CN1185727C - 锂锰掺杂复合氧化物正极材料的制备方法 - Google Patents

锂锰掺杂复合氧化物正极材料的制备方法 Download PDF

Info

Publication number
CN1185727C
CN1185727C CNB011315679A CN01131567A CN1185727C CN 1185727 C CN1185727 C CN 1185727C CN B011315679 A CNB011315679 A CN B011315679A CN 01131567 A CN01131567 A CN 01131567A CN 1185727 C CN1185727 C CN 1185727C
Authority
CN
China
Prior art keywords
temperature
hours
composite oxide
positive pole
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011315679A
Other languages
English (en)
Other versions
CN1421944A (zh
Inventor
黄可龙
刘素琴
潘春跃
吕正中
熊奇
陈晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CNB011315679A priority Critical patent/CN1185727C/zh
Publication of CN1421944A publication Critical patent/CN1421944A/zh
Application granted granted Critical
Publication of CN1185727C publication Critical patent/CN1185727C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及二次电池电极的活性材料,它将组合化学与流变相技术应用于锂离子电池正极材料的制备,其能耗降低,工艺时间缩短,所得材料粒度均匀;用锂锰掺杂复合氧化物正极材料生产的电池产品电化学性能和循环性能稳定,重现性好,其首次放电比容量为130mAh·g-1左右,循环50次后,其放电比容量仍保持在110mAh·g-1以上。

Description

锂锰掺杂复合氧化物正极材料的制备方法
技术领域:
本发明涉及二次电池电极的活性材料,尤其是用于锂离子电池正极材料的制备方法。
背景技术:
采用传统固相合成法,制备尖晶石型锂锰氧,其不足为:①反应温度高,通常大于800℃,产物粒度不均匀,导致正极材料的循环寿命短和比容量(小于110mAh·g-1)等电化学性能较差;②原料的配比筛选及其合成工艺不但耗时长、且能耗大,导致合成效率低下。
发明内容:
本发明的目的在于克服现有技术的不足,而提供一种在能耗低的条件下,较短的时间内制备尖晶石型锂锰掺杂复合氧化物正极材料的制备方法,用本发明制备的材料生产的二次电池,其比容量增大、循环寿命提高。
本发明为实现上述目的,采用的技术方案是:
将组合化学与流变相技术应用于锂锰掺杂复合氧化物正极材料的制备,具体步骤参见图1:
①应用组合化学筛选得到正极材料库,其通式为:
         Li1+xMn2-yMyO4
-0.1≤X≤0.1,0<Y≤0.25,M=Co,Ni,Fe,Cr
②流变相混料:
I.按照材料库设计的组成称取各种原料,将分析纯的硝酸锂,经50mol/L硝酸处理后的一定晶型的电解二氧化锰,分析纯掺杂盐按原子比Li/Mn/M=1~1.10∶1.80~2.00∶0~0.20称量配比后机械混合;
II.加入溶剂于上述混合材料中,搅拌浸渍,得流变态胶状物;
加入的溶剂是蒸馏水或酒精溶液或丙酮溶液;
③煅烧:将呈流变相的胶状物于120~160℃烘干;然后将温度升至260~310℃,将温度保持10~15小时;再将温度升至400~480℃,保温12小时;最后以150℃/min的速率升温到700~760℃,煅烧40~60小时;
④退火:速率为5℃/min退火至室温;
依序进行:
⑤研磨;⑥洗涤(浸泡、过滤);⑦干燥。
发明的优点和积极效果表现在:
1.首次将组合化学方法应用于电极材料的研究开发,其应用为快速、有效地寻找电化学性能优良的正极材料提供了一种新的思路和方法。
2.采用流变相法,合成温度降低近100℃,高温反应时间缩短50h/批;所得材料的粒度均匀,平均粒度为10μm。
3.用锂锰掺杂复合氧化物正极材料生产的电池产品电化学性能和循环性能得以改善,性能稳定,重现性好,其首次放电比容量为130mAh·g-1左右,循环50次后,其放电比容量仍保持在110mAh·g-1以上。
下面结合附图作进一步的说明:
附图说明:
图1为锂锰氧及其掺杂正极材料的制备工艺流程图。
本发明所提供的新的材料制备方法主要是应用组合化学方法和流变相技术,通过组合化学方法确定正极材料的组成及掺杂量,即以尖晶石型锂锰氧为先导化合物在其中掺入不同量的过渡金属元素M,形成一级材料库,平行合成库中所在材料,通过微电极循环伏安法测试其电化学性能,筛选出性能优良的掺杂尖晶石型正极材料,然后,以该组成的正极材料为先导化合物,掺入不同量的其他(不同于M)过渡金属元素,形成二级正极材料库,平行合成库中所有材料,筛选出电化学性能最佳的材料组成及掺杂量,得到目标正极材料。
采用流变相法,合成由组合化学法筛选得到的目标正极材料,即:按照目标正极材料的组成摩尔比称取各种原料。所用材料为:经过研磨过筛的电解二氧化锰,分析纯硝酸锂,分析纯杂质盐。
流变相技术是在固体物料中加入一定量的溶剂,命名其呈流变相,从而使物料混合及其反应过程得以改善。这既不同于传统固相合成,又不同于溶胶凝胶法。
具体实施方式:
将分析纯的硝酸锂,经50mol/L硝酸处理后的电解二氧化锰,分析纯杂质盐按原子比Li/Mn/M=0.5∶0.90∶0.10称量配比后,加入一定量的酒精溶液,混合研磨成浆糊状,于120℃烘干;然后将温度升至300℃,将温度保持10小时;再将温度升至450℃,保温12小时;最后以150℃/min的速率升温到720℃,煅烧45小时;得到的产物经研磨、浸泡、过滤洗涤、烘干后,再研磨,最终得到黑色粉末正极材料。所得正极材料物理性能:密度3.96g·cm-3,平均粒径9μm,比表面积3.5m2,晶型为尖晶石型。
将上述正极材料制电池,正极由80~85%的正极粉末与10~15%的乙炔黑,5~10%的聚四氟乙烯乳液混合后,在120℃左右真空烘干箱中干燥12小时,15MPa压力在镍网上制得正极片,厚度小于0.5mm,将其与石墨棒连接作为电池正极;负极是锂片,同样也是被压镍网上,与铜丝连接;电解液为:1MLiPF6/EC+DMC(1∶1)。电池的循环寿命、放电比容量都有较大程度提高,其首次放电比容量为130mAh·g-1左右,循环50次后,其放电比容量仍保持在110mAh·g-1以上(负极采用金属锂片)。

Claims (2)

1.锂锰掺杂复合氧化物正极材料的制备方法,其特征在于:
该锂锰掺杂复合氧化物正极材料的通式为:
                  Li1+xMn2-yMyO4
-0.1≤X≤0.1,0<Y≤0.25,M=Co,Ni,Fe,Cr
①流变相混料:
I.按照材料库设计的组成称取各种原料,将分析纯的硝酸锂,经50mol/L硝酸处理后的一定晶型的电解二氧化锰,分析纯掺杂盐按原子比Li/Mn/M=1~1.10∶1.80~2.00∶0~0.20称量配比后机械混合;
II.加入溶剂于上述混合材料中,搅拌浸渍,得流变态胶状物;
加入的溶剂是蒸馏水或酒精溶液或丙酮溶液;
②煅烧:将呈流变相的胶状物于120~160℃烘干;然后将温度升至260~310℃,保持10~15小时;再将温度升至400~480℃,将温度保温12小时;最后以150℃/min的速率升温到700~760℃,煅烧40~60小时;
③退火:速率为5℃/min退火至室温。
2.根据权利要求1所述的锂锰掺杂复合氧化物正极材料的制备方法,其特征在于:将分析纯的硝酸锂,经50mol/L硝酸处理后的一定晶型的电解二氧化锰,分析纯杂质盐按原子比Li/Mn/M=0.5∶0.90∶0.10称量配比后,加入一定量的酒精溶液,混合研磨成浆糊状,于120℃烘干;然后将温度升至300℃,将温度保持10小时;再将温度升至450℃,保温12小时;最后以150℃/min的速率升温到720℃,煅烧45小时;得到的产物经研磨、浸泡、过滤洗涤、烘干后,再研磨,最终得到黑色粉末正极材料;所得正极材料物理性能:密度3.96g·cm-3,平均粒径9μm,比表面积3.5m2,晶型为尖晶石型。
CNB011315679A 2001-11-26 2001-11-26 锂锰掺杂复合氧化物正极材料的制备方法 Expired - Fee Related CN1185727C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011315679A CN1185727C (zh) 2001-11-26 2001-11-26 锂锰掺杂复合氧化物正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011315679A CN1185727C (zh) 2001-11-26 2001-11-26 锂锰掺杂复合氧化物正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN1421944A CN1421944A (zh) 2003-06-04
CN1185727C true CN1185727C (zh) 2005-01-19

Family

ID=4670692

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011315679A Expired - Fee Related CN1185727C (zh) 2001-11-26 2001-11-26 锂锰掺杂复合氧化物正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN1185727C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315206C (zh) * 2004-06-15 2007-05-09 中国科学技术大学 锂离子二次电池正极材料的液相合成方法
CN101746829B (zh) * 2008-12-15 2013-08-07 山东神工海特电子科技有限公司 可充锂锰电池用复合MnO2正极材料制备方法
CN110921720B (zh) * 2019-12-03 2022-02-15 江南大学 一种高电压锂离子电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN1421944A (zh) 2003-06-04

Similar Documents

Publication Publication Date Title
CN108847477B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
CN108767239A (zh) 一种高镍低钴三元正极材料及其制备方法
CN112820861A (zh) 一种正极材料及其制备方法和锂离子电池
CN112018335A (zh) 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车
CN109167050A (zh) 低成本高容量551530型三元正极材料的生产方法
KR102665768B1 (ko) 리튬 이온 배터리의 양극 재료와 그 제조 방법
CN112054184B (zh) 一种高功率型多元材料和制备方法
CN114671468B (zh) 聚阴离子和普鲁士蓝复合正极材料的制备方法及其应用
CN113788500A (zh) 一种富锂锰基正极材料表面改性方法及富锂锰基正极材料
CN1183615C (zh) 一种合成锂离子蓄电池中正极材料LiCo1-xMxO2的方法
CN110165206B (zh) 一种球状钠离子电池正极材料及其制备方法
CN116598462B (zh) 一种钠离子电池层状正极材料及其制备方法
CN113013389A (zh) 一种包覆锰氧化合物的三元正极材料及其制备方法
CN1185727C (zh) 锂锰掺杂复合氧化物正极材料的制备方法
CN1562771A (zh) 球形锰酸锂及制备方法
CN117125743A (zh) 一种钠离子电池正极前驱体材料及其制备方法与应用
CN116864651A (zh) 一种o3型镍铁锰基低镍单晶正极材料及其制备方法与应用
CN114256460B (zh) “盐包水”微反应器原理大规模制备高结晶普鲁士蓝类似物用于钠离子电池
CN1274038C (zh) 锂离子电池正极材料的低温半固相制备方法
CN1234177C (zh) 一种改善锂离子电池正极材料LiMn2O4的高温性能的方法
CN1286194C (zh) 一种具有均匀尖晶石结构的锰酸锂的制造方法
CN112047397A (zh) 一种高功率型三元材料前驱体和制备方法
CN114455638B (zh) 一种高锂离子扩散率的固态电解质材料及其制备方法
CN111342038B (zh) 一种高电压钴酸锂复合正极材料及其制备方法与锂电池应用
CN111430702B (zh) 掺杂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee