CN1188530A - 具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构 - Google Patents

具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构 Download PDF

Info

Publication number
CN1188530A
CN1188530A CN97190327A CN97190327A CN1188530A CN 1188530 A CN1188530 A CN 1188530A CN 97190327 A CN97190327 A CN 97190327A CN 97190327 A CN97190327 A CN 97190327A CN 1188530 A CN1188530 A CN 1188530A
Authority
CN
China
Prior art keywords
permanent magnets
magnetic
physical dimension
vibration
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97190327A
Other languages
English (en)
Other versions
CN1077966C (zh
Inventor
藤田悦则
榎芳美
中平宏
川崎诚司
誉田浩树
小仓由美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Tooling Co Ltd
Original Assignee
Delta Tooling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co Ltd filed Critical Delta Tooling Co Ltd
Publication of CN1188530A publication Critical patent/CN1188530A/zh
Application granted granted Critical
Publication of CN1077966C publication Critical patent/CN1077966C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • F16F6/005Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid using permanent magnets only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种至少具有两个在一动力机构中彼此相互隔开的永磁体2和4的磁弹簧。在输入和输出时,两永磁体之间的几何尺寸可以由所述动力机构或一外力来改变。在所述动力机构中,将这种几何尺寸的变化转变为推斥力,从而(1)使来自两永磁体平衡位置的推斥力在输出时比输入时更大,或者(2)导出所述磁弹簧的项,以提供非线性阻尼或弹簧特性。

Description

具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构
技术领域
本发明总的涉及一种具有多个永磁体的磁弹簧,特别涉及一种利用多个永磁体的推斥力而具有正、零或负阻尼特性的磁弹簧。本发明还涉及一种具有所述磁弹簧但没有物理阻尼结构的、稳定的非线性振动机构或系数励振振动机构。现有技术的背景
目前,各种振动模型已被提出并得到实践使用。一般来说,振动特性取决于负荷质量和输入。可以认为,负荷质量和负荷-变位特性的曲率之间,以及输入和负荷-变位特性的磁滞现象之间都具有相关的关系。
例如,在汽车座椅的悬挂式系统中,用来调整诸如所述悬挂式系统弹簧常数之类的乘坐舒适感的要点是路面条件、控制稳定性和阻抗(或其差异)条件。为了在所有条件下都能最优化,需要进行主动控制(active control)。在令人讨厌的道路上行驶或高速行驶会导致低频和高振幅区内有明显的差异。在阻尼力较低的情况中,变位的传递率将增大,并且共振频率将移动至频率更低的区域。为了增大阻尼力,必需增大阻尼器的阻尼率,或者降低弹簧常数。因此,传统的被动式振动模型在其性能上有一定限制。
作为具体例子,下面对悬挂式座椅进行描述。悬挂式座椅就是主要在诸如土方运输机或游乐车(RV)之类的非道路车辆,或者诸如货车或公共汽车之类的长途旅行车上使用的,并装有隔振机构的座椅。作为所述隔振机构,可以使用一金属弹簧、一空气弹簧、空气阻尼器或其它类似物。在这些座椅中,座椅的隔振性能已被提高在约1.5至12Hz,尤其是3至5Hz的频率范围内。因此,悬挂式座椅的共振频率设定在1至2.5Hz范围内。
图51示出了传统悬挂式座椅的振动特性。在图51中,图(a)表示一刚性座椅,图(b)表示一悬挂式座椅,图(c)表示一富有弹性的座椅,图(d)表示一没有阻尼器的悬挂式座椅。
在那些具有低刚性的(即具有柔软的乘坐舒适感)座椅中,当受到冲击或低频振动时,将有较大的动变位。但是,座椅悬挂机构的行程通常是被限制在100mm以下,从而不会干扰驾驶员的工作,诸如,踩踏一踏板或类似物。在动变位较大时,它将使所述悬挂式座椅产生一终点阻挡(end-stop)的冲击。
为了弄清终点阻挡冲击对于悬挂式座椅性能的影响,在1994年,Stiles对拖拉机的行驶进行了一次现场调查。他发现,45%的悬挂式座椅增大了驾驶员所受到的加速度值。他提出:终点阻挡冲击降低了悬挂式座椅的隔振性能。使用一减振器是一种车辆在遇到突然或瞬间撞击时的解决方法。
最近,已提出一种主动式的悬挂式座椅,其中,一驱动器安装在所述座椅上,以主动控制振动,以增强乘坐舒适感。
但是,降低通过车辆地板而传递的振动中的4-20Hz振动频率,采用金属弹簧、空气弹簧、空气阻尼器或其它类似物的隔振机构不能增强乘坐舒适感或使用感。
此外,主动悬挂式座椅是沉重的,并且价格昂贵,并且还需要经常驱动所述驱动器。如果关闭所述驱动器,振动就通过所述驱动器而传递到座椅上的乘客,因此影响了乘坐舒适感。
另一方面,在采用减振器的悬挂式座椅中,如果阻尼力太大,则它将降低低频和中频区中的座椅的隔振性能,即大约是共振频率的1.4倍以上。
本发明对此作了改进,从而能克服上述缺点。因此,本发明的一目的在于:提供一种使用永磁体而具有正、零或负阻尼弹性的磁弹簧。本发明的另一目的在于:通过提供一种具有前述磁弹簧但没有物理阻尼结构的、稳定的非线性振动机构或者系数励振振动机构,从而获得一种价廉的动态弹性控制系统或结构简单的高效率的装置。本发明的概述
为了实现上述和其它目的,本发明的磁弹簧具有零或负阻尼特性,并且包括至少两个永磁体,所述的两个永磁体彼此之间相互隔开,并且两者间具有可变的几何尺寸;一动力机构,用来移动放置在其内的所述至少两个永磁体。在输入和输出时,在所述动力机构或一外力的作用下,所述至少两个永磁体的几何尺寸可以被改变并转变为一推斥力,从而使来自所述至少两永磁体的平衡位置的所述推斥力在输入时比输出时变得更大。
在所述至少两个永磁体的最靠近位置或经过该最靠近位置的位置处,可以产生一最大推斥力。
通过改变所述至少两个永磁体之间的距离、或者其对置面积、或者磁通密度或磁场强度,可以改变所述几何尺寸。
此外,本发明的磁弹簧可以具有正阻尼特性,并包括至少两个永磁体,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;一动力机构,用来移动放置在其内的所述至少两个永磁体。在输入和输出时,在所述动力机构或一外力的作用下,所述至少两个永磁体的几何尺寸可以被改变,以导出一阻尼项,从而提供非线性的阻尼特性和弹簧特性。
在上述结构中,在所述至少两个永磁体的最靠近位置处,可以产生一最大推斥力。同样,通过改变所述至少两个永磁体之间的距离、或者其对置面积、或者磁通密度或磁场强度,可以改变所述几何尺寸。
而且,本发明的一系数励振振动机构包括:一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;一动力机构,用来移动放置在其内的所述至少两个永磁体。所述至少两个永磁体的几何尺寸可以由所述动力机构或一外力而改变,从而使所述磁弹簧具有零阻尼特性或负阻尼特性,并将能量转化为连续振荡或发散振动。
在上述结构中,所述几何尺寸可以在一外力的作用下而改变,以改变所述动力机构内部的弹簧常数和阻尼系数。同样,几何尺寸可以在所述动力机构或一外力作用下而改变,以使一励振或共振频率可变,从而使共振频率紧随所述励振频率,以降低共振频率或振幅的变化。
此外,所述几何尺寸可以在所述动力机构或一外力的作用下而改变,从而当变位较小时提供负阻尼,当所述变位增大时,提供正阻尼,从而当所述负阻尼和正阻尼平衡时,使振动稳定。
此外,本发明的一非线性振动机构包括:一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;一动力机构,用来移动放置在其内的所述至少两个永磁体。所述至少两个永磁体的几何尺寸可以由所述动力机构或一外力而改变,从而使所述磁弹簧所具有的正阻尼特性比所述动力机构内的弹簧特性更大。
在上述结构中,所述几何尺寸可以在所述动力机构或一外力的作用下而改变,以改善振动特性,或使一共振频率可变,从而使共振频率紧随所述励振频率,以降低共振频率或振幅的变化。
根据本发明另一形式的一非线性振动机构,它包括:一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;一动力机构,用来移动放置在其内的所述至少两个永磁体。所述几何尺寸是在所述动力机构或一外力作用下而改变的,以使一共振频率可变,从而使所述共振频率紧随所述励振频率,以增大所述共振频率或振幅的变化,从而用一较小的输入,就可以产生一较大的加速度或振幅。附图简要说明
图1是本发明的一磁弹簧的示意图,它特别示出了两个位于输入侧和输出侧上的永磁体的平衡位置;
图2是图1所示磁弹簧的基本特性的曲线图,它特别地示出了在施加于其中一个永磁体的负荷和偏离平衡位置的变位量之间的相互关系;
图3是一示出了所测得负荷和所述变位量之间相互关系的曲线图;
图4是一示意图,它示出了假定诸磁荷是均匀地分布在诸永磁体的端面上,将输入和输出设想成一负荷模式的方式,图(a)示出了吸引力,图(b)示出了推斥力,图(c)示出了在不同于(b)的位置处的推斥力;
图5是一示意图,它示出了彼此相互隔开的、且相同磁极是彼此反向设置的两永磁体,并示出了其中一永磁体相对于另一永磁体而移动(以改变对置面积(opposing area)的情况;
图6是X轴和Z轴方向上的负荷相对于当根据图5进行计算时X轴方向的移动量的曲线图;
图7是一曲线图,它示出了当图5所示的诸永磁体之间的间距保持恒定,并且其中一个永磁体相对于另一永磁体、从完全松开的状态移动至完全重叠状态,并再到完全松开状态时,所述负荷和变位量之间的相互关系;
图8是一示意图,它示出了彼此相互隔开、且相同磁极是彼此反向设置的两永磁体,并示出了其中一磁体相对于另一磁体旋转(以改变对置面积)的情况;
图9是当其中一磁体如图8所示的那样进行旋转时,所述最大负荷相对于所述对置面积的曲线图;
图10是一曲线图,它示出了当使用钕基磁体时所述负荷和两磁体间距之间的相互关系;
图11是一第一磁弹簧的前视图,其中通过改变两永磁体的对置面积可以改变所述第一磁弹簧的几何尺寸;
图12是一第二磁弹簧的前视图,其中通过改变两永磁体之间的间距可以改变所述第二磁弹簧的几何尺寸;
图13是一第三磁弹簧的前视图,其中通过与一杠杆比转换装置相结合使用,可以改变所述第三磁弹簧的几何尺寸;
图14是一第四磁弹簧的前视图,其中通过转换磁极可以改变所述第四磁弹簧的几何尺寸;
图15是一第五磁弹簧的前视图,其中通过改变磁路可以改变所述第五磁弹簧的几何尺寸;
图16为说明了所述磁弹簧的诸特征的一基本模型。
图17是一曲线图,它示出了两对置永磁体之间的间距和推斥力之间的相互关系;
图18是一用来获得没有任何面积改变的磁弹簧的静态和动态特性的装置的前视图;
图19是诸曲线图,它们示出了藉助使用图18所示装置所得到的磁弹簧的动态特性,图(a)是藉助使用50×50×10mm的诸磁体所得到的曲线图,图(b)是藉助使用50×50×15mm的诸磁体所得到的曲线图,图(c)是藉助使用50×50×20mm的诸磁体得到的曲线图,图(d)是藉助使用75×75×15mm的诸磁体所得到的曲线图,图(e)是藉助使用75×75×20mm的诸磁体所得到的曲线图,图(f)是藉助使用75×75×25mm的诸磁体所得到的曲线图;
图20是一曲线图,它示出了藉助使用图18所示装置当负荷随着所使用的相同磁体而改变时,所得到的磁弹簧的动态特性;
图21是一曲线图,它示出了一用作比较例的传统汽车座椅的动态特性;
图22是本发明磁弹簧结构中弹簧常数和一系数相对于时间的变化的曲线图;
图23是一曲线图,它示出了当只使用诸衬垫(pad)时、使用诸衬垫和所述磁弹簧时,以及进行半主动(semi-active)控制时,一床式隔振器的动态特性;
图24是一用来测量所述磁弹簧的动态特性的磁悬浮装置的前视图;
图25是一曲线图,它示出了藉助使用图24所示的磁悬浮装置所测量的所述磁悬浮装置的动态特性;
图26是示出了藉助使用包括磁悬浮装置在内的各种座椅所测量的座椅舒适感的评定值;
图27示出了通过改变负荷和缓冲材料所测量的座椅舒适感的评定值;
图28是一曲线图,它示出了藉助使用包括磁悬浮装置在内的各种座椅所测量的动态特性;
图29是一具有一止挡件和一弹性支承件的磁弹簧模型的示意图;
图30是一示出了一滑动型原理模型的输入/输出工作特性的曲线图;
图31是一示出了一旋转型原理模型的输入和输出的测量值的曲线图;
图32是一示出了所述旋转型原理模型的输入/输出工作特性的曲线图;
图33是一说明输入/输出原理模型的各部分的示意图;
图34是一曲线图,它示出了通过使用一充电模式所得到的两磁体间间距与推斥力或磁通密度之间的相互关系;
图35是一曲线图,它示出了通过改变面积所得到的旋转型原理模型的变位量和推斥力之间的相互关系;
图36是一示出了一滑动型金属弹簧模型的输入/输出工作特性的曲线图;
图37是一说明所述金属弹簧模型的各部分的示意图;
图38是所述旋转型原理模型的立体图;
图39是所述滑动型原理模型的立体图;
图40是一曲线图,它示出了当图11所示的磁弹簧具有一平衡块以及当所述磁弹簧没有平衡块时,加速度和输入或者所需推力之间的相互关系;
图41是当图11所示的磁弹簧具有一平衡块以及当所述磁弹簧没有平衡块时,振幅和加速度相对于频率的曲线图;
图42是一置于一金属导体内的磁场模型的示意图,图(a)示出了一柱状磁体和金属导体的坐标,图(b)示出了所述柱状磁体的圆柱坐标,图(c)示出了所述金属导体内的电流密度;
图43是其中采用了本发明的磁弹簧的、用于悬挂式座椅的隔振装置的诸视图,图(a)是所述整个隔振装置的前视图,图(b)是其侧视图,图(c)是一可摆动地安装在所述隔振装置(a)上部的水平隔振机构的立体图;
图44是一曲线图,它示出了在具有或没有由电磁感应所引起的水平阻尼效应中的振动特性;
图45是磁极数有所不同的磁弹簧的磁体设置情况的示意图,图(a)是一单磁极磁弹簧的前视图,图(b)是一两磁极磁弹簧的前视图,图(c)是一三磁极磁弹簧的前视图,图(d)是一四磁极磁弹簧的前视图,图(e)是从图(d)中箭头所示方向观察到的俯视图;
图46是一曲线图,它示出了不同磁极数的磁体其推斥力和磁体间距之间的相互关系;
图47是一曲线图,它示出了一具有两磁极或四磁极的、用于悬挂式座椅的隔振装置的振动特性;
图48是各种弹簧的振动特性的曲线图,图(a)示出了一金属弹簧的振动特性,图(b)示出了一空气弹簧(air spring)的振动特性,图(c)示出了一磁弹簧的振动特性;
图49是一曲线图,它示出了一采用所述磁弹簧的悬挂式机构的静态特性;
图50是一曲线图,它示出了传统悬挂式机构和采用所述磁弹簧的所述悬挂式机构的振动特性;以及
图51是一曲线图,它示出了传统的普通悬挂式座椅的动态特性。较佳实施例的具体描述
现请参阅附图,对本发明的诸较佳实施例进行描述。当一磁弹簧结构是由至少两个彼此隔开的、并且相同的磁极是彼此相对设置的永磁体制成时,所述两个彼此相互隔开的永磁体彼此之间保持非接触。因此,如果所述结构本身的摩擦损失足够小从而可以被忽略,那么,其静态特性是可逆的,即,输出(返回)与输入(去)在同一条线上,并且是非线性的。而且,利用非接触对特有的自由度和浮动控制系统的不稳定性使静态磁场(诸磁体的设置情况)随小量输入而改变,可以很方便地产生负阻尼。
本发明正是注意到该事实而作出改进的。在输入(去)的时候并在输出(回)的时候,藉助一位于一其内放置有诸永磁体的运动系统的内部的机构或者一外部作用力来改变两永磁体之间的几何尺寸。在所述运动系统内,将这种几何尺寸的变化转变成一推斥力,以使来自于所述两永磁体平衡位置的所述推斥力在输出时比输入时更大。
下面,对基本原理进行描述。
图1示意性地示出了位于输入侧和输出侧上的两个永磁体2、4的平衡位置,图2示出了所述磁弹簧的基本特性,并示出了施加于其中一个永磁体上的负荷与偏离所述平衡位置的变位量之间的相互关系。
如图1所示,当输入侧上的永磁体4相对于永磁体2的平衡位置和所述磁弹簧的弹簧常数分别是x0和k1时,并且输出侧上的永磁体4的平衡位置和弹簧常数分别是x1和k2时,在x0和x1之间就有面积变化,并且在各平衡位置将保持下列关系:
    -k1/x0+mg=0
    -k2/x1+mg=0
     k2>k1
因此,如图2所示,静态特性表明了负阻尼,并且可以想到位置x1和位置x0之间的势性差与振动的势能是相对应的。
作出图1所示的模型,并通过改变施加负荷期间的时间来测量负荷和变位之间的相互关系。因此就得到了图3所示的曲线图,并且可以将该图理解为当两永磁体2和4相互接近至最靠近位置时,产生一大的推斥力,并且当偏离平衡位置的变位量稍稍改变时,由磁弹簧的阻尼效应产生一摩擦损失,因此形成一阻尼项。
在图3中,(a)是一当施加一恒定负荷时所得到的曲线,按(a)、(b)和(c)的顺序,施加所述负荷过程的时间变得越来越短。换言之,静态特性根据负荷施加的方式而改变,并且负荷施加过程的时间越长,冲量就越大。
对于稀土磁体来说,磁化强度不取决于磁场。更为具体地说,由于内磁矩不容易受到磁场的影响,因此去磁曲线上的磁化强度几乎不改变,并且所述值保持得几乎与饱和磁化的相同。因此,在使用稀土磁体的情况中,假定所述磁荷是均匀地分布在其表面上,利用一磁荷模型可以计算所述作用力。
图4示出了将磁体定义为一组最小的单位磁体的构想。作用在这些单位磁体之中的诸作用力的相互关系可以通过将它分为三类而进行计算。
(A)吸引力(由于诸单位磁体的r和m是相同的,因此两种型式可以被定为一种)
f(1)=(m2/r2)dx2dy1dx2dy2
fv (1)=f(1)cosθ
fz (1)=f(1)sinθ
(b)推斥力
fx (2)=f(2)cosθ
fz (2)=f(2)sinθ
(c)推斥力
fx (3)=f(3)cosθ
fz (3)=f(3)sinθ
因此,
        -fx=2fx (1)-fx (2)-fx (3)
        -fz=2fz (1)-fz (2)-fz (3)
于是,库仑定律可以表示成:
        F=k(q1q2/r2)  r:距离
        q=MS          q1、q2:磁荷
                       M(m):磁化强度
                       S:面积
通过对上述(-fx)和(-fz)在磁体尺寸范围内求积分,可以求得诸作用力。
如图5所示,通过将两相对磁体其中的一个磁体相对于另一磁体、从两者完全重叠的状态(移动长度x=0mm)移动至其中一个处于完全滑动的状态(移动长度x=50mm),对每一磁隙进行计算。在图6中示出了计算结果。虽然将内磁矩视为常数,但是,由于当磁隙较小时,在诸磁体周围产生杂乱现象,需对内磁矩作略微的校正。
上述计算结果通常与实际测量结果是一致的。在图2中将点(a)移动至点(b)所需的作用力是x轴负荷,而输出是由z轴负荷来表示的。由不稳定性所产生的输入<输出的相互关系被静态阐明。
图7是一曲线图,它示出了当两磁体间距保持为3mm时的x轴负荷和z轴负荷与两磁体从完全松开状态改变成重叠状态并再回到完全松开状态之间的相互关系。该曲线图是一特性曲线,它表示了x轴负荷的绝对值是相等的,而输出方向是相反的。当其中一磁体相对于另一磁体移动而达到完全重叠状态时,前者受到一阻力,从而形成阻尼。另一方面,当其中一磁体相对于另一磁体移动,从完全重叠状态移动至完全松开状态时,前者就被加速。这些特性可以用在一非接触式阻尼器中,以减小振动能量或者改善在人能感应到的低频、中频和高频区域(0-50赫兹)中的传递率,而传统阻尼器是不可能做到这一点的。
当如图8所示那样改变两对置磁体的旋转角度时,就得到了图9所示的曲线图。当然,当对置面积减小时,最大负荷也减小。该曲线图表明:通过施加一预定输入来改变面积,可以改变输出。
图10是一曲线图,它示出了当采用钕基磁体时,负荷和诸磁体间间距之间的相互关系。推斥力随质量的增大而增大。推斥力F由下式给出:
F∝Br2×(几何尺寸)
Br:磁化强度
所述几何尺寸就是由对置磁体之间的间距、对置面积、磁通密度、磁场强度或其它类似物所确定的尺寸。如果磁体材料相同,则磁化强度为常数,因此,诸磁体的推斥力可以通过改变几何尺寸来改变。
图11示出了一第一磁弹簧模型,其中所述几何尺寸是通过改变对置磁体2和4的对置面积来改变的。在图11中,彼此相互平行延伸的一基板6和一顶板8是藉助两个X连杆10而连接的,每一X连杆具有两个连杆10a和10b。连杆10a的一端和连杆10b的一端分别是可枢转地安装在基板6和顶板8上,而连杆10a的另一端和10b的另一端分别是可枢转地安装在一可滑动地安装在顶板8上的上滑动件12上和一可滑动地安装在基板6上的下滑动件14上。
基板6上牢固地安装有一线性导轨16,一其上放置有一永磁体2的磁载置台18可滑动地安装在所述线性导轨上。基板6还具有一与之固定的支承件20,一包括一第一臂22a和一第二臂22b的L形操纵杆22的基本中心部分可枢转在安装在所述支承件20上。第一臂22a其一端可枢转地安装在磁载置台18上,而第二臂22b上安装有一平衡块24。
在上述结构中,当将一特定输入施加在基板6上以将基板6朝着顶板8的方向移动时,磁载置台18就借助平衡块24的惯性力沿着线性导轨16而移动。因此,两永磁体2和4的对置面积逐渐增大,并在永磁体2和4的最靠近位置或者是经过这样一位置的位置处产生最大推斥力。然后,基板6在推斥力的作用下向下移动。当基板6朝着并随后远离顶板8的方向移动时,图11所示的磁弹簧呈现出如图3所示的负阻尼特性。由于平衡块24的相位相对于基板6稍有滞后,因此,通过根据输入沿着第二臂22b移动平衡块24,可以改变产生最大推斥力的位置。而且,通过将永磁体4与上滑动件12互锁在一起,可以调节时间或对置面积。
图12示出了另一模型,其中两永磁体2和4分别牢固地安装在基板6和顶板8上,并且具有两个辅助永磁体26和28,以通过改变它们的间隙(间距)来改变几何尺寸。
在图12中,永磁体28固定于顶板8上,并且其S极朝下,与永磁体4相接触,而永磁体26是固定在一摇臂30的一端上,并且其S极朝上,与永磁体24相接触。摇臂30的中心部分可枢转地安装在支承件20上,一平衡块24安装在摇臂30上,位于永磁体26相对的侧面上。
在上述结构中,由于两永磁体2和26是安装在基板6上,并且其相反的磁极是彼此相对的设置,因此,磁引力作用在其间,如一平衡弹簧。当将一特定输入施加在基板6上以将基板6朝着顶板8的方向移动时,永磁体26就在平衡块24的惯性力作用下、抵着永磁体2的磁引力向上移动。结果,永磁体26和28之间的间隙或间距逐渐改变,并且在其最靠近位置或者经过这样一位置的位置处,产生最大推斥力。基板6随后在惯性力的作用下向下移动。当基板6朝着并随后远离顶板8的方向移动时,图12所示的磁弹簧就呈现出如图3所示的负阻尼特性。如图11所示模型的情况一样,通过根据输入沿着摇臂30的方向移动平衡块24,可以调节最大推斥力所产生的位置。
图13示出了另一模型,其中,两对置永磁体2和4的几何尺寸是通过利用一旋转操纵杆来改变的。
在图13中,永磁体2固定于基板6,而与永磁体2相对的永磁体4是固定于一可滑动地安装在一框架32上的安装件34上,所述框架自基板6向上延伸。一连杆36以其一端与安装件34可枢转地相连,而其另一端与固定于下滑动件14一侧面上的第一支承件38相连。一第二支承件40固定于下滑动件14的另一侧面,一操纵杆42的一端与第二支承件40可枢转地相连,并在其另一端上安装有一销44。所述销44较松地插入一形成在连杆36中部内的细长开口36a内,并且也是可枢转地安装在一臂46的下端上,所述臂46可枢转地安装在顶板8上。
在上述结构中,当将一特定输入施加在基板6上以将基板6朝着顶板8的方向移动时,操纵杆42就朝着箭头所示的方向旋转,从而使两永磁体2和4相互靠近。由于永磁体2和4的相同磁极是彼此相对的,由此,操纵杆32的旋转会逐渐增大推斥力。在永磁体2和4经过其最靠近位置的位置之后,永磁体2和4就在惯性力的作用下朝着彼此远离的方向移动。当基板6朝着并随后远离顶板8的方向移动时,杠杆比逐渐改变,并且图13所示的磁弹簧就呈现出如图3所示的负阻尼特性。
图14示出了又一种模型,其中,所述几何尺寸是通过改变永磁体的磁极来改变的。
在图14中,永磁体2是可旋转地安装在基板6上,并固定有一小直径的皮带轮48。该皮带轮48藉助一皮带52而与一可旋转地安装在基板6上的大直径皮带轮50相连。皮带轮50的中心与一连杆54的一端相连,所述连杆的另一端与一其上安装有一平衡块24的连杆56相连。平衡块24下端的位置是由一藉助一支架58而安装在顶板8上的弹簧件60来限制的。
在上述结构中,当将一特定输入施加在基板6上以将基板6朝着顶板8的方向移动时,大直径皮带轮50就在平衡块24的惯性力的作用下、朝着箭头所示的方向旋转,因此,永磁体2随皮带52一起以相同方向进行旋转。结果,永磁体2的S极就被固定在顶板8上的永磁体4的N极所吸引。但是,当平衡块24以某一相位滞后而紧随时,永磁体2就朝着与箭头相反的方向旋转,并且其N极与永磁体4的N极相对。相同磁极的相对设置就产生了一推斥力,该推斥力又将基板6朝下移动而离开顶板8。当基板6上下移动时,图14所示的磁弹簧就呈现出如图3所示的负阻尼特性。
图15示出了又一种模型,其中,所述几何尺寸是通过改变永磁体的磁通密度来改变的。
在图15中,多个屏蔽板66以其两端可旋转地连接于一固定于基板6的第一支承板62和一以预定距离与第一支承板62隔开并与之平行延伸的第二支承板64上。一L形操纵杆70在其中心部分处藉助一臂68而与所述第二支承板64的一端相连。所述L形操纵杆70的一端与一固定于基板6的支承件72可枢转地相连,并且其另一端上安装有所述平衡块24。
在上述结构中,当将某一输入施加于顶板6上以将基板6朝着顶板8的方向移动时,第二支承板64就在平衡块24的惯性力作用下、朝着箭头所示的方向移动,由此使诸屏蔽板66能在一定程度上保护永磁体2不受上述影响。因此,减小了安装在基板6上的永磁体2的磁通密度,并由此减小了其对抗安装在顶板8上的永磁体4的推斥力。
当平衡块24以某一相位滞后紧随时,第二支承板64朝着与所述箭头相反的方向移动,以开放磁体2的上部空间。因此,增大了永磁体2和4的推斥力,基板6向下朝着离开顶板8的方向移动。当基板6上下移动时,图15所示的磁弹簧就呈现出图3所示的负阻尼特性。
下面利用图16所示的一简化的基本模型的特性方程,对上述磁弹簧的动态特性进行说明。
在图16中,一输入F是由几何尺寸变化而产生的力,所述几何尺寸的变化可以是诸如永磁体面积的变化。
图17示出了:当将对置面积为50×25mm2且厚度为10mm的两个永磁体(Nd-Fe-B系统)彼此相互对置以相互推斥时,对置的两磁体表面间的距离(x)和推斥力(f)之间的相互关系。实线示出了利用Levenberg-Marquardt算法而获得的回归分析的结果,并较好地满足以下关系:f=66/x。换言之,作用在两磁体之间的推斥力可由k/x给出。
把这个考虑进去,可以将磁弹簧的特性写成一函数,并且用公式来表示运动方程。由于作用在两磁体之间的推斥力可由k/x给出,如上所述,故特性等式由下式给出: m x · · + r x · - k x + mg = F ( t ) - - - ( 1 )
在图16中,包括上永磁体4和施加于磁体4上的负荷在内的总质量、弹簧常数、阻尼系数和输入给所述质量m的谐波励磁分别由m、k、r和F(t)来表示。
当用x0表示平衡位置,用y表示偏离平衡位置的变位量时, - k x 0 + mg = 0 , x 0 = k mg
                        x=x0+y x · = y · x · · = y · · = k x 0 - k x 0 2 y m x · · + r x · - k x + mg = m y · · + r y · - k x 0 + y + mg = m y · · + r y · - k x 0 + k x 0 2 y + k x 0 = m y · · + r y · + k x 0 2 y
如果k/x0 2=k′, m y · · + r y · + k ′ y = F ( t )
如果谐波励磁F(t)=Feiωt并且y=xeiωt y · = iωx e iωt y · = i 2 ω 2 x e iωt
        -mω2xeiωt+riωxeiωt+k′xeiωt=Feiωt
            (-mω2x+riωx+k′x)eiωt=Feiωt
                    x(k′-mω2+riω)=F x = F k ′ - m ω 2 + riω = F ( k ′ - mω 2 - riω ) ( k ′ mω 2 + riω ) ( k ′ - mω 2 - riω ) = F ( k ′ - mω 2 ) 2 + ( rω ) 2 [ k ′ - mω 2 ( k ′ mω 2 ) 2 + ( rω ) 2 - ir ω ( k ′ - mω 2 ) 2 + ( rω 2 ) 2 = F ( k ′ - mω 2 ) 2 + ( rω ) 2 ( cos φ - sin φ ) = F ( k ′ - mω 2 ) 2 + ( rω ) 2 e - iφ y = x e iωt = F ( k ′ - mω 2 ) 2 + ( rω ) 2 e i ( ωt - φ ) = F k ′ 2 [ 1 - ( ω 2 ω 0 ) ] 2 + ( 2 ρ ω ω 0 ) 2 e i ( ωt - φ )
其中,φ表示相角。 ρ = r / 2 m k ′ ω 0 2 = k ′ m = k m x 0 2 = k m ( mg k ) 2 m k g 2
因此,固有频率(共振频率)ω0由下式给出: ω 0 ∝ m k
固有频率和弹簧常数之间的相互关系与金属弹簧相反。换言之,由于非线性,如果最佳负荷-变位量特性的曲率可以通过调节工作点的设定位置和磁电路来计算,则有可能保持所述共振点为常数。
等式(2)可以表达为如下: k x = k x 0 + y = k x 0 ( 1 + y x 0 ) = k x 0 ( 1 1 + y x 0 ) = k x 0 { 1 - y x 0 + ( y x 0 ) 2 - ( y x 0 ) 3 + . . . ( - 1 ) n ( y x 0 ) n + . . . } mx + rx - k x + mg = my + ry + k x 0 { 1 - y x 0 + ( y x 0 ) 2 - ( y x 0 ) 3 + . . . } = my + ry + k x 0 { y x 0 - ( y x 0 ) 2 + ( y x 0 ) 3 . . . }
让y等于x,并且当认为所述等式最多具有三次项时, m x · · + r x · + k x 0 2 x - k x 0 3 x 2 + k x 0 4 x 3 = F ( t ) m x · · + r x · + ax - b X 2 + c X 3 = F ( t ) - - - ( 3 ) a = k x 0 2 = ( mg k ) 2 k = ( mg ) 3 k - - - ( 4 ) b = k x 0 3 = ( mg k ) 3 k = ( mg ) 3 k 2 - - - ( 5 ) c = k x 0 4 = ( mg k ) 4 k = ( mg ) 4 k 3
等式(3)具有一位于二次项的阻尼项bxa。当进一步简化等式(3)时, m x · · + r x · + ax - b x 2 = F ( t ) - - - ( 6 )
当x=x0cosωt,
            x=x0 2cos2ωt=x0 2(1sin2ωt) = x 0 2 ( 1 - 1 - cos 2 ωt 2 ) = x 0 2 ( 1 + cos 2 ωt 2 )
Figure A97190327001712
m x · · + r x · + ax - b x 0 2 2 = F ( t ) m x · · + r x · · + ax = F ( t ) + - b x 0 2 2
在一具有小振幅的振动区域内,将一恒定的推斥力((b/2)x0 2)连续地作用于一周期性的外力以使它减弱。也就是说,通过调节诸永磁体的运动的轨迹,可以获得阻尼效应,而不需要设置一阻尼机构。
鉴于以上观点,当利用图18所示的装置仅对诸磁体的动态特性进行研究时,可以得到如图19和图20所示的结果。
图18所示的装置具有两个对置的永磁体2和4,藉助X连杆10可以改变所述两永磁体的间距,而不会改变对置面积。
在图19和图20中,横坐标的轴线表示频率(Hz),而纵坐标的轴线表示振动传递率(G/G)。在图19中,(a)、(b)、(c)、(d)、(e)和(f)是当将30kg的相同负荷分别施加于50×50×10mm、50×50×15mm、50×50×20mm、75×75×15mm、75×75×20mm以及75×75×25mm的磁体时所得到的曲线图。另一方面,在图20中,是将不同的负荷53kg和80kg施加于50×50×20mm的相同磁体上。
图19和图20示出了所述磁弹簧的非线性特性,并且揭示了:当负荷相同时,由于两磁体的对置面积增大,两磁体之间的距离增大,共振点就移动至一低频区域,并且振动传递率变得较小。换言之,磁弹簧以与金属弹簧或空气弹簧相反的方式进行工作。另一方面,当磁体的大小尺寸相同时,即使改变负荷,共振点也不会变化。当负荷增大时,振动传递率降低。简言之,在共振点处的振动传递率取决于负荷的大小。
综上所述,通过利用负荷-变位量曲线的最佳曲率,即使被加载的质量改变,也可以保持共振频率恒定并且低振动传递率较小,虽然这只有在低频率区域内才是可以得到的。这些就是受包括在等式(4)、(5)和(6)中的负荷质量m和弹簧常数k所影响的阻尼。
图21是一作为比较例的曲线图,它示出了一传统的汽车座椅的动态特性,并揭示了:这种振动的传递率总地来说是较高的,并且共振点和振动传递率随负荷的变化而变化。
在等式(1)中,当两对置永磁体之间的几何尺寸在一内动力机构(位于一推斥系统内、用来移动诸永磁体的机构)的作用下、或者在一外力作用下而改变时,弹簧常数k是一随时间改变的矩形波k(t),如图22所示,在周期T=2π/ω的1/2周期处,其值为+k′或-k′。因此,等式(1)可以表述成下式: m x · · + r x · + mg - k ( t ) x = F ( t ) - - - ( 7 )
(i)当0<t<π/ω时, m x · · + r x · + mg - n - k ′ x ′ = F ( t )
(ii)当π/ω≤t<2π/ω时, m x · · + r x · + mg - n - k ′ x = F ( t )
当0<t<π/ω、用x0表示平衡位置并且用y1表示偏离平衡位置的变位量时, - n - k ′ x 0 + mg = 0 , x 0 = n - k ′ mg
x=x0+y1 x · = y 1 · x · · = y · · 1
Figure A9719032700196
= n - k ′ x 0 - n - k ′ x 0 2 y 1 m x · · r x · n - k ′ x + mg = m y · · 1 + r y · 1 - n - k ′ x 0 + y 1 + mg = m y · · 1 + r y · 1 - n - k ′ x 0 + n - k ′ x 0 2 y 1 + n - k ′ x 0 = m y · · 1 + r y · 1 + n - k ′ x 0 2 y 1
当(n-k′)/x0 2=k1′时, m y · · 1 + r y · 1 + k 1 ′ y 1 = F ( t )
当共振励振F(t)=Feiωt且y1=xeiωt时,
        -mω2xeiωt+riωxeiωt+k1′xeiωt=Feiωt
                (mω2x+riωx+k1′x=Feiωt
                   x(k1′-mω2+riω)=F
Figure A9719032700201
= F ( k 1 ′ - m ω 2 - riω ) ( k 1 ′ - m ω 2 + riω ) ( k 1 ′ - m ω 2 - riω ) = F ( k 1 ′ - mω 2 ) 2 + ( rω ) 2 [ k 1 ′ - mω 2 ( k 1 ′ - mω 2 ) 2 + ( rω ) 2 - ir ω ( k 1 ′ - mω 2 ) 2 + ( rω 2 ) 2 = F ( k 1 ′ - mω 2 ) 2 + ( rω ) 2 ( cos φ - i sin φ ) = F ( k 1 ′ - mω 2 ) 2 + ( rω ) 2 e - iφ y = x e iωt = F ( k 1 ′ - mω 2 ) 2 + ( rω ) 2 e i ( ωt - φ ) = F k 1 ′ 2 [ 1 - ω 2 ω 0 ] 2 + ( 2 ρ ω ω 0 ) 2 e i ( ωt - φ ) 这里,φ表示相角。 ρ = r / 2 m k 1 ′
                因此,共振频率由下式给出: ω 0 = m n - k ′
                同样,当π/ω≤2π/ω时, y 2 = F k 2 ′ 2 [ 1 - ω 2 ω 0 ] 2 + ( 2 ρ ω ω 0 ) 2 e i ( ωt - φ ) k 2 ′ = n + k ′ x 1 2 ρ = r 2 m n + k ′ x 1 2
              因此,当y1>y2时,它就发散(diverge)。
总之,可以用一具有负阻尼特性的弹簧-质量系统来代替自激振动系统,并在振动过程中将能量从其内引导至外侧。但是,由于空气阻力或者各种阻力作用
            在质量点上,因此实际的振动会损失能量。
但是,如果将振动能量作为一外力输入具有负阻尼特性的磁弹簧内,在y1<y1的情况中,它将如以上所述的那样出现发散。
如果它连续发散,振幅将逐渐增大,从而会损坏所述系统。相反,通过在上述特性等式中增加一随变位量而增大的阻尼项,可以产生一正阻尼以作用在所述系统中。在这种情况中,当正阻尼与负阻尼相平衡时,在所述系统中就发生稳态振动。换言之,与弹簧常数k(t)的情况一样,阻尼系数是可变的,因此,等式(1)可以被改写成: m x · · + r ( x ) x · + mg - k ( t ) x = F ( t ) - - - ( 8 )
具有本发明的磁弹簧的振动系统包括一能量转换系统,所述能量转换系统包括连续振荡或发散振动。将一正阻尼项加入上述特性等式中,就得到了以下等式: m x · + ( r 2 x 2 - r ) x · + mg - k ( t ) x = F ( t ) - - - - ( 9 )
在这个特性等式中,当r2≠0时,左侧的三项就随x变得更大,弹簧项就作为一正阻尼项。因此,在由永磁体所具有的内励磁特性中,较小的变位量就会引起负阻尼,而变位量的增大会形成正阻尼,并且所述振动在振幅处变得稳定,在该处,正阻尼和负阻尼相平衡。
在一振动系统中,若质量、阻尼系数和弹簧常数中至少其中一个的大小随时间而变化,所引起的振动称为一种系数励振振动(coefficient exciting vibration)。等式(7)、(8)和(9)中的每一个均表示该系数励振振动,其中每一激振源本身振动,并通过将系统内的非振动能量转换成激振能量而产生振动。
由于所供给的能量通常是从动能转换而来的,所以当动能达到一上限时,供给能量就受到限制,并且当该能量变得与待消耗的能量相等时,对振幅起到一限制作用。由永磁体产生势能与系统内的动能无关,并且可以放大该势能和待消耗的能量之差。如果永磁体的每单位质量的最大能量乘积增大,则可以将前述差值放大很多。因此,通过在一个周期内使由负阻尼产生的供给能量大于阻尼所消耗的能量,可以增大振动能量。
如上所述,可以自由地控制等式(1)中的阻尼系数r和弹簧常数(系数)k。例如,从图1的示意图可见,当把永磁体4放置于其下端时,通过使永磁体2和4的对置面积为最大,就可以衰减振幅。这一特征适用于磁力制动器、动力阻尼器或类似装置。另一方面,当将永磁体4从其下端朝其上端的方向移动时使对置面积为最大,可以增大所述推斥力。该特征适用于一振荡器、放大器或其它类似物。
而且,从上述特征方程的解中可以看到,即使固有频率随负荷的变化而发生变化,通过移动励振频率,本发明的系数励振振动可以降低振动的振幅。换言之,通过使励振频率可变,并使共振频率能人工地或自动地跟随励振频率,可以降低共振频率。通过将该特征应用于一汽车座椅的隔振装置,可以增强隔振特性,并能提高其个体性能(individual performance)。例如,可以将共振点降低至一低于4Hz的频率。而且,通过利用负阻尼可以改善低频区域内的振动,而通过使永磁体非线性特性专门化,可以吸收重量上的差异。
利用几个尿烷和纤维彼此相混合的缓冲垫和一采用本发明磁弹簧结构的床式共振装置,进行了几个振动实验。图23示出了诸实验的结果。
正如可以从图23中看到的那样,采用诸缓冲垫和本发明磁弹簧结构隔振装置是极其有效的,因为它可以将共振频率降低至3Hz,它比仅采用诸缓冲垫的隔振装置的共振频率要小了1/2。而且,在所述隔振装置的主动控制作用下,共振点处的振动传递率可以被减小至约1/3。
图24示出了一磁悬浮装置。对其动态特性进行研究,可以得到图25所示的结果。
图24所示的磁悬浮装置包括一基座74、一藉助多根可摇摆杆76而可摇摆地安装在基座74上的座椅78、两个彼此隔开预定距离并牢固地安装在基座74上表面上的永磁体80和82,和一牢固地安装在座椅78下表面上从而使相同的磁极对置于永磁体80和82彼此对置的永磁体84。每一永磁体的尺寸均为75×75×25mm。
图25是当将不同的负荷53kg、75kg和80kg施加于该磁悬浮装置时所得到的一曲线图。如图所示,不仅可以将因所述负荷的变化所引起的振动传递率的差异限制得较小,而且还可以使共振点基本保持恒定。
此外,利用汽车座椅、悬挂式座椅A、悬挂式座椅B和本发明的磁悬浮装置,对座椅的舒适感进行了调查。图26中示出了调查结果。施加于磁悬浮装置的负荷是53kg,所使用的永磁体为75×75×25mm。在该图中,“固定”表示所述座椅仅仅是固定在一悬架上所处的状态,放置在所述磁悬浮装置上的软垫的材料是尿烷、凝胶体或苯乙烯。
在“SAE paper 820309”中确定的、由下式给出的Ride Number R被用来评价所述座椅的舒适感。
                   R=K/(A·B·fn)
其中,变量A、B和fn可以从所述座椅的传递函数(T.F.)中得到,并分别表示下列值:
A:T.F.的最大值
B:10Hz时的T.F.值
fn:共振频率或已出现A时的频率
K:代表着完全不同的各座椅的座椅舒适感的系数(由于使用了各种座椅,将K值设定为“1”)
虽然ISO舒适感评定显示出数字越小,舒适感就越好,但是Ride Number R却是数字越大,舒适感越好。
正如从图26中可以看到的那样,在对其座椅舒适感进行了评定的各座椅中,在汽车座椅中所得到的各值是0.2-0.3(全都是尿烷座椅)和0.3-0.5(金属弹簧座椅),那些在对其进行了重量调节的悬挂式座椅中所得到的各值是0.5-0.7。另一方面,本发明的磁悬浮装置的座椅舒适感比其它的座椅要好,并且其座椅舒适感在负荷为53kg时的评定值是0.75-1.60。
图27示出了当施加于其上的负荷改变时,所述磁悬浮装置的座椅舒适感的评定值。正如从该图中可以看到的那样,对于任何负荷来说,都可以获得大于0.7的座椅舒适感评定值,该事实意味着:本发明的磁悬浮装置具有优良的座椅舒适感。
图28示出了一汽车座椅、悬挂式座椅A、悬挂式座椅B,以及本发明的磁悬浮装置的动态特性。在该图中,曲线(a)表示所述汽车座椅,曲线(b)和(c)分别表示将53kg和75kg的负荷施加于其上的所述悬挂式座椅A,曲线(d)和(e)分别表示将45kg和75kg的负荷施加于其上的所述悬挂式座椅B,曲线(f)和(g)分别表示具有不同软垫材料的本发明磁悬浮装置,曲线(h)表示受到主动控制的本发明磁悬浮装置。
正如从图28中可以看到的那样,所述磁悬浮装置的共振点位于2-3Hz之间,并且在低频和高频区内的其半主动控制不仅可以进一步降低共振点,而且还可以减小一较宽的频率区域内的振动传递率。
碰撞振动也可以用在本发明的非线性振动系统或系数励振振动系统中。
碰撞和摩擦是各机械系统中的一种典型的非线性现象,并且会引起一些突然的阻碍运动,诸如物体的变形阻力。因此,已发生所述碰撞的物体被迅速减速,从而产生一极大的加速度。所述磁弹簧还会引起与所述碰撞相同的(类似的)现象。
当具有一定动能的物体与某物碰撞时,接触面积就发生变形,从而可以将所述动能释放出来而作为塑性变形功、由接触表面所作的摩擦功、物体内部的波动、或者散至外部的声能。其余的动能转化为弹性能量,所述弹性能量又转化为动能。如上所述,由于磁弹簧的特征是非接触式的,因此,不会有较大的损失。在静态特性中,输出与输入在同一条线上,并且是非线性的,同样会产生负阻尼。
举例来说,如果所述磁悬浮装置导致没有终点阻挡的碰撞,它将被加速,并在一+α的推斥力作用下被自励,并呈现出对人体没有坏影响的振动特性,尽管这种振动因非接触是低阻尼的。如果将金属弹簧装入所述磁悬浮装置中,并且如果加速度超过阻尼,将在硬弹簧的作用下产生一完全弹性碰撞,并导致自励而防止第二次共振。损失的能量可以通过磁场内的势能转换而得以补偿。
作为一般的防振基本原理,需要考虑质量效果、振动隔离、振动衰减、振动干涉、以及传播的方向性。由于弹性支承会导致上下、左右的摇晃,所以防振基础应该做得重且大,并且支承的跨度应该较长。当利用粘滞阻尼器和摩擦阻尼器来产生阻尼时,这样的阻尼器可在下一次冲击到来之前,通过使该次冲击的能量快速地扩散而衰减振幅。
此外,为了限制摩擦阻尼,可利用一能导致终点阻挡冲击的挡块的弹性支承来进行防振和能量转换,从而补偿磁弹簧之推斥力的不足。
图29是一个具有弹性支承的挡块的模型,其中弹性支承件的弹簧常数k可吸收一预定的加速度或振幅,该常数是可变的。对弹簧常数k加以适当地调整,就可以调节共振点。
在这种结构中,当对挡块施加一个比一预定值小的加速度或振幅时,弹性支承件的弹性变形就会抑制摩擦阻尼,而反抗挡块所产生的终点阻挡冲击则可以补偿磁弹簧推斥力的不足,并能加强隔振性能。
图30示出了一滑动型原理模型的输入和输出的实验值,所述模型设置有对置面积为50×25mm2、厚度为10mm的磁体,并且其摩擦损失被尽可能地降至最低。载荷质量是3.135kg。
以同样的方式,对下述情况进行描述,即:将面积变化率为80%(对置面积:250→1250mm2)的滑动型模型改变成面积变化率为50%的旋转型模型,其中面积的变化是非线性实现的。
图31示出了一旋转型原理模型的输入和输出的实验值,所述旋转型原理模型设置有对置面积为50×25mm2、厚度为10mm的磁体,其中,面积的变化是以一磁体的重心作为旋转中心而实现的。图32示出了同一旋转型原理模型的输入功、输出功的实验值。
在利用永磁体进行的能量提取中,显然,能量是通过增大差值(视在输出/输入)而产生的。图33示出了一原理模型的输入和输出的各要点。由于它是一个非接触式系统,因此,显然可以利用加速度并产生更大的能量。
虚功的原理也适用于作用在两磁体之间的推斥力,并且藉助移动两磁体而产生的累积磁能的变化量等于藉助移动两磁体所做的功。提取磁能将是一力放大执行机构的目的。
以上描述意味着:为了将位于无限远处的诸永磁体设置在有限位置上,就变必需作功。一旦磁体被设置,就有可能释放用来设置诸磁体的功,即所蓄积的磁能,利用它作为输出,并藉助例如将所述推斥系统中的两永磁体对置面积的改变用作一触发器来放大所述作用力,就象一放大器那样。
该放大器可以给出与一输入电能放大用晶体管相同的效应,并且其特征在于:它能有效地将所蓄积的磁能转化成机械能,以便于其随后的利用。也就是说,用一较小的输入,可以产生显然更大的输出(即,功)。
功W由下式给出:
W=Wg(h)+Wm(h)=mgh+Wm(h)
因此,能量的变化量由下式给出:
ΔW=mg·Δh+ΔWm(h)
mg·Δh≥ΔW
mg·Δh-ΔW=ΔWm(h)>0
ΔWm(h)表示所蓄积的磁能的减小量。
在旋转型模型中,
ΔWm(h)ΔW
mg·Δh2ΔW
假定两磁体之间的距离较小,并且磁通密度为常数,所蓄积的磁能可以表示成:
Wm(h)=1/2BHV=B2Sh(2μ0)
其中,B:气隙的磁场
       V:气隙的体积
       h:气隙的距离,以及
       S:磁体的横截面面积
当磁体移动Δh时,所蓄积的磁能的变化量可以表示成:
ΔWm(h)=B2SΔh(2μ0)
但用F表示两磁体的推斥力时,移动所作的功可以表示成FΔh,并且
ΔWm(h)=FΔh
则,推斥力F可以表示成:
F=B2S/(2μ0)[N]
从利用电荷模型Br=1.0T的计算中,可以得到对置面积为100×100mm2,厚度为10mm。
图35示出了推斥力的变化,其中所使用的磁体其对置面积为50×25mm2,其厚度为10mm。
同样,对一金属弹簧模型进行描述。
图36示出了当设定mg=10N、K=1N/mm,并且L=200mm时,摩擦为0并且没有机械变形的理想状态时的计算值。
静态时,金属弹簧、空气弹簧和磁弹簧显示出相同的倾向。但是,磁悬浮对偶是一对比目前的机械对偶水平更低的对偶。而且,考虑到加速度的非线性和有益性,将产生包括效率在内的巨大差异。图38示出了一旋转型原理模型,而图39示出了一滑动型原理模型。
在图38所示的旋转型原理模型中,一下永磁体2是可旋转地安装在一基座90上,而一上永磁体4是上下可滑动地安装在一滑动件92上。因此,通过改变两对置永磁体2和4之间的距离或者其对置面积,所述的两永磁体就呈现出如图35所示的负荷-变位特性。
另一方面,在图39所示的滑动型原理模型中,一下永磁体3是水平可滑动地安装在一基座90上,而上永磁体4是上下可滑动地安装在一滑动件92上。因此,通过改变两对置永磁体2和4两者之间的距离或者其对置面积,所述的两永磁体就呈现出如图36所示的输入功-输出功特性。
一旦对图11所示的、作为一励振器或驱动装置的磁弹簧模型的特性进行调查研究,可以得到如图40和图41所示的结果。
更为具体地说,在图11所示的磁弹簧中,需要一由虚线表示的推力,以得到在去除了磁体载置台18、L形操纵杆22和平衡块24的状态下如图40所示的加速度。另一方面,在图11所示的、装有磁体载置台18、L形操纵杆22和平衡块24的并且平衡块24的位置是可调的磁弹簧模型中,在一由实线示出的输入作用下,可以得到上述加速度,并且在频率为,5.5Hz的最小输入作用下,可以产生一较大的加速度(0.9-1.0G)。同样,所述振幅可以被明显放大,如图41所示。
换言之,通过改变几何尺寸,诸如推斥系统中的两永磁体的对置面积或其它类似量,以利用磁弹簧的共振频率,用一较小的驱动力(输入),就可以得到较大的加速度和振幅。在图11所示的磁弹簧模型中,间隙的大小和对置面积都是可以改变的。例如,如果由平衡块24引起的两永磁体2和4的对置面积的适当改变引起间隙大小的改变,所述磁弹簧在任意共振点处都可以具有一适当的弹簧常数。
为了能给予阻尼特性,考虑由电磁感应来产生磁力。首先请参阅图42,对一金属导体内的磁场进行描述。在图42中,图(a)示出了一柱状磁体和金属导体的坐标,图(b)示出了所述柱状磁体的圆柱坐标,图(c)示出了所述金属导体内的电流密度。
如图42(a)所示,在半径为(a)并且磁化强度为M的所述柱状磁体的下表面上、所述导体内任意点(ξ0,z)处的磁场可以表示为: d H L = 1 4 π μ 0 · Mds ( ξ - x ) 2 + y 2 + z 2
其中,ds是包括点(x,y)的微小面积。
分量z可以表示为: cos θ = z ( ξ - x ) 2 + y 2 + z 2 d H z L = 1 4 π μ 0 · Mzds { ( ξ - x ) 2 + y 2 + z 2 } 3 2
当使用如图42(b)所示的圆柱坐标时,x=r·cos()·y=r·sin()ds=rddr,因此,
Figure A9719032700274
当用h来表示磁体的厚度时,上表面的磁场Hz u由下式给出:
则,导体中(ξ,0,z)处的磁场的垂直分量Hz(ξ,0,z)可以由下式给出:
Hz(ξ,0,z)=Hz L(ξ,0,z)+Hz u(ξ,0,z)
接着,对导体内部的感应电流进行描述。当将两磁体相互靠近时,向下(即Z方向)的磁通量增大,电动势(e)增大以对它进行阻碍。
Figure A9719032700281
Figure A9719032700282
其中,Φ(R,z)表示在由半径为R的导体所围成的面积内的磁通量。如果接近的速度为v,
v=-dz/dt=-Δz/At   ∴Δt=Δz/|v|
从等式(10)中,沿着圆周R的电压V由下式给出:
V=|e|=v·ΔΦ(R,z)/Δz=v·dΦ(R,z)/dz…(11)
磁通量Φ(R,z)就被确定如下。
如图42(c)所示,在圆周半径ξ以及圆周半径ξ+dξ所围成的部分内的磁通量由Hz(ξ,0,z)给出,其面积为2πξ·dξ。因此,
ΔΦ(ξ,z)=μ0Hz(ξ,0,z)·2πξ·dξ
当电阻系数为ρ、电压为V、电流为I、电路的横截面面积为S,以及电路长度d=2πR时,电流密度J由下式给出:
J(R,z)==1/s=V/(ρd)=V/(2πR·ρ)…(12)
当将等式(11)代入等式(12)中时,可以得到下式:
J(R,z)=V/(2πR·ρ)·dΦ(R,z)/dz…(13)
接下来,对磁体和导体的互作用能量进行描述。由于磁通量改变,导体内部的电路能量增大,即磁能密度um由下式给出: U m ( R , z ) = ∫ 0 J ( R , z ) φ ( R , z ) dJ = 1 2 J ( R , z ) · φ ( R , z ) - - - ( 14 )
电流密度J由下式给出: f z ( R , z ) = ∂ u m ( R , z ) / ∂ z
因此,作用在半径为R的全电流I(R)上的Fz(R)由下式给出: F z ( R ) = ∫ z 1 z 2 d u m ( R , z ) dz dz = u m ( R , z 2 ) - u m ( R , z 1 ) - - - - ( 15 )
其中,z1和z2表示自磁体下表面分别至导体上表面和导体下表面的距离。
从等式(13)、(14)和(15)中, F z ( R ) = v 4 πρ · 1 R { φ ( R , z 2 ) dφ ( R , z 2 ) d z 2 - φ ( R , z 1 ) dφ ( R , z 1 ) d z 1 }
作用在整体上的力由下式给出: F z = ∫ 0 ∞ F z ( R ) dR F z = v 4 πρ ∫ 0 ∞ 1 R { φ ( R , z 2 ) dφ ( R , z 2 ) d z 2 - φ ( R , z 1 ) dφ ( R , z 1 ) d z 1 } dR
其中,φ(R,z)表示导体内由半径R所围成的面积内部的磁通量,z1和z2分别表示在导体上,下表面处的坐标,Fz取决于导体的厚度T=z2-z1
图43示出了应用于悬挂式座椅的隔振装置的实施例,其中图(a)示出了整个的隔振装置,图(b)是图(a)所示隔振装置的侧视图,它部分地示出了一垂直方向的阻尼结构,图(c)示出了一可摇摆地安装在图(a)所示隔振装置上部上的水平隔振装置。在该图中,2、4、94和96表示诸永磁体,而98表示用作一导体的铜板。
在这种隔振装置中,垂直方向的弹簧性能是由一包括永磁体2和4并由两平行连杆100和100支承的推斥系统而获得的。其中阻尼由电磁感应引起的垂直方向和水平方向的阻尼结构是可以从对方上拆卸下来的。电磁感应所产生的阻尼力可以通过改变铜板98的厚度来改变。
图44是一曲线图,它示出了具有水平阻尼效果与没有水平阻尼效果的振动特性的比较结果。在一低频区域内的振动传递率一定程度上受到电磁感应的限制。
根据本发明的磁弹簧结构,由于推斥磁极是彼此相对着设置的,因此,可以认为诸磁体是位于一去磁的磁场内部,因此,就要担心在使用过程中出现去磁现象。作为一种防去磁的防范措施,一交替地设置了各不同磁极的虚磁漏结构可能会减小去磁磁场。
在这种结构中,在相当于磁壁的诸磁极之间形成一漏磁磁场。当将对置的磁体彼此靠近时,可以获得更大的推斥力。因此,随对置的磁体之间的距离而变化的推斥力取决于交替设置的磁体的个数。在图45中示出了这种现象。
在图45中,图(a)示出了一单磁极磁体的设置情况,图(b)示出了具有两磁极的磁体的设置情况,图(c)示出了具有三磁极的磁体的设置情况,图(d)示出了具有四磁极的磁体的设置情况,图(e)是从图(d)所示的、具有四磁极的磁体设置情况中的箭头方向所观察到的视图。虽然对置面积(75×75mm2)、体积(75×75×25mm2)和Br值(11.7KG)都是相同的,但是磁导系数是不同的,如下所示:
磁导系数
(a)0.10
(b)0.37
(c)0.54
(d)0.49
图46是一曲线图,它示出了图(a)至图(d)所示的磁体设置情况中的磁体间距和推斥力之间的相互关系。正如从该曲线图中可以看到的那样,当将对置的磁体彼此相互靠近时,由于在相当于磁壁的磁极之间会形成一如上所述的漏磁磁场,因此推斥力将随着磁极的个数而增大。
当将四磁极的振动特性和两磁极的振动特性相比较时,利用用于悬挂式座椅的隔振装置,可以得到图47所示的比较结果。正如从该曲线图中可以看到的那样,四磁极的磁体具有一由吸引力所产生的阻尼效应,并且可以降低在共振频率带处的内部机构和脊柱的振动传递率,若处于励振状态,可以使用一恒定加速度为0.3G的LOG-SWEEP正弦波,并将负荷质量设定为53kg。
按惯例,通常用于汽车座椅的、位于平衡点附近的k是在10-30N/m之间。因此,当负荷质量增大时,传统的汽车座椅都倾向于发生终点阻挡。相反,当负荷质量减小时,共振频率移动以使内部机构或脊柱发生共振,或者终点传递率阻挡。为此,将具有阻尼功能的尿烷泡沫(urethane foam)用于一垫片层中,而藉助使用金属弹簧可以获得一柔软的、富有弹性的结构。此外,利用一减震器可以提高阻尼作用。在汽车座椅中,利用这些各种各样的功能件,可以使隔振特性、阻尼特性、人体压力,以及座姿的稳定性均衡。
但是据说不仅难以将低频区2-3.5Hz处的振动传递率减小至小于1.0G/G,而且难以除去在高频区处的第二次共振和极柔软的感觉。
如图48所示,利用其性能与金属弹簧或空气弹簧相反的磁弹簧特性,可以设计出固有频率平滑变化的负荷-变位特性。而且,在一具有如图49所示特性的悬挂式机构中,由于可以将所述振动传递率保持为:在2-3.5Hz处小于1.0G/G,在3.5-50Hz处小于0.4G/G,因此,所述振动传递率是理想的,如图50所示。
从前述中可知,通过将本发明的磁弹簧设置在一悬挂式座椅中,可以得到下列诸优点:
(1)当在2-3.5Hz的低频区中,振动传递率小于2.0G/G时,不需要调整乘客体重和阻尼器刚性的功能。
(2)为了在2-3.5Hz的低频区中使振动传递率小于1.0G/G,需要调整乘客的体重的功能。
(3)藉助与能降低终点阻挡冲击的金属弹簧相组合,对于恒定加速度为0.3G的LOG-SWEEP正弦波来说,在5-50Hz的高频区可以得到优良的隔振性能。
另一方面,通过将具有阻尼特性的输入-输出相互关系用在一力放大机构中,就可以得到一只要用一较小的输入就可产生较大输出的放大器。此外,采用这种放大器的主动控制器具有以下良好特性:
(1)驱动和移动部件都是非接触式的,从而可以将功率传送至由诸隔壁所分开的地方。
(2)可以将所述驱动和移动部件置放在单独的空间内,从而可以增大布置设计的自由度。
(3)所述放大器可以具有一力放大的功能,并且驱动和移动部件几乎不会产生损失,因此噪音较低,并节省能量。
(4)即使没有驱动器作用,仍可保持所述隔振性能。换言之,可以得到一具有弹簧性能和阻尼性能的柔软结构的驱动器。
由于本发明具有上述结构,它具有以下效果。
在至少两个对置的永磁体之间的几何尺寸是由输入侧和输出侧上的外力来改变的,并转化成一在放置有诸永磁体的动力系统中的排斥力,从而使来自输出侧上的诸永磁体平衡位置的推斥力大于输入侧上的推斥力。通过这样做,根据同一构想,可以实现半主动控制和主动控制。
由于最大推斥力是产生在两永磁体的最靠近位置处或者经过该最靠近位置的位置处,因此,可以有效地利用作为势场的磁场,从而有可能获得一价廉的磁力制动器、动力阻尼器、发电机、放大器或其它类似装置。
而且,本发明的非线性振动系统或系数励振振动系统是一种藉助使用一具有正阻尼特性、零阻尼特性或负阻尼特性的磁弹簧、将能量转化为阻尼、连续或发散的振动的振动系统。因此,通过将它用在一汽车座椅的隔振装置或救护车的床中,可以降低高频区的振动传递率、吸收重量差,或者降低低频区的振动能量以减少共振点或其它类似物。

Claims (15)

1.一种具有零或负阻尼特性的磁弹簧,它包括:
至少两个永磁体,所述的两个永磁体彼此之间相互隔开,并且两者间具有可变的几何尺寸;
一动力机构,用来移动放置在其内的所述至少两个永磁体;以及
在输入和输出时,在所述动力机构或一外力的作用下,所述至少两个永磁体的几何尺寸可以被改变并转变为一推斥力,从而使来自所述至少两永磁体的平衡位置的所述推斥力在输入时比输出时变得更大。
2.如权利要求1所述的具有零、负阻尼特性的磁弹簧,其特征在于,在所述至少两个永磁体的最靠近位置或经过该最靠近位置的位置处,产生一最大推斥力。
3.如权利要求1所述的具有零、负阻尼特性的磁弹簧,其特征在于,通过改变所述至少两个永磁体之间的距离、或者其对置面积、或者磁通密度或磁场强度,可以改变所述几何尺寸。
4.一种具有正阻尼特性的磁弹簧,它包括:
至少两个永磁体,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;
一动力机构,用来移动放置在其内的所述至少两个永磁体;以及
在输入和输出时,在所述动力机构或一外力的作用下,所述至少两个永磁体的几何尺寸可以被改变,以导出一阻尼项,从而提供非线性的阻尼特性和弹簧特性。
5.如权利要求4所述的具有正阻尼特性的磁弹簧,其特征在于,在所述至少两个永磁体的最靠近位置处,产生一最大推斥力。
6.如权利要求4所述的具有正阻尼特性的磁弹簧,其特征在于,通过改变所述至少两个永磁体之间的距离、或者其对置面积、或者磁通密度或磁场强度,可以改变所述几何尺寸。
7.一种系数励振振动机构,它包括:
一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;
一动力机构,用来移动放置在其内的所述至少两个永磁体;以及
所述至少两个永磁体的几何尺寸可以由所述动力机构或一外力而改变,从而使所述磁弹簧具有零阻尼特性或负阻尼特性,并将能量转化为连续振荡或发散振动。
8.如权利要求7所述的系数励振振动机构,其特征在于,所述几何尺寸是在一外力的作用下而改变的,以改变所述动力机构内部的弹簧常数和阻尼系数。
9.如权利要求7所述的系数励振振动机构,其特征在于,所述几何尺寸是在所述动力机构或一外力作用下而改变的,以改进振动特性。
10.如权利要求7所述的系数励振振动机构,其特征在于,所述几何尺寸是在所述动力机构或一外力作用下而改变的,以使一励振或共振频率可变,从而使共振频率紧随所述励振频率,以降低共振频率或振幅的变化。
11.如权利要求7所述的系数励振振动机构,其特征在于,所述几何尺寸是在所述动力机构或一外力的作用下而改变的,从而当变位较小时提供负阻尼,当所述变位增大时,提供正阻尼,从而当所述负阻尼和正阻尼平衡时,使振动稳定。
12.一种非线性振动机构,它包括:
一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;
一动力机构,用来移动放置在其内的所述至少两个永磁体;以及
所述至少两个永磁体的几何尺寸可以由所述动力机构或一外力而改变,从而使所述磁弹簧所具有的正阻尼特性比所述动力机构内的弹簧特性更大。
13.如权利要求12所述的非线性振动机构,其特征在于,所述几何尺寸是在所述动力机构或一外力的作用下而改变的,以改善振动特性。
14.如权利要求12所述的非线性振动机构,其特征在于,几何尺寸是在所述动力机构或一外力作用下而改变的,以使一励振或共振频率可变,从而使共振频率紧随所述励振频率,以降低共振频率或振幅的变化。
15.一种非线性振动机构,它包括:
一至少具有两个永磁体的磁弹簧,所述两永磁体彼此相互隔开,并且两者间具有可变的几何尺寸;
一动力机构,用来移动放置在其内的所述至少两个永磁体;以及
所述至少两个永磁体的几何尺寸是在所述动力机构或一外力作用下而改变的,以使一共振频率可变,从而使所述共振频率紧随所述励振频率,以增大所述共振频率或振幅的变化,从而用一较小的输入,就可以产生一较大的加速度或振幅。
CN97190327A 1996-04-08 1997-04-08 具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构 Expired - Fee Related CN1077966C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP85125/1996 1996-04-08
JP85125/96 1996-04-08
JP8512596 1996-04-08

Publications (2)

Publication Number Publication Date
CN1188530A true CN1188530A (zh) 1998-07-22
CN1077966C CN1077966C (zh) 2002-01-16

Family

ID=13849930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97190327A Expired - Fee Related CN1077966C (zh) 1996-04-08 1997-04-08 具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构

Country Status (8)

Country Link
US (1) US6035980A (zh)
EP (1) EP0833074B1 (zh)
KR (1) KR100266432B1 (zh)
CN (1) CN1077966C (zh)
AU (1) AU2179297A (zh)
DE (1) DE69729615T2 (zh)
TW (1) TW333591B (zh)
WO (1) WO1997038242A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590947A (zh) * 2018-11-15 2019-04-09 彩虹(合肥)光伏有限公司 一种振动器间隙调整用工具
CN112474607A (zh) * 2020-11-05 2021-03-12 厦门理工学院 一种激光清洗机的防震机构
CN114889506A (zh) * 2022-05-20 2022-08-12 安徽工程大学 一种特种车辆上专用的永磁减震椅及其减震效果验证方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725272B2 (ja) * 1996-12-27 2005-12-07 株式会社デルタツーリング 振動発生機構
KR100281474B1 (ko) * 1997-05-16 2001-02-01 후지타 히토시 자기스프링을구비한에너지출력기구
NL1007127C2 (nl) * 1997-09-26 1999-03-29 Univ Delft Tech Draagsysteem.
US6166465A (en) * 1998-04-30 2000-12-26 Delta Tooling Co., Ltd. Vibration generating mechanism using repulsive forces of permanent magnets
JP3115864B2 (ja) * 1998-10-21 2000-12-11 株式会社デルタツーリング 救急車用除振架台
FR2792554B1 (fr) * 1999-04-22 2001-06-29 Vibrachoc Sa Dispositif resonant, tel que batteur ou generateur d'efforts
JP2000337434A (ja) 1999-05-25 2000-12-05 Delta Tooling Co Ltd 振動機構
JP2001349374A (ja) * 2000-06-02 2001-12-21 Delta Tooling Co Ltd 磁気バネ構造及び該磁気バネ構造を用いた除振機構
JP2002021922A (ja) * 2000-07-11 2002-01-23 Delta Tooling Co Ltd 磁気回路を利用した除振機構
JP4931305B2 (ja) * 2000-10-30 2012-05-16 株式会社デルタツーリング マグネットユニット
JP2003148598A (ja) * 2001-11-08 2003-05-21 Honda Motor Co Ltd 回転軸内の油通路構造
US20040012168A1 (en) * 2002-07-19 2004-01-22 Martinrea International Inc. Suspension system with magnetic resiliency
KR100540194B1 (ko) 2003-09-23 2006-01-10 한국전자통신연구원 차량을 이용한 알에프아이디 태그 설치 시스템 및 그 방법
GB0408366D0 (en) * 2004-04-15 2004-05-19 Kab Seating Ltd Seat suspension system
US8550221B2 (en) * 2006-07-05 2013-10-08 Aktiebolaget Skf Magnetic spring, a spring and damper assembly, and a vehicle including the spring
US10046677B2 (en) 2013-04-23 2018-08-14 Clearmotion Acquisition I Llc Seat system for a vehicle
US9339911B2 (en) * 2013-11-19 2016-05-17 Eriksson Teknik Ab Method for automatic sharpening of a blade
FI125110B (en) 2013-11-27 2015-06-15 Teknologian Tutkimuskeskus Vtt Oy hanging Organizer
DE102014200035B4 (de) 2014-01-07 2024-02-08 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Halten eines Objekts in einem Fahrzeug
CN103775550B (zh) * 2014-02-14 2015-09-23 华中科技大学 单自由度磁力隔振装置
US9643467B2 (en) * 2014-11-10 2017-05-09 Bose Corporation Variable tracking active suspension system
FR3032686B1 (fr) * 2015-02-18 2017-03-10 Messier Bugatti Dowty Atterrisseur d'aeronef comprenant une tige lineaire telescopique
WO2016197154A1 (en) 2015-06-04 2016-12-08 Milsco Manufacturing Company Modular forward and rearward seat position adjustment system, with integral vibration isolation system
WO2021078757A1 (en) * 2019-10-21 2021-04-29 Koninklijke Philips N.V. A sound isolation suspension system
CN114877884B (zh) * 2022-04-22 2022-11-25 之江实验室 一种无人机惯性导航组件隔振系统结构优化设计方法
CN114962514B (zh) * 2022-04-29 2023-05-12 北京交通大学 单球磁性液体碰撞阻尼减振器
CN116147943B (zh) * 2023-04-23 2023-07-11 成都大学 一种评价高速磁悬浮列车系统运行稳定性的方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088062A (en) * 1956-02-10 1963-04-30 Albert A Hudimac Electromechanical vibratory force suppressor and indicator
DE1805789B2 (de) * 1968-10-29 1972-01-27 Breitbach, Elmar, Dipl Ing , 3400 Gottingen Nichtlineares federsystem unter verwendung von permanent magneten
NL6817259A (zh) * 1968-12-03 1970-06-05
US3609425A (en) * 1970-04-07 1971-09-28 Francis R Sheridan Reciprocating magnet motor
US3770290A (en) * 1972-01-24 1973-11-06 F Bottalico Vehicle shock absorber
US3842753A (en) * 1973-08-03 1974-10-22 Rohr Industries Inc Suspension dampening for a surface support vehicle by magnetic means
US3952979A (en) * 1975-02-19 1976-04-27 Hughes Aircraft Company Isolator
US3941402A (en) * 1975-03-03 1976-03-02 Yankowski Anthony P Electromagnetic shock absorber
US4189699A (en) * 1977-04-08 1980-02-19 Mfe Corporation Limited-rotation motor with integral displacement transducer
GB2006958B (en) * 1977-07-14 1982-04-07 Gearing & Watson Electronics L Electro-mechanical devices
US4300067A (en) * 1980-03-17 1981-11-10 Schumann Albert A Permanent magnet motion conversion device
JPS57169212A (en) * 1981-04-13 1982-10-18 Kokka Kogyo Kk Vibration suppressing device
DE3117377A1 (de) * 1981-05-02 1982-12-30 AMD-Vertriebsgesellschaft für Antriebstechnik mbH, 5800 Hagen Verfahren und vorrichtung zum umwandeln einer antriebsbewegung
DE3136320C2 (de) * 1981-09-12 1983-10-20 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren und Vorrichtung zur Unterdrückung des Außenlast-Tragflügel-Flatterns von Flugzeugen
JPS5889077A (ja) * 1981-11-21 1983-05-27 Toshiaki Ashizawa 磁石で動く動力機
DE3274009D1 (en) * 1982-08-13 1986-12-04 Ibm High-performance vibration filter
US4498038A (en) * 1983-02-15 1985-02-05 Malueg Richard M Stabilization system for soft-mounted platform
DE3410473C2 (de) * 1983-04-11 1986-02-06 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Federungssystem für ein Kraftfahrzeug
JPH0244583Y2 (zh) * 1985-03-12 1990-11-27
JPS61215826A (ja) * 1985-03-19 1986-09-25 Sanai Kogyo Kk 防振テ−ブル水平保持装置
JPS61231871A (ja) * 1985-04-03 1986-10-16 Kazuo Takagi 磁石によるモ−タ−
US4913482A (en) * 1985-09-30 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Seat suspension system for automotive vehicle or the like
DE3601182A1 (de) * 1986-01-17 1987-07-23 Peter Pohl Gmbh Dipl Ing Ruetteltisch
US5017819A (en) * 1986-11-04 1991-05-21 North American Philips Corporation Linear magnetic spring and spring/motor combination
US4710656A (en) * 1986-12-03 1987-12-01 Studer Philip A Spring neutralized magnetic vibration isolator
JPS63149446A (ja) * 1986-12-11 1988-06-22 Bridgestone Corp 防振装置
SE8701138D0 (sv) * 1987-03-19 1987-03-19 Asea Ab Elektriskt styrt fjederelement
GB2222915A (en) * 1988-08-01 1990-03-21 James Louis Noyes Magnetic devices to assist movement of a component
US4950931A (en) * 1989-01-17 1990-08-21 Motorola, Inc. Vibrator
IL89983A (en) * 1989-04-17 1992-08-18 Ricor Ltd Cryogenic & Vacuum S Electromagnetic vibrating system
DE3935909A1 (de) * 1989-11-01 1991-05-02 Vnii Ochrany Truda I Techniki Aufhaengung des sitzes von fahrzeugen
JPH0434246A (ja) * 1990-05-29 1992-02-05 Yoshiya Kikuchi 永久磁石緩衝器
JP3182158B2 (ja) * 1991-02-25 2001-07-03 キヤノン株式会社 露光装置用のステージ支持装置
US5120030A (en) * 1991-05-28 1992-06-09 General Motors Corporation Magnet assisted liftgate strut
CH683217A5 (it) * 1991-07-03 1994-01-31 Pier Andrea Rigazzi Procedimento che utilizza l'azione di campi magnetici permanenti per muovere un sistema di corpi lungo una traiettoria muovendone un secondo di moto alternato.
US5231336A (en) * 1992-01-03 1993-07-27 Harman International Industries, Inc. Actuator for active vibration control
US5584367A (en) * 1993-04-14 1996-12-17 Berdut; Elberto Permanent magnet type automotive vehicle suspension
US5419528A (en) * 1993-05-13 1995-05-30 Mcdonnell Douglas Corporation Vibration isolation mounting system
JP3036297B2 (ja) * 1993-06-04 2000-04-24 神鋼電機株式会社 自動搬送車両
JP3473979B2 (ja) * 1994-02-02 2003-12-08 株式会社竹中工務店 床の制振装置
GB9403580D0 (en) * 1994-02-24 1994-04-13 Coombs Timotha A Bearing stiffener
GB2296068A (en) * 1994-12-16 1996-06-19 John Jeffries Magnetic vibration isolator
US5587615A (en) * 1994-12-22 1996-12-24 Bolt Beranek And Newman Inc. Electromagnetic force generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590947A (zh) * 2018-11-15 2019-04-09 彩虹(合肥)光伏有限公司 一种振动器间隙调整用工具
CN112474607A (zh) * 2020-11-05 2021-03-12 厦门理工学院 一种激光清洗机的防震机构
CN114889506A (zh) * 2022-05-20 2022-08-12 安徽工程大学 一种特种车辆上专用的永磁减震椅及其减震效果验证方法

Also Published As

Publication number Publication date
KR100266432B1 (ko) 2000-10-02
EP0833074A4 (en) 2000-06-14
TW333591B (en) 1998-06-11
KR19990022751A (ko) 1999-03-25
DE69729615D1 (de) 2004-07-29
EP0833074A1 (en) 1998-04-01
DE69729615T2 (de) 2005-06-23
AU2179297A (en) 1997-10-29
US6035980A (en) 2000-03-14
CN1077966C (zh) 2002-01-16
WO1997038242A1 (fr) 1997-10-16
EP0833074B1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
CN1077966C (zh) 具有阻尼特性的磁弹簧和具有所述磁弹簧的振动机构
CN1067749C (zh) 动态消震器
CN1139734C (zh) 振动机构
CN1077965C (zh) 具有磁性弹簧的振动机构
CN1189374C (zh) 电梯车厢的主动磁导向系统
CN1180969C (zh) 用于电梯轿厢的主动引导系统
CN1125223C (zh) 通过建筑物和物体在具有长周期虚摆上的去振支承结构进行抗震的装置及方法
CN1189232A (zh) 盘片驱动装置
CN1200789A (zh) 线性压缩机
CN1646358A (zh) 车辆转向用伸缩轴以及带万向轴节的车辆转向用伸缩轴
CN1488055A (zh) 产生力和扭矩的方法和设备
CN1671246A (zh) 扬声装置及内部安装了扬声装置的电子设备
CN101061286A (zh) 用于支承可滑动的分隔元件的装置
CN1318111A (zh) 钛合金及其制备方法
CN1214413A (zh) 振动型压缩机
CN1611001A (zh) 振动马达及其制造和使用方法
CN101077694A (zh) 磁悬浮抗震控制器及其控制方法
CN109982892A (zh) 悬架
CN1642833A (zh) 超声波悬浮装置
CN1949640A (zh) 一种音圈马达及使用磁性弹簧力达成位移控制的方法
CN212830988U (zh) 一种电磁振动给料装置
CN206468742U (zh) 一种准零刚度惯性作动器
CN1711166A (zh) 环轧模拟压力机
CN1111734A (zh) 凸轮装置
JP3747112B2 (ja) 減衰特性を有する磁気バネ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020116

Termination date: 20160408