的水回收
如果需要的话,图2所示的循环可用于回收废气中的水。该选择性的特征在水比较稀少或昂贵的场合是较为理想的。为了从废气中回收水,涡轮机排气管路55通到旋转式再生器55A的初级侧并随后通到废气冷却器55B并在被排到大气中之前返回到旋转式再生器55A的次级侧。
该废气含有环境空气中的原始湿气,以及添加的水和由燃料中的氢产生的水蒸气。当废气在冷却器55B中被冷却后,该水冷凝并能汇集成回收水流55C。该水流可以添加到补充水供应管路35中。旋转式再生器55A的目的是为了在最终冷却之前冷却废气。所吸收的热量随后在释放之前返还给废气,以便提高暖的废气的浮力而有助于气体扩散到大气中。在两股流体的压力差较小和可以容许在流体之间存在适当的泄漏的条件下,旋转式再生器55A是一种获得较好的热传递的方便方法。
尽管这种水的回收装置是参照第一实例进行描述的,但是该装置也可以用于任何后续的实例中。
第二实例
本发明的发动机的第二实例如图3所示。该发动机在大多数方面都和图2中的发动机相同,且相同的附图标记用来表示相同的元件。
如前所述,图3中的涡轮压缩机27和风机21以与图2中的结构相反的方式进行布置。
图2和3之间的其它显著区别在于发动机的冷却剂回路。在该例中,图2中的单个的发动机冷却剂回路49被一低温冷却剂回路49L和一高温冷却剂回路49H所替代。这两个回路含有图2中的电流回路40中的相同的基本元件,并且采用相同的附图标记来表示,其中低温回路元件由其后标有“L”的附图标记来表示,而高温回路元件由其后标有“H”的附图标记来表示。
该低温回路用来吸取燃烧器4的低温部分4L的热量。通常,低温部分4L将会包括受到润滑的汽缸套和阀导承。采用冷水泵50L泵送液体使其经低温热交换器45L并随后通过低温辅助发动机冷却器51L沿着低温回路流动,热量在低温辅助发动机冷却器51L中经管路52L释放给冷却塔。
该高温回路用来吸取燃烧器4的高温部分4H的热量。通常,高温部分4H包括未受到润滑并因此能容许达到较高温度的汽缸头以及入口和排气阀口。采用高温水泵50H泵送液体,使其经高温热交换器45H并随后通过高温辅助发动机冷却器51H沿着高温回路流动,热量在高温辅助发动机冷却器51H中经管路52H释放给冷却塔。
向低温发动机热交换器45L中输送独立的发动机热交换器水流和空气流42L、44L,与在前述实例中一样,这两股独立的流体在热交换器45L中汇合。汇合后的流体随后在低温发动机热交换器45L中被加热且液体蒸发。气流44H离开低温发动机热交换器45L并被输送给高温发动机热交换器45H。一股独立的高温发动机热交换器流体42H在高温发动机热交换器45H中与气流44H汇合。这样做是处于相同的原因,即向低温发动机热交换器中分开添加水,也就是说能够控制热交换器中两相的分布。这样添加的液体在高温热交换器45中被蒸发,且发动机热交换器流体47随后也采用与图2中所示的方法进行处理。
第三实例
本发明的发动机的第三实例如图4所示。该发动机在大多数方面都和图3中的发动机相同,且相同的附图标记表示相同的元件。
图3和4之间的区别在于发动机的冷却剂回路49。
与图3不同,图4中的实例包括单个的发动机热交换器45和单个的辅助发动机冷却器51。在加热输入的压缩空气和液态流体方面,发动机热交换器45的作用和参照图2所描述的作用是一样,就如同包括主水泵50和辅助发动机冷却器51的主冷却剂回路元件一样。
在图4中,与在图3中一样的是,独立的高温和低温回路用来冷却发动机的高温部分4H和低温部分4L。不过,在图4中,与图3不一样的是,这些回路相连并因此相同的液体流过两个回路。采用高温水泵50H泵送液体,使其经燃烧器的高温部分4H而沿着高温回路49H流动。采用低温水泵50L泵送液体沿低温回路49L流动,使其冷却燃烧器4的低温部分4L。第一流动路径56连接高温回路49H和低温回路49L,而第二流动路径57从高温回路49H引向主冷却剂回路49。
通过主泵50将水泵送到低温回路49L中,并通过低温泵50L泵送到燃烧器4的低温部分4L。这样加热后的大部分水随后沿着低温回路49L再循环,但是有一些水则经过第一流动路径56离开低温回路并进入高温回路49H。该水与在高温回路50H中的再循环热水混合,热水通过高温泵50H流动经过燃烧器4的高温部分4H。随后部分的该流体沿着第二流动路径57被排出到主冷却剂回路49并因此排入发动机热交换器45中。该水在该发动机热交换器45中释放其热量,并随后通过主水泵50泵送回低温回路49L。
质量守恒要求经主水泵50的流动和通过第一和第二流动路径56、57的流动相同。该流动通过主水泵50进行控制。高温冷却剂回路49H和低温冷却剂回路49L中的比主回路中的流量高得多的流量通过其各自的泵50H、50L进行控制。因此有可能将高温冷却剂回路49H和低温冷却剂回路49L的温度维持在接近其各自的最大温度,维持经过燃烧器的较高的流量,还能使得热交换器45的初级侧具有适当的流量。
图4示出了一条在旁通阀48B的控制下从排气流48引出的旁通管路48A。这使得一部分预热后的压缩空气绕过同流换热器3并直接输送给燃烧器4。这将会造成输送给燃烧器4的空气的温度总体下降,但是将会导致作为废气流14的离开同流换热器3的废气的温度相应上升。可以利用该气流中的额外的热量来进行外部加热或为涡轮透平机29提供额外的动力。尽管该旁通管路48A示出于图4的实例中,但是该旁通管路也能够用于在此所述的任何实例中。可以采用一种相似的结构使得一部分废气旁通绕过同流换热器3。
电热联供(CHP)
所述的所有的循环试图尽可能多地回收有用的热量,以便提高热力学效率。这些循环易于适于用作电热联供(CHP)系统,在该系统中,被回收到该循环中或转移到冷却塔中的较低等级的热量用于外部循环以便满足对冷热的需要,例如空间加热或水加热。由于这种潜能所产生的灵活性能控制各种流体以优化电效率、优化总效率、使得输出功率最大化、使得输出热量最大化、或获得特定的热功比。因为低等级的热量不能进行经济地储存后进行长距离额传送,这种灵活性在处理小时与小时、天与天或季节与另一季节之间的对热量的需求方面的波动是比较有价值的。
该发动机还能在较宽的功率范围内维持较高的电转换效率,这是将等温压缩和废热的回收结合起来的结果。因此电热方面的双重灵活性在维持较高效率的同时使得热功比能在相当大的范围内变化,以便与每次产生的当期的需要相匹配。在与其它原动力相连的CHP系统中则不是这种情况。
该发动机循环具有一些低等级热量的势源,这些势源能够用于进行外部加热。这些势源包括中间冷却器24、涡轮热交换器31、空气预冷却器33、喷射水冷却器39、发动机热交换器45、油冷却器53、以及涡轮排气管路55。如果涡轮热交换器31或发动机热交换器45用作CHP的热源,那么较为理想的是减少或消除注水,否则进入同流换热器3中的空气就会太冷并且离开同流换热器的冷端的废气就不会具有足够的能量来驱动涡轮透平机29。由于相同的原因,采用涡轮热交换器31和发动机热交换器45作为CHP的热源就不会理想。如果采用喷射水冷却器39作为热源,等温压缩机能够从容地在较低的水流下运转,从而水就能被加热到较高的温度。因此以循环效率为代价可以产生额外的热量。
此外,一部分汇合的排出气流48能够旁通绕过同流换热器3并在同流换热器的下游与热空气流11汇合。这就会降低输送给燃烧器4的空气的温度,但是会增加将会输送给涡轮透平机29的废气的温度。这种温度较高的气体可以用于增加涡轮透平机29产生的能量,或者可以用于增加涡轮机排气管路55中的气体的温度,该气体随后可以用作外部热循环。旁通绕过同流换热器的空气量可以通过阀来控制,以便能够灵活地应付改变功率和热量的要求。使得废气温度增加的另一种方法是提供一种热废气通过管路10离开燃烧器的旁路,从而一定控制量的该气体不会经过同流换热器,而是流经过一控制阀直接流向管路14。在这种结构中,旁通控制阀就必须经受得住热气体的温度,但是在响应任何调整的速度方面,该类型旁路将有优点。
对上述CHP的所有选择仅仅适于向外部供给低量级热量,例如用于加热空间或加热水。还能够对发动机进行改动,使其能够处于工业目的而提供较高量级的热量。工业热电联产经常需要生产压力在10bar且温度在180℃的饱和蒸汽。下面将对在这种形式中提供热量的方法进行描述。
在同流换热器中有某一小部分管子并不与该发动机的流动回路相连而是与独立的外部水-蒸汽回路相连。该外部回路提供泵送的水流,该水流优选在理想的操作压力下处于或接近于饱和温度。水压的选择要适于工业过程,因为范围较宽的压力可使用于管材中。当饱和水沿着同流换热器管流动时其进一步蒸发成蒸汽。根据在同流换热器的初级侧的水的流量和气体温度,从同流换热器出来的流体在热端处可以是两相的蒸汽和水的混合物,或者其可能为饱和的或过热的蒸汽。随后高焓流体被带走执行所需的加热功能,在加热过程中,该蒸汽冷凝。冷凝水随后经一泵返回到同流换热器。
剩下的那部分同流换热器管子载运高压空气,该高压空气是前述普通发动机的工作流体。当同流换热器中的可以获得大部分热量被分支以便以蒸汽形式提供外部热量时,不可避免的是离开同流换热器的最终的空气温度将会降低。用于燃烧器中的空气温度的下降意味着将会需要燃烧更多的燃料以便恢复发动机的输出功率。清楚来说,这会对发动机的电效率产生影响,但是这种降低能通过输出有效热量进行补偿。
在同流换热器中存在两套各种可能的结构和相应的气体流。两条气体路径可以串联布置,以便这些装有气体的管道在较高的温度下与废气相遇,但是蒸汽管道以适中的温度与未完全冷却的废气相遇。这种结构从效率最大化和保持同流换热器的结构紧凑的观点上来看比较好。或者,这两套管道可以以并行的独立气流路径方式布置。另一种可能性是,以一种避免在特定的轴向位置由于气体温度的较大差别而导致机械应力的方式,在单一的共同气流路径内采用空气管道替换蒸汽管道。
以所述的方式采用用于工业热电联产的发动机的一个优点是,同流换热器已经以发动机的部件存在。这样相对于传统装置,尤其是从高压气体对热传递的有利影响来说,就降低了蒸汽工厂的成本。另一个优点就是它能够通过适当的管道结构进行灵活的热电联产。例如,如果空气管道和蒸汽管道在上述相同的气体路径内交替进行,或者如果这两套管路串联布置,就有可能改变抽取出的用于热电联产的热量,同时以一种优化方式利用剩余的热量用于产生能量。
另一种提供足够高温度的热量以便提供用于工业热电联产的蒸汽的方法是将一种辅助燃料燃烧器引入管道14中,该管道14将废气从同流换热器引到涡轮增压器涡轮机中。这种选择在提供用于负载变化的灵活性时已经提到了。
压缩空气的存储
发动机还适于具有如图5中所示的压缩空气存储系统。在该图中,大多数相同的元件和图3中的一样,并且采用相同的附图标记来表示。此外,该系统具有存储腔60,该存储腔在分离器2的下游通过存储管路61与气流9相连。存储阀62能够根据选择使得压缩空气流进或流出存储腔60。而且,存储阀63、64设置在存储管路61两侧,以便能够以其各种操作模式完全控制存储腔60和发动机系统之间的压缩空气。
还设有一个蓄水容器69和蓄水阀70用于选择性地将所蓄的水输送到系统中。
存储压缩空气的过程要求压缩系统所生产压缩空气的量要大于用于驱动燃烧器的压缩空气的量。这能够通过增加通过风机21和涡轮透平机29输送给等温压缩机的压力和流量来实现。恰巧,这可以通过增加输送给风机21的功率,采用结构不变的该发动机来进行。不过,如果通过涡轮压缩机27的质量流量变得比通过涡轮透平机29的质量流量大得多的话,要使得该涡轮增压器的压力-流量特性平衡是比较困难的。
同样,利用所存储的压缩空气来增加发动机的功率输出的步骤要求通过增加通过风机21和涡轮透平机29输送给等温压缩机的压力和质量流量应该降低。恰巧,这再次通过增加输送给风机21的功率,采用结构不变的发动机来进行。不过,在涡轮压缩机27和涡轮透平机29的质量流量之间还是存在不平衡。
如图5中的原理图所示的那样,通过设置一个实际上与压缩机断开的涡轮机,可以得到极大的改善风机21和涡轮透平机29的处理一系列压缩空气流量明显不同于废气流量的情况的能力。在这种情况下,涡轮机与一辅助发电机71相连,且一独立马达向整个预压缩机输送功率。在这种结构中,就能够使得通过风机1和涡轮透平机29输送的压力和质量流量升高,同时通过涡轮机输送的功率下降。还可能实现相反的状态。发动机因此能够在一较宽的条件范围下运转,这些条件为从压缩空气高速存储,经独立产生动力,直到采用从存储腔中快速抽取压缩空气产以生高动力。
如果主发电机能够作为一个马达运转,那么利用重新配置的预压缩机,还是能够采用外部动力驱动预压缩机和等温压缩机的。还能够完全关闭预压缩机而仅仅采用最小的功率消耗就使得等温压缩机怠速运转。
回收燃烧器冷却系统中的热量的方法可以用于涉及发电的所有情况下。无论何时采用预压缩机来增加等温压缩机的入口压力,还是存在能够从压缩空气中回收的热量。调节流向次级热交换器的各个部件的水流和气流的能力提供了在一较宽的情况范围内回收热量的灵活性。
如果发动机作为一种纯粹的压缩机或作为一种纯粹的发电机进行长期运转,那么就存在一种重新配置发动机的选择,使得马达-发电机布置在等温压缩机和燃烧器之间。通过采用机械离合器,将马达-发电机连接到等温压缩机或燃烧器或者同时连接到两者上,如图5所示。在这种情况下,将等温压缩机1连接到燃烧器4的轴65以结合两个离合器66、67以及一马达/发电机68的方式被分开。该离合器67、68优选是一种自同步式的形式,以便不会存在打滑或产生热。离合器66、67能够选择性地将马达/发电机68连接到等温压缩机1或燃烧器4或者同时连接到两者上。马达/发电机68根据其名字的含义可以作为马达运转或者作为发电机运转。由于这种便利性,因此能够单独运转该压缩机而不用使得燃烧器运转或者使得燃烧器运转而不运转压缩机。当不需要它们时,这可以降低由于发动机部件而导致的所附带的摩擦损失。
以所述方式使用的压缩空气存储系统的灵活性通过下列操作模式进行解释:
a)正常产生动力,不用添加空气或从储蓄罐中抽取空气。
b)由外部栅格动力驱动压缩系统并存储所有生产的空气。在这种模式下,燃烧器是不工作的。
c)使用储存的空气产生动力,在该模式下,压缩系统是不工作的。
d)与压缩系统中的动力消耗相匹配的动力产生,没有净动力产生。在压缩系统中产生的大部分空气被存储起来。
操作状态还存在无穷多种中间状态。

Claims (49)

1.一种发动机,其包括:
容积式等温空气压缩机(1),其设置有一喷液装置,以便当空气受到压缩时将液体喷射到空气中,使得该压缩大致为等温的;
燃烧室(4),压缩空气在其中膨胀以产生动力;
用于将压缩空气从等温压缩机输送给燃烧室的装置(7,9,11);
分离器(2),其用于从燃烧室上游的压缩空气中除去液体;
初级热交换器(3),其用于将来自燃烧室的废气中的热量传递给燃烧室上游的压缩空气;
预压缩机(21,27),其用于压缩所述等温压缩机上游的空气;
以及将来自预压缩机的空气输送到等温压缩机的装置(30,32);
其特征在于,设置有次级热交换器(31,45),以便在初级热交换器(3)的上游将从发动机的一部分中回收的热量传递给来自于等温压缩机(1)的压缩空气。
2.如权利要求1所述的发动机,其特征在于,对于次级热交换器(45)该热量是从燃烧室(4)中回收的。
3.如权利要求1或2所述的发动机,其特征在于,对于次级热交换器(31)该热量是从来自于预压缩机(21,27)的空气中回收的。
4.如权利要求1所述的发动机,其特征在于,所述次级热交换器包括以并联方式连接的预压缩机热交换器(31)和燃烧室热交换器(45),并且来自于等温压缩机的压缩空气被分成两股流(43,44),一股流(43)输送给预压缩机热交换器(31)以便接收来自于预压缩机(21,27)的空气中的热量,而另一股流(44)被输送给燃烧室热交换器(45)以便接受来自燃烧室(4)的热量;该发动机还包括用于控制将来自等温压缩机中的空气流分成两股流的装置。
5.如权利要求1所述的发动机,其特征在于,该发动机如此布置,即,使得某一量的液体(38,41,42)加入到进入次级热交换器(31,45)的压缩空气中,加入的液体会在次级热交换器中蒸发。
6.如权利要求5所述的发动机,其特征在于,该次级热交换器(31,45)具有多个运送压缩空气的热交换元件,并且该液体被直接注入每个元件中。
7.如权利要求5或6所述的发动机,其特征在于,该发动机如此布置,即,使得该液体(38)从该分离器(2)中获得。
8.如权利要求1或5所述的发动机,其特征在于,液体(41,42)分别输送给预压缩机热交换器(31)和燃烧室热交换器(45)中每个压缩空气流(43,46;44,47);该发动机还包括用于控制流向预压缩机热交换器和燃烧室热交换器(31,45)的液体流动的装置。
9.如权利要求8所述的发动机,其特征在于,两股流(46,47)在初级热交换器(3)的上游合并。
10.如权利要求2所述的发动机,其特征在于,其包括冷却剂回路(49),该回路含有冷却燃烧室(4)并将次级热交换器(45)中热量传递给压缩空气的冷却剂。
11.如权利要求10所述的发动机,其特征在于,该液体是加压的。
12.如权利要求10所述的发动机,其特征在于,该冷却剂回路(49)具有液体泵(50),以用于驱动液体沿回路流动。
13.如权利要求12所述的发动机,其特征在于,该回路(49)包括位于次级热交换器(45)下游的辅助冷却器(51)。
14.如权利要求10所述的发动机,其特征在于,该次级热交换器(45)包括一高温热交换器(45H)和一低温热交换器(45L),并且该冷却剂回路(49)包括一高温回路(49H)和一低温回路(49L),该高温回路具有一高温泵(50H),该高温泵布置成使得液体循环经过燃烧室的温度相对较高的部分(4H)并经过该高温热交换器,该低温回路具有一低温泵(50L),该低温泵布置成使得液体循环经过燃烧室的温度相对较低的部分(4L)并经过该低温热交换器,还包括输送来自分离器(2)的压缩空气的装置(44L,44H),在输送压缩空气进入初级热交换器(3)之前该装置使得压缩空气经过低温热交换器以接收热量并随后经过高温热交换器以便进一步接收热量。
15.如权利要求14所述的发动机,其特征在于,其还包括,将水加入到低温热交换器(45L)的独立元件中的压缩空气中的装置(42L,42H),所有的液体在低温热交换器中蒸发;以及将水加入到高温热交换器(45H)的独立元件中的压缩空气中的装置,所有的液体都在高温热交换器中蒸发。
16.如权利要求10所述的发动机,其特征在于,该冷却剂回路包括:用于泵送液体使其沿主回路流动的主泵,该主回路包括该次级热交换器(45);低温回路(49L),该低温回路由主回路供给液体;低温泵(50L),其用于泵送液体,以使其沿该低温回路经过燃烧室的温度相对较低的部分(4L);高温回路(49H),该高温回路被供给以来自低温回路的泄放液流;高温泵(50H),该高温泵用于泵送流体,以使其沿高温回路经过燃烧室的一温度相对较高的部分(4H);以及将泄放液流从高温回路输送给次级热交换器(45)的装置。
17.如权利要求1所述的发动机,其特征在于,该预压缩机布置成仅部分地由来自于燃烧室的废气驱动。
18.如权利要求17所述的发动机,其特征在于,该预压缩机(21,27)部分地由燃烧室(4)中气体的膨胀产生动力来驱动。
19.如权利要求18所述的发动机,其特征在于,一主曲柄(13)由燃烧室(4)中的气体的膨胀来驱动,该主曲柄用于驱动预压缩机(21,27)。
20.如权利要求17所述的发动机,其特征在于,该预压缩机(21,27)部分地由外部动力源(22)驱动。
21.如权利要求20所述的发动机,其特征在于,设置一热源来增加驱动预压缩机(27)的废气的温度。
22.如权利要求21所述的发动机,其特征在于,该热源为一燃烧器。
23.如权利要求1所述的发动机,其特征在于,预压缩机包括两个串联的压缩机(21,27),其中一个压缩机(27)由废气驱动,而另一压缩机(21)则不是。
24.如权利要求23所述的发动机,其特征在于,该一个压缩机(27)的压缩比高于另一个压缩机(21)的压缩比,并且在所述一个压缩机的下游回收热量。
25.如权利要求24所述的发动机,其特征在于,该一个压缩机(27)的压缩比至少是另一个压缩机(21)的压缩比的两倍。
26.如权利要求23-25中任一项所述的发动机,其中,另一个压缩机(21)是旋转式压缩机。
27.如权利要求26所述的发动机,其特征在于,该旋转式压缩机(21)是单级离心式压缩机。
28.如权利要求23所述的发动机,其特征在于,另一个压缩机(21)由可变速的马达(22)来驱动。
29.如权利要求23所述的发动机,其特征在于,另一个压缩机(21)是几何形状可变的压缩机。
30.如权利要求29所述的发动机,其特征在于,另一个压缩机(21)具有可变入口导流叶片。
31.如权利要求20-30中任一项所述的发动机,其特征在于,设置一中间冷却器(24),以冷却预压缩机的两个压缩机(21,27)之间的空气。
32.如前述任一项权利要求所述的发动机,其特征在于,设置一空气预冷却器(33),以冷却预压缩机(21,27)和等温压缩机(1)之间的空气。
33.如权利要求32所述的发动机,其特征在于,在空气进入等温压缩机(1)之前提供喷射水以冷却该空气。
34.如权利要求33所述的发动机,其特征在于,该容积式等温压缩机是往复式压缩机,其中活塞在缸体内往复运动以压缩空气。
35.如权利要求1所述的发动机,其特征在于,其还包括:存储腔(60);用于将压缩空气从等温压缩机(1)输送给存储腔的装置(61);用于将压缩空气从存储腔输送给燃烧室(4)的装置(61);以及用于选择性地将压缩空气从等温压缩机输送给存储腔或输送给燃烧器以及用于选择性地将压缩空气从存储腔输送给燃烧室的阀系统(62,63,64)。
36.如权利要求35所述的发动机,其特征在于,等温压缩机(1)和燃烧室(4)通过驱动轴(65)连接起来,并且其中马达/发电机(68)与位于一对离合器(66,67)之间的轴联接。
37.如权利要求35或36所述的发动机,其中,设置一由发动机的废气驱动的发电机(71),并且设置一用于预压缩机的独立动力源(22)。
38.如权利要求1所述的发动机,其特征在于,其还包括从发动机的一部分中回收热量并将该热量用于发动机之外的用途的装置。
39.如权利要求38所述的发动机,其还包括控制由发动机产生的用于外部用途的功率和热量的相对量的装置。
40.如前述任一项权利要求所述的发动机,其特征在于,其还包括旁通管路(48A)和旁通阀(48B),该旁通管路输送一部分压缩空气和/或废气经过初级热交换器(4),该旁通阀用于控制经过旁通管路的流动。
41.如权利要求1所述的发动机,其特征在于,在次级热交换器中回收来自于燃烧室(4)的废气中的热量。
42.如权利要求38所述的发动机,其特征在于,对于次级热交换器的热量是从预压缩机下游的废气(55)中回收的。
43.如权利要求38所述的发动机,其特征在于,该初级热交换器(3)包括多个与外部加热回路相连的流体通道。
44.一种产生动力的方法,该方法包括:压缩容积式压缩机(1)中的空气;当空气被压缩时将液体喷射到该压缩机中,以使该压缩基本上为等温的;除去压缩空气中的流体;将压缩空气输送给燃烧室(4);喷射燃料;在燃烧室内燃料燃烧并且燃烧气体膨胀以产生动力;并将废气从燃烧室中输送给初级热交换器(3),以便在燃烧室上游加热压缩空气;其特征在于,从发动机的一部分中回收热量并在初级热交换器的上游将该热量传递给来自于等温压缩机的压缩空气。
45.如权利要求44所述的方法,其特征在于,其还包括以下步骤:在容积式压缩机的上游压缩预压缩机(27,29)中的空气,并且回收热量的步骤包括:在预压缩机热交换器(31)中回收来自预压缩机的热量以及在燃烧室热交换器(45)中回收来自燃烧室(4)的热量。
46.如权利要求45所述的方法,其特征在于,其还包括以下步骤:将来自于容积式压缩机(1)的空气分成两股流(43,44);将其中一股流(43)输送给预压缩机热交换器(31),而另一股流(44)输送给燃烧室热交换器(45);以及控制所述空气分成两股。
47.如权利要求46所述的方法,其特征在于,其还包括:借助于一查询表来控制引入每股流中的空气的比例,该查询表规定了作为相对于预压缩机热交换器(31)以及燃烧室热交换器(45)的各种入口条件的函数分开的所需的空气。
48.如权利要求46或47所述的方法,其特征在于,其还包括以下步骤:在各自热交换器(31,45)上游将液体供给到两股气流(43,44)中的每一股气流中,并且控制输送给每股流的液体量。
49.如权利要求48所述的方法,其特征在于,其还包括以下这些步骤:在预压缩机热交换器和燃烧室热交换器(31,45)中每一个的热端处监测输入流和输出流之间的温差,并控制流向每个热交换器的水流量以便将该温差维持在理想的水平。
CN018105300A 2000-03-31 2001-03-30 发动机 Expired - Fee Related CN1218120C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0007917.8 2000-03-31
GBGB0007917.8A GB0007917D0 (en) 2000-03-31 2000-03-31 An engine

Publications (2)

Publication Number Publication Date
CN1432102A CN1432102A (zh) 2003-07-23
CN1218120C true CN1218120C (zh) 2005-09-07

Family

ID=9888903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN018105300A Expired - Fee Related CN1218120C (zh) 2000-03-31 2001-03-30 发动机

Country Status (19)

Country Link
US (1) US6817185B2 (zh)
EP (1) EP1269001A1 (zh)
JP (1) JP4605974B2 (zh)
KR (1) KR20020097208A (zh)
CN (1) CN1218120C (zh)
AU (2) AU4264901A (zh)
BR (1) BR0109595A (zh)
CA (1) CA2404259A1 (zh)
CZ (1) CZ20023226A3 (zh)
GB (1) GB0007917D0 (zh)
HU (1) HUP0300252A2 (zh)
IL (1) IL151827A (zh)
MX (1) MXPA02009649A (zh)
MY (1) MY133801A (zh)
NO (1) NO20024580L (zh)
NZ (1) NZ521548A (zh)
PL (1) PL357280A1 (zh)
WO (1) WO2001075290A1 (zh)
ZA (1) ZA200207542B (zh)

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543225B2 (en) * 2001-07-20 2003-04-08 Scuderi Group Llc Split four stroke cycle internal combustion engine
MY138166A (en) * 2003-06-20 2009-04-30 Scuderi Group Llc Split-cycle four-stroke engine
EP1706681A1 (de) * 2003-12-22 2006-10-04 Erwin Oser Verfahren und anlage zur temperaturerhöhung eines dampfförmigen arbeitsmittels
US7398770B2 (en) * 2005-06-03 2008-07-15 Acuna Sr Henry T Dual cold air induction system, apparatus and method for diesel engines
US7353786B2 (en) * 2006-01-07 2008-04-08 Scuderi Group, Llc Split-cycle air hybrid engine
WO2008009339A1 (de) * 2006-07-17 2008-01-24 Bw-Energiesysteme Gmbh Verfahren und vorrichtung zur umwandlung chemischer brennstoffe in mechanische energie
US20080141590A1 (en) * 2006-10-27 2008-06-19 Haltiner Karl J Method and apparatus for vaporizing fuel for a catalytic hydrocarbon fuel reformer
US7997077B2 (en) * 2006-11-06 2011-08-16 Harlequin Motor Works, Inc. Energy retriever system
CA2679423A1 (en) * 2007-02-27 2008-09-04 The Scuderi Group, Llc Split-cycle engine with water injection
US7976593B2 (en) * 2007-06-27 2011-07-12 Heat Transfer International, Llc Gasifier and gasifier system for pyrolizing organic materials
JP5272009B2 (ja) * 2007-10-03 2013-08-28 アイゼントロピック リミテッド エネルギ貯蔵
JP2009115024A (ja) * 2007-11-08 2009-05-28 Mitsui Eng & Shipbuild Co Ltd 等温圧縮シリンダを用いた往復動内燃機関
US7997076B2 (en) * 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US7832207B2 (en) 2008-04-09 2010-11-16 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US20110266810A1 (en) 2009-11-03 2011-11-03 Mcbride Troy O Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US7866157B2 (en) * 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
CA2669322C (fr) * 2008-05-15 2011-11-08 Pauline Blain Moteur thermique a recuperation d'energie equipe d'un piston multifonction double effet
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
GB0822720D0 (en) * 2008-12-12 2009-01-21 Ricardo Uk Ltd Split cycle reciprocating piston engine
US8578733B2 (en) 2009-01-21 2013-11-12 Appollo Wind Technologies Llc Turbo-compressor-condenser-expander
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
CN104895745A (zh) 2009-05-22 2015-09-09 通用压缩股份有限公司 压缩机和/或膨胀机装置
US8454321B2 (en) 2009-05-22 2013-06-04 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
EP2446122B1 (en) 2009-06-22 2017-08-16 Echogen Power Systems, Inc. System and method for managing thermal issues in one or more industrial processes
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8544274B2 (en) * 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8627663B2 (en) * 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8096128B2 (en) * 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US20110167831A1 (en) * 2009-09-25 2011-07-14 James Edward Johnson Adaptive core engine
GB2474709B (en) 2009-10-23 2016-02-03 Ultramo Ltd A heat engine
AU2010336383B2 (en) 2009-12-24 2015-05-28 General Compression Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
JP2013521433A (ja) * 2010-03-01 2013-06-10 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. 回転式圧縮機−膨張機システムならびに関連する使用および製造方法
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
DE112011102629T5 (de) 2010-08-05 2013-05-08 Cummins Intellectual Properties, Inc. Emissionskritische Ladekühlung unter Verwendung eines organischen Rankine-Kreislaufes
CN103180553B (zh) 2010-08-09 2015-11-25 康明斯知识产权公司 包括兰金循环rc子系统的废热回收系统和内燃机系统
WO2012021757A2 (en) 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US8683801B2 (en) 2010-08-13 2014-04-01 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
CA2809945C (en) 2010-08-30 2018-10-16 Oscomp Systems Inc. Compressor with liquid injection cooling
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
US20130227948A1 (en) * 2010-11-12 2013-09-05 Gianluca Valenti Method and system for converting thermal power, delivered from a variable temperature heat source, into mechanical power
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
CN103477092A (zh) 2010-12-07 2013-12-25 通用压缩股份有限公司 带有滚动活塞密封件的压缩机和/或膨胀机装置
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
WO2012088532A1 (en) 2010-12-23 2012-06-28 Cummins Intellectual Property, Inc. System and method for regulating egr cooling using a rankine cycle
DE102012000100A1 (de) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
WO2012096958A1 (en) 2011-01-10 2012-07-19 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
WO2012096938A2 (en) 2011-01-10 2012-07-19 General Compression, Inc. Compressor and/or expander device
US8572959B2 (en) 2011-01-13 2013-11-05 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system
AU2012205442B2 (en) 2011-01-14 2015-07-16 General Compression, Inc. Compressed gas storage and recovery system and method of operation systems
EP2665907B1 (en) 2011-01-20 2017-05-10 Cummins Intellectual Properties, Inc. Rankine cycle waste heat recovery system and method with improved egr temperature control
US9803549B2 (en) * 2011-02-28 2017-10-31 Ansaldo Energia Ip Uk Limited Using return water of an evaporative intake air cooling system for cooling a component of a gas turbine
WO2012150994A1 (en) 2011-02-28 2012-11-08 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
US9109614B1 (en) 2011-03-04 2015-08-18 Lightsail Energy, Inc. Compressed gas energy storage system
EP3441591B1 (en) 2011-04-11 2020-03-18 Nostrum Energy Pte. Ltd. Internally cooled high compression lean-burning internal combustion engine
EP2715075A2 (en) 2011-05-17 2014-04-09 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
WO2013003654A2 (en) 2011-06-28 2013-01-03 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated system and methods
WO2013055391A1 (en) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CA2850837C (en) 2011-10-18 2016-11-01 Lightsail Energy, Inc. Compressed gas energy storage system
US8522538B2 (en) 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US8387375B2 (en) 2011-11-11 2013-03-05 General Compression, Inc. Systems and methods for optimizing thermal efficiency of a compressed air energy storage system
CN103321749A (zh) * 2012-03-20 2013-09-25 易元明 等温压缩式热力发动机
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
WO2014028405A1 (en) * 2012-08-13 2014-02-20 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
US9091278B2 (en) 2012-08-20 2015-07-28 Echogen Power Systems, Llc Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US8726629B2 (en) 2012-10-04 2014-05-20 Lightsail Energy, Inc. Compressed air energy system integrated with gas turbine
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
EP2948649B8 (en) 2013-01-28 2021-02-24 Echogen Power Systems (Delaware), Inc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
KR20160028999A (ko) 2013-03-04 2016-03-14 에코진 파워 시스템스, 엘엘씨 큰 네트 파워 초임계 이산화탄소 회로를 구비한 열 엔진 시스템
WO2014137418A2 (en) * 2013-03-07 2014-09-12 Rolls-Royce Corporation Vehicle recuperator
US8851043B1 (en) 2013-03-15 2014-10-07 Lightsail Energy, Inc. Energy recovery from compressed gas
KR101509694B1 (ko) * 2013-03-26 2015-04-07 현대자동차 주식회사 스폿 용접 장치의 냉각유닛
US9103275B2 (en) * 2013-04-09 2015-08-11 Ford Global Technologies, Llc Supercharged internal combustion engine and method for operating an internal combustion engine of said type
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
US9145795B2 (en) 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
US9587520B2 (en) 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
US10408548B2 (en) 2013-09-25 2019-09-10 Conleymax Inc. Flameless glycol heater
MX2016006069A (es) * 2013-11-20 2017-04-27 W Dortch Richard Jr Motor de combustion a base de compresion isotermica.
CN104912691B (zh) * 2014-06-10 2017-01-04 摩尔动力(北京)技术股份有限公司 内燃闭合循环碳氢燃料热动力系统
WO2016073252A1 (en) 2014-11-03 2016-05-12 Echogen Power Systems, L.L.C. Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US9772122B2 (en) 2014-11-17 2017-09-26 Appollo Wind Technologies Llc Turbo-compressor-condenser-expander
US20160138815A1 (en) 2014-11-17 2016-05-19 Appollo Wind Technologies Llc Isothermal-turbo-compressor-expander-condenser-evaporator device
EP3081683A1 (en) * 2015-04-16 2016-10-19 NV Michel van de Wiele Tufting machine
JP5944035B1 (ja) * 2015-07-14 2016-07-05 三菱日立パワーシステムズ株式会社 圧縮空気供給方法、圧縮空気供給設備、及びこの設備を備えるガスタービン設備
KR101755838B1 (ko) 2015-09-09 2017-07-07 현대자동차주식회사 엔진 예열장치 및 그 예열방법
WO2017091098A1 (ru) * 2015-11-24 2017-06-01 Борис Львович ЕГОРОВ Способ работы двигателя внутреннего сгорания
CN108368772B (zh) * 2015-12-14 2020-11-06 沃尔沃卡车集团 内燃发动机系统和用于这种系统的排气处理单元
EP3390793B1 (en) * 2015-12-14 2020-02-26 Volvo Truck Corporation An internal combustion engine system
MX2019006899A (es) * 2016-12-13 2019-10-15 Blue Box Tech Inc Aparato para extraer energia de calor residual.
WO2018140945A1 (en) 2017-01-30 2018-08-02 Kavehpour Hossein Pirouz Storage-combined cold, heat and power
FR3066227B1 (fr) * 2017-05-09 2019-06-07 Peugeot Citroen Automobiles Sa Moteur a combustion interne avec compression isotherme haute pression d’un flux d’air admis
KR101816021B1 (ko) * 2017-06-09 2018-01-08 한국전력공사 복합 발전장치
CN111065804B (zh) * 2017-09-04 2021-11-09 沃尔沃卡车集团 内燃发动机装置
FR3077095A1 (fr) * 2018-01-23 2019-07-26 Psa Automobiles Sa Moteur a combustion interne a cycle divise muni d'une chambre de post-combustion
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
JP7022677B2 (ja) * 2018-12-14 2022-02-18 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
US10851704B2 (en) * 2018-12-14 2020-12-01 Transportation Ip Holdings, Llc Systems and methods for increasing power output in a waste heat driven air brayton cycle turbocharger system
CN110905619B (zh) * 2019-11-18 2022-05-03 天津大学 一种用于内燃机余热回收的混合工质朗肯循环系统
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
JP2024500375A (ja) 2020-12-09 2024-01-09 スーパークリティカル ストレージ カンパニー,インコーポレイティド 3貯蔵器式電気的熱エネルギー貯蔵システム
CN114224302B (zh) * 2021-12-22 2024-03-15 上海贝瑞电子科技有限公司 一种多生理参数信号单通道同步采集装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE348521B (zh) 1970-12-17 1972-09-04 Goetaverken Ab
US4041708A (en) * 1973-10-01 1977-08-16 Polaroid Corporation Method and apparatus for processing vaporous or gaseous fluids
US4478553A (en) * 1982-03-29 1984-10-23 Mechanical Technology Incorporated Isothermal compression
JPS62111129A (ja) * 1985-11-06 1987-05-22 Kiichi Taga ガスタ−ビンで動力回収する廃水処理装置
KR900008584B1 (ko) 1988-08-26 1990-11-26 김용구 자동차 폐열을 이용한 냉·난방 겸용 동력발생장치
DE4040939C1 (zh) * 1990-12-20 1992-04-09 J.G. Mailaender Gmbh & Co, 7120 Bietigheim-Bissingen, De
PL173297B1 (pl) * 1992-05-29 1998-02-27 Nat Power Plc Urządzenie do odzyskiwania ciepła
GB9225103D0 (en) 1992-12-01 1993-01-20 Nat Power Plc A heat engine and heat pump
DK170217B1 (da) * 1993-06-04 1995-06-26 Man B & W Diesel Gmbh Stor trykladet forbrændingsmotor og fremgangsmåde til drift af en køler til afkøling af en sådan motors indsugningsluft.
GB9621405D0 (en) * 1996-10-14 1996-12-04 Nat Power Plc Apparatus for controlling gas temperature
US5839270A (en) * 1996-12-20 1998-11-24 Jirnov; Olga Sliding-blade rotary air-heat engine with isothermal compression of air
EP0924410B1 (de) * 1997-12-17 2003-09-24 ALSTOM (Switzerland) Ltd Verfahren zum Betrieb einer Gasturbogruppe
EP1053438B1 (de) 1998-02-03 2002-07-24 Miturbo Umwelttechnik GmbH & Co. KG Verfahren und vorrichtung für wärmetransformation zur erzeugung von heizmedien

Also Published As

Publication number Publication date
CA2404259A1 (en) 2001-10-11
PL357280A1 (en) 2004-07-26
AU4264901A (en) 2001-10-15
MXPA02009649A (es) 2004-07-30
US20030049139A1 (en) 2003-03-13
HUP0300252A2 (en) 2003-06-28
ZA200207542B (en) 2003-09-19
JP2003529715A (ja) 2003-10-07
WO2001075290A1 (en) 2001-10-11
CZ20023226A3 (cs) 2003-02-12
US6817185B2 (en) 2004-11-16
CN1432102A (zh) 2003-07-23
BR0109595A (pt) 2003-02-04
JP4605974B2 (ja) 2011-01-05
EP1269001A1 (en) 2003-01-02
NO20024580L (no) 2002-11-21
NZ521548A (en) 2004-04-30
GB0007917D0 (en) 2000-05-17
KR20020097208A (ko) 2002-12-31
IL151827A0 (en) 2003-04-10
IL151827A (en) 2005-11-20
AU2001242649B2 (en) 2005-08-18
MY133801A (en) 2007-11-30
NO20024580D0 (no) 2002-09-24

Similar Documents

Publication Publication Date Title
CN1218120C (zh) 发动机
CN1112505C (zh) 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
US7089743B2 (en) Method for operating a power plant by means of a CO2 process
AU2001242649A1 (en) An engine
CN104769256B (zh) 燃气轮机能量补充系统和加热系统
CN101495728B (zh) 用于分开循环发动机的废热回收系统和方法
EP1600615A2 (en) Intercooler system for gas turbine engines
CN102536468B (zh) 二氧化碳压缩系统
CN103814204A (zh) 直喷式柴油机装置
CN102498282B (zh) 内燃机
CN1206449C (zh) 透平机及其运行方法
US9284856B2 (en) Gas turbine combined cycle power plant with distillation unit to distill a light oil fraction
CN102483014A (zh) 具有改进的排气热量回收装置的发动机设备
CN1172243A (zh) 尤其用于天然气液化的改良冷却方法及装置
CN106133300A (zh) 具有斯特林发动机的压缩机组
CN1867754A (zh) 用于管道内流动的气体增压的方法和装置
CN1036414C (zh) 改进的回热并联复合双流体燃气轮机装置及其操作方法
EP1538318A1 (en) System and method for district heating with intercooled gas turbine engine
CN1566715A (zh) 蒸汽抽射真空射流加压装置及其应用
JP2014109270A (ja) クロスヘッド及び蒸気タービンを有するターボ過給式大型低速2ストロークユニフロー内燃機関
CN108167086A (zh) 一种高压富氧燃烧斯特林发电系统及其控制方法
CN1065587C (zh) 一种热机和热泵
CA2479985A1 (en) Enhanced energy conversion system from a fluid heat stream
CN1090015A (zh) 通用环形汽缸旋转活塞发动机
RU2179248C1 (ru) Способ регенерации тепла в парогазовом цикле и парогазовая установка для его осуществления

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee