CN116813326A - 一种基于Isobam凝胶体系制备透明陶瓷的方法 - Google Patents

一种基于Isobam凝胶体系制备透明陶瓷的方法 Download PDF

Info

Publication number
CN116813326A
CN116813326A CN202310630827.XA CN202310630827A CN116813326A CN 116813326 A CN116813326 A CN 116813326A CN 202310630827 A CN202310630827 A CN 202310630827A CN 116813326 A CN116813326 A CN 116813326A
Authority
CN
China
Prior art keywords
ceramic
isobam
gel
heating
gel system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310630827.XA
Other languages
English (en)
Inventor
张乐
陈冠男
祝吕
刘明源
魏聪
邵岑
康健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202310630827.XA priority Critical patent/CN116813326A/zh
Publication of CN116813326A publication Critical patent/CN116813326A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种基于Isobam凝胶体系制备透明陶瓷的方法,在透明陶瓷制备过程中,采用硅烷偶联剂促进透明陶瓷材料在Isobam凝胶体系中的凝胶化及凝胶均匀性,所述透明陶瓷材料具有六方、立方或等轴晶体结构,制备得到的透明陶瓷均匀致密、无缺陷,透过率高达理论透过率的95.7‑97.9%,强度提升为31.8‑35.6MPa。该方法采用硅烷偶联剂促进原料粉体在Isobam凝胶体系中凝胶化,工艺简单,可操作性强,提高了凝胶效率,提高陶瓷光学性能,制备出的透明陶瓷透过率大幅度提高,素坯均匀性和强度的提升。

Description

一种基于Isobam凝胶体系制备透明陶瓷的方法
技术领域
本发明属于透明陶瓷成型和制造工艺技术领域,具体涉及一种基于Isobam凝胶体系制备透明陶瓷的方法。
背景技术
凝胶注模成型是在20世纪90年代初,由美国橡树岭国家实验室的Omatete和Ja22ey发明的,它将传统的注浆成型与高分子化学结合,是一种净尺寸陶瓷成型技术。陶瓷粉体在静电斥力或空间位阻作用下均匀分散在含有有机分子的溶剂中,形成具有流动性良好,黏度较低的陶瓷浆料,浆料填充模具后,浆料内有机分子通过交联或聚合反应形成由分子链构成的高分子三维网络结构。
与其他陶瓷成型技术相比,凝胶注模成型具有工艺简单,设备成本低及成型素坯均匀的优点。与注浆成型相比,凝胶注模成型制备素坯强度高,与塑性成型相比,有机物含量少,广泛用于大尺寸及复杂形状陶瓷的成型。
现有专利CN 107721424 A公开了一种凝胶注模成型制备YAG透明陶瓷的方法,采用Isobam作为分散剂和凝胶剂,同时采用Ziegler-Natta催化剂体系、过硫酸铵-四甲基乙二胺催化体系和2,2-偶氮[2-(2-咪唑啉-2-基)丙烷]盐酸盐催化体系,制备出透过率较高的YAG透明陶瓷。专利CN 108516818 B采用Isobam作为分散剂和凝胶剂,在预混液中加入树脂交联剂和分散剂,并增加了陶瓷浆料的固含量,提高了真空烧结制备的YAG透明陶瓷透过率。文献1(Pa2 G,Le Z B,Qy B,et al.Ceramics I2ter2atio2al,2020,46(2):2365-2372)在固含量45vol%的条件下,生坯具有约29MPa的弯曲强度,但由于有机物未排除完全,陶瓷光学透过率质量还能进一步提升。
以上方法由于凝胶体系中所固有的性质导致凝胶时间较长,浆料在凝胶过程中容易沉降,凝胶均匀性差,素坯强度不高,影响制备陶瓷的效率和在透明陶瓷领域中的实际应用。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种基于Isobam凝胶体系制备透明陶瓷的方法,采用硅烷偶联剂促进原料粉体在Isobam凝胶体系中凝胶化,工艺简单,可操作性强,提高了凝胶效率,提高陶瓷光学性能,制备出的透明陶瓷透过率大幅度提高,素坯均匀性和强度的提升。
本发明提出的一种基于Isobam凝胶体系制备透明陶瓷的方法,以硅烷偶联剂所带的基团与Isobam中的官能团反应,从而可以使硅烷偶联剂与Isobam高分子相连。当其中可水解的活性基团水解时,产生Si-OH,与粉体表面OH形成氢键,产生缩合脱水反应,形成共价键结合。由此通过硅烷偶联剂可将粉体原料与Isobam产生很好的界面结合,使得两者紧密的连接到一起,从而加快了凝胶速度。同时硅烷偶联剂改善了与Isobam的交联性,增强素坯均匀性和强度,提高产品附加值。
本发明采用的具体技术方案如下:
一种基于Isobam凝胶体系制备透明陶瓷的方法,在透明陶瓷制备过程中,采用硅烷偶联剂促进透明陶瓷材料在Isobam凝胶体系中的凝胶化及凝胶均匀性,所述透明陶瓷材料具有六方、立方或等轴晶体结构,制备得到的透明陶瓷均匀致密、无缺陷,透过率高达理论透过率的95.7-97.9%,强度提升为31.8-35.6MPa。
进一步地,具体包括以下步骤:
S1:按照透明陶瓷材料分子式的化学计量比称量原料粉体,进行除杂预处理,并在原料粉体中加入烧结助剂,获得陶瓷粉体;
S2:将硅烷偶联剂、消泡剂、凝胶剂Isobam和去离子水配置成预混液,将步骤S1所制备的陶瓷粉体加入预混液中,配置成固含量为60-75wt.%的凝胶注模浆料;
S3:将步骤S2得到的凝胶注模浆料真空除去气泡,注入模具成型,在室温条件下凝胶固化2-4h后得到湿素坯并从模具中脱出;
S4:将步骤S3脱模后的湿素坯干燥处理,得到陶瓷素坯;将干燥后的陶瓷素坯排胶;
S5:将排胶后的陶瓷素坯真空烧结并退火,抛光后得到透明陶瓷。
进一步地,步骤S1中,所述的透明陶瓷材料选自YAG、MgAl2O4、Al2O3中的一种或多种,所述原料粉体在马弗炉中进行煅烧除杂。
进一步地,步骤S1中,所述的烧结助剂为MgO、SiO2、CaO中的一种或多种,添加量为原料粉体总重量的0.4-0.6wt.%。
进一步地,步骤S2中,所述硅烷偶联剂选自氨基硅烷偶联剂、氨丙基三甲氧基硅烷偶联剂、氧丙基三甲氧基硅烷偶联剂中的一种或多种,添加量为陶瓷粉体总重量的0.6-0.9wt.%。
进一步地,步骤S2中,所述的消泡剂选自低级醇类或有机极性化合物,添加量为陶瓷粉体总重量的0.4-0.6wt.%。
进一步地,步骤S2中,所述的凝胶剂Isobam选自Isobam04、Isobam104、Isobam600中的一种或几种,添加量为陶瓷粉体总重量的15-25wt.%。
进一步地,步骤S4中,干燥处理工艺为:60-80℃的烘箱中干燥10-15h。
进一步地,步骤S4中,排胶制度工艺为:室温下以0.5-2℃2mi2的速率升温至400-500℃,保温4-8h,再以0.5-2℃2mi2升温到800-900℃,并保温4-8h。
进一步地,步骤S5中,真空烧结工艺为:首先在室温按8-10℃2mi2升温到200℃,保温20-30mi2,其次按10-20℃2mi2升温到800℃并保温20-30mi2,再次按6-10℃2mi2升温到1200℃并保温1-2h,然后按1-5℃2mi2升温到1780℃并保温8-16h,最后以5-10℃2mi2降温到室温,整个烧结过程中真空度保持在1×10-2-1×10-5Pa;
取出烧结后的陶瓷再退火,退火工艺为:从室温开始按5-7℃2mi2升温速率升温到200℃,按10-12℃2mi2升温速率升温到1200℃,1200℃按4-6℃2mi2升温速率升温到1450℃并保温6h,然后从1450℃以10-12℃2mi2降温速率降到室温。
本发明的有益效果在于:
1、为促进Isobam凝胶体系的凝胶化,将硅烷偶联剂引入凝胶体系,缩短了凝胶时间,降低到2-4h,提高了凝胶效率,经真空烧结制备出的透明陶瓷透过率大幅度提高,透过率高达理论透过率的95.7-97.9%,接近理论透过率;
2、为有效改善Isobam凝胶体系中本身存在的坯体强度不高的问题,硅烷偶联剂在缩短凝胶时间的同时,从化学反应和物理键合的层面将Isobam与原料粉体间产生界面结合,有效的提高了素坯均匀性和强度,最终脱模干燥排胶后制成的陶瓷密度大,强度好,强度可提升至31.8-35.6MPa;
3、本申请的制备方法工艺简单,设备简单,可操作性强,并解决了Isobam的凝胶、强度、透光率问题,大幅度提高了最终制备的透明陶瓷的光学质量,有利于工业化生产发展。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1真空烧结后双面抛光的陶瓷样品实物图。
图2为实施例1制备陶瓷素坯的SEM微观结构图。
图3为实施例1烧结后的陶瓷表面与断面的SEM微观结构图。
图4为实施例1测得YAG透明陶瓷样品在10642m波长处的透过率图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于Isobam凝胶体系制备透明陶瓷的方法,它包括以下步骤:
(1)按照YAG分子式的化学计量比称量原料粉体125g并进行除杂预处理,在原料粉体中添加0.625g烧结助剂MgO,获得陶瓷粉体;
(2)将0.879g的硅烷偶联剂KH570、0.628g消泡剂正丁醇、25.125g凝胶剂Isobam104和去离子水56.617mL配置成预混液,将步骤(1)陶瓷粉体加入预混液中,配置成固含量为68wt.%的凝胶注模浆料;
(3)将凝胶注模浆料真空除去气泡,注入模具成型,在室温条件下凝胶固化3h后得到湿素坯并从模具中脱出;
(4)将脱模后的湿素坯放入70℃的烘箱中干燥15h,得到陶瓷素坯,如图2所示,其强度为35.6MPa,与文献1对比可知,其强度达到传统凝胶体系素坯强度123%。将干燥后的陶瓷素坯排胶,胶制度为:室温下以1℃2mi2的速率升温至450℃,保温6h,再以0.5℃2mi2升温到850℃,并保温6h;
(5)将排胶后的陶瓷素坯置于真空气氛中烧结,于室温下首先按8℃2mi2升温到200℃,保温20mi2,其次按10℃2mi2升温到800℃,保温20mi2,再次按6℃2mi2升温到1200℃,保温1h,然后按1℃2mi2升温到烧结温度1780℃并保温8h,最后以5℃2mi2降温到室温。取出烧结后的陶瓷再退火从室温开始按5℃2mi2升温速率升温到200℃,200℃按10℃2mi2升温速率升温到1200℃,1200℃按4℃2mi2升温速率升温到1450℃并保温6h,然后从1450℃以10℃2mi2降温速率降到室温如图3所示;抛光后得到YAG透明陶瓷,其双面抛光至3mm,如图1所示;在10642m波长处透过率为80.4%,达到理论透过率84%的95.7%。具体如图4所示。
图1为真空烧结后双面抛光的陶瓷样品实物图。
图2为制备素坯的SEM微观结构图,可以看到成型素坯的结构均匀。
图3为烧结后的陶瓷表面与断面的SEM,陶瓷致密无气孔。
图4为测得YAG透明陶瓷样品在10642m波长处的透过率图。
该实施例1通过硅烷偶联剂可将原料粉体与Isobam产生很好的界面结合,使得两者紧密的连接到一起,从而加快了凝胶速度,凝胶固化仅需3h;并且本申请的方法从化学反应和物理键合的层面将Isobam与原料粉体间产生界面结合,硅烷偶联剂所带的基团与Isobam中的官能团反应,从而可以使硅烷偶联剂与Isobam高分子相连,当其中可水解的活性基团水解时,产生Si-OH,与原料粉体表面-OH形成氢键,产生缩合脱水反应,形成共价键结合,由此硅烷偶联剂改善了原料粉体与Isobam的交联性,增强素坯均匀性和强度,其强度达35.6MPa,在10642m波长处透过率为80.4%,提高产品附加值。
实施例2
一种基于Isobam凝胶体系制备透明陶瓷的方法,它包括以下步骤:
(1)按照MgAl2O4分子式的化学计量比称量原料粉体125g并进行除杂预处理,在原料粉体中添加0.5g烧结助剂SiO2,获得陶瓷粉体;
(2)将0.753g的硅烷偶联剂KH560、0.628g消泡剂正丁醇、18.825g凝胶剂Isobam04和去离子水58.617mL配置成预混液,将陶瓷粉体加入预混液中,配置成固含量为60%的凝胶注模浆料;
(3)将凝胶注模浆料真空除去气泡,注入模具成型,在室温条件下凝胶固化2h后得到湿素坯并从模具中脱出;
(4)将脱模后的湿坯放入60℃的烘箱中干燥10h,得到陶瓷素坯,其强度为32.4MPa,与文献1对比可知,其强度达到传统凝胶体系素坯强度112%。将干燥后的素坯排胶,排胶制度为:室温下以0.5℃2mi2的速率升温至400℃,保温4h,再以2℃2mi2升温到800℃,并保温4h;
(5)将排胶后的素坯置于真空气氛中烧结,于室温下首先按9℃2mi2升温到200℃,保温25mi2,其次按15℃2mi2升温到800℃,保温25mi2,再次按8℃2mi2升温到1200℃,保温1h,然后按3℃2mi2升温到烧结温度1780℃并保温12h,最后以7℃2mi2降温到室温。取出烧结后的陶瓷再退火从室温开始按6℃2mi2升温速率升温到200℃,200℃按11℃2mi2升温速率升温到1200℃,1200℃按5℃2mi2升温速率升温到1450℃并保温6h,然后从1450℃以11℃2mi2降温速率降到室温抛光后得到透明陶瓷,其双面抛光至3mm,在10642m波长处透过率为82.3%,达到理论透过率84%的97.9%。
实施例3
一种基于Isobam凝胶体系制备透明陶瓷的方法,它包括以下步骤:
(1)按照Al2O3分子式的化学计量比称量粉体125g并进行除杂预处理,在陶瓷粉体中添加0.625g烧结助剂CaO,获得陶瓷粉体;
(2)将1.130g的硅烷偶联剂KH540、0.628g消泡剂正丁醇、31.406g凝胶剂Isobam600和去离子水62.418mL配置成预混液,将陶瓷粉体加入预混液中,配置成固含量为75%的凝胶注模浆料;
(3)将凝胶注模浆料真空除去气泡,注入模具成型,在室温条件下凝胶固化4h后得到湿素坯并从模具中脱出;
(4)将脱模后的湿坯放入80℃的烘箱中干燥15h,得到陶瓷素坯,其强度为31.8MPa,与文献1对比可知,其强度达到传统凝胶体系素坯强度110%。将干燥后的素坯排胶,排胶制度为:室温下以2℃2mi2的速率升温至500℃,保温8h,再以2℃2mi2升温到900℃,并保温8h;
(5)将排胶后的素坯置于真空气氛中烧结并退火,于室温下首先按10℃2mi2升温到200℃,保温30mi2,其次按20℃2mi2升温到800℃,保温30mi2,再次按10℃2mi2升温到1200℃,保温2h,然后按5℃2mi2升温到烧结温度1780℃并保温16h,最后以10℃2mi2降温到室温。取出烧结后的陶瓷再退火从室温开始按7℃2mi2升温速率升温到200℃,200℃按12℃2mi2升温速率升温到1200℃,1200℃按6℃2mi2升温速率升温到1450℃并保温6h,然后从1450℃以12℃2mi2降温速率降到室温抛光后得到透明陶瓷,其双面抛光至3mm,在10642m波长处透过率为81.6%,达到理论透过率84%的97.1%。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,在透明陶瓷制备过程中,采用硅烷偶联剂促进透明陶瓷材料在Isobam凝胶体系中的凝胶化及凝胶均匀性,所述透明陶瓷材料具有六方、立方或等轴晶体结构,制备得到的透明陶瓷均匀致密、无缺陷,透过率高达理论透过率的95.7-97.9%,强度提升为31.8-35.6MPa。
2.根据权利要求1所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,包括以下步骤:
S1:按照透明陶瓷材料分子式的化学计量比称量原料粉体,进行除杂预处理,并在原料粉体中加入烧结助剂,获得陶瓷粉体;
S2:将硅烷偶联剂、消泡剂、凝胶剂Isobam和去离子水配置成预混液,将步骤S1制备的陶瓷粉体加入预混液中,配置成固含量为60-75wt.%的凝胶注模浆料;
S3:将步骤S2得到的凝胶注模浆料真空除去气泡,注入模具成型,在室温条件下凝胶固化2-4h后得到湿素坯并从模具中脱出;
S4:将步骤S3脱模后的湿素坯干燥处理,得到陶瓷素坯;将干燥后的陶瓷素坯排胶;
S5:将排胶后的陶瓷素坯真空烧结并退火,抛光后得到透明陶瓷。
3.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S1中,所述的透明陶瓷材料选自YAG、MgAl2O4、Al2O3中的一种或多种,所述原料粉体在马弗炉中进行煅烧除杂。
4.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S1中,所述的烧结助剂选自MgO、SiO2、CaO中的一种或多种,添加量为原料粉体总重量的0.4-0.6wt.%。
5.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法的,其特征在于,步骤S2中,所述的硅烷偶联剂选自氨基硅烷偶联剂、氨丙基三甲氧基硅烷偶联剂、氧丙基三甲氧基硅烷偶联剂中的一种或多种,添加量为陶瓷粉体总重量的0.6-0.9wt.%。
6.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S2中,所述的消泡剂采用低级醇类或有机极性化合物,添加量为陶瓷粉体总重量的0.4-0.6wt.%。
7.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S2中,所述的凝胶剂Isobam选自Isobam04、Isobam104、Isobam600中的一种或几种,添加量为陶瓷粉体总重量的15-25wt.%。
8.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S4中,干燥处理工艺为:60-80℃的烘箱中干燥10-15h。
9.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S4中,排胶制度工艺为:室温下以0.5-2℃2mi2的速率升温至400-500℃,保温4-8h,再以0.5-2℃2mi2升温到800-900℃,并保温4-8h。
10.根据权利要求2所述的一种基于Isobam凝胶体系制备透明陶瓷的方法,其特征在于,步骤S5中,真空烧结工艺为:首先在室温按8-10℃2mi2升温到200℃,保温20-30mi2,其次按10-20℃2mi2升温到800℃并保温20-30mi2,再次按6-10℃2mi2升温到1200℃并保温1-2h,然后按1-5℃2mi2升温到1780℃并保温8-16h,最后以5-10℃2mi2降温到室温,整个烧结过程中真空度保持在1×10-2-1×10-5Pa;
取出烧结后的陶瓷再退火,退火工艺为:从室温开始按5-7℃2mi2升温速率升温到200℃,接着按10-12℃2mi2升温速率升温到1200℃,再按4-6℃2mi2升温速率升温到1450℃并保温6h,然后从1450℃以10-12℃2mi2降温速率降到室温。
CN202310630827.XA 2023-05-31 2023-05-31 一种基于Isobam凝胶体系制备透明陶瓷的方法 Pending CN116813326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310630827.XA CN116813326A (zh) 2023-05-31 2023-05-31 一种基于Isobam凝胶体系制备透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310630827.XA CN116813326A (zh) 2023-05-31 2023-05-31 一种基于Isobam凝胶体系制备透明陶瓷的方法

Publications (1)

Publication Number Publication Date
CN116813326A true CN116813326A (zh) 2023-09-29

Family

ID=88128425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310630827.XA Pending CN116813326A (zh) 2023-05-31 2023-05-31 一种基于Isobam凝胶体系制备透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116813326A (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046951A (ja) * 1983-08-23 1985-03-14 Asahi Fiber Glass Co Ltd プラスチツク強化用ガラス繊維
JPS62172044A (ja) * 1986-01-24 1987-07-29 Sumitomo Chem Co Ltd 水膨潤性ゴム組成物
JPH05247124A (ja) * 1991-03-15 1993-09-24 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH06287068A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp α’―サイアロン焼結体の製造方法
JPH07126137A (ja) * 1993-11-04 1995-05-16 Taiyo Koryo Kk 透明ゲル状芳香剤組成物
JPH0840760A (ja) * 1994-07-28 1996-02-13 Mitsubishi Chem Corp 水硬化性組成物およびその成形体
JP2005022899A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基担持シリカゲル
JP2009203427A (ja) * 2008-02-29 2009-09-10 Dic Corp エポキシ樹脂組成物、半導体封止材料及び半導体装置
WO2010071584A1 (en) * 2008-12-19 2010-06-24 Sca Hygiene Products Ab Superabsorbent polymer composite comprising a superabsorbent polymer and cellulosic nanofibrils
CN104774467A (zh) * 2015-03-16 2015-07-15 芜湖荣基密封系统有限公司 一种用于制备超薄密封橡胶层的高气密性硅橡胶胶浆及其制备方法
WO2016052652A1 (ja) * 2014-09-30 2016-04-07 株式会社日本触媒 水硬性材料用収縮低減剤
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
WO2019042968A1 (en) * 2017-08-29 2019-03-07 Covestro Deutschland Ag AEROGEL COMPOSITE, PREPARATION METHOD AND APPLICATION THEREOF
CN114988880A (zh) * 2022-07-15 2022-09-02 河南淅川平煤三责精密陶瓷有限公司 一种凝胶注模成型无压烧结制备碳化硅陶瓷的制备方法
CN115010474A (zh) * 2022-07-05 2022-09-06 江苏锡沂高新材料产业技术研究院有限公司 一种采用Isobam凝胶体系注模成型制备熔融石英陶瓷的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046951A (ja) * 1983-08-23 1985-03-14 Asahi Fiber Glass Co Ltd プラスチツク強化用ガラス繊維
JPS62172044A (ja) * 1986-01-24 1987-07-29 Sumitomo Chem Co Ltd 水膨潤性ゴム組成物
JPH05247124A (ja) * 1991-03-15 1993-09-24 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH06287068A (ja) * 1993-03-31 1994-10-11 Nippon Steel Corp α’―サイアロン焼結体の製造方法
JPH07126137A (ja) * 1993-11-04 1995-05-16 Taiyo Koryo Kk 透明ゲル状芳香剤組成物
JPH0840760A (ja) * 1994-07-28 1996-02-13 Mitsubishi Chem Corp 水硬化性組成物およびその成形体
JP2005022899A (ja) * 2003-06-30 2005-01-27 Mitsubishi Chemicals Corp 有機基担持シリカゲル
JP2009203427A (ja) * 2008-02-29 2009-09-10 Dic Corp エポキシ樹脂組成物、半導体封止材料及び半導体装置
WO2010071584A1 (en) * 2008-12-19 2010-06-24 Sca Hygiene Products Ab Superabsorbent polymer composite comprising a superabsorbent polymer and cellulosic nanofibrils
WO2016052652A1 (ja) * 2014-09-30 2016-04-07 株式会社日本触媒 水硬性材料用収縮低減剤
CN104774467A (zh) * 2015-03-16 2015-07-15 芜湖荣基密封系统有限公司 一种用于制备超薄密封橡胶层的高气密性硅橡胶胶浆及其制备方法
WO2019042968A1 (en) * 2017-08-29 2019-03-07 Covestro Deutschland Ag AEROGEL COMPOSITE, PREPARATION METHOD AND APPLICATION THEREOF
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN115010474A (zh) * 2022-07-05 2022-09-06 江苏锡沂高新材料产业技术研究院有限公司 一种采用Isobam凝胶体系注模成型制备熔融石英陶瓷的方法
CN114988880A (zh) * 2022-07-15 2022-09-02 河南淅川平煤三责精密陶瓷有限公司 一种凝胶注模成型无压烧结制备碳化硅陶瓷的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAO TIAN ET AL.: "Preparation of SiC porous ceramics by a novel gelcasting method assisted with surface modification", CERAMICS INTERNATIONAL, vol. 46, 16 March 2020 (2020-03-16) *
王锋;曾宇平;: "多孔SiC陶瓷制备工艺研究进展", 现代技术陶瓷, no. 06, 15 December 2017 (2017-12-15) *
田超: "凝胶注模法制备碳化硅多孔陶瓷及其性能研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, 15 July 2021 (2021-07-15) *
郗晓倩等: "高技术陶瓷胶态成型技术及其产业应用", 材料导报, vol. 36, no. 12, 31 December 2022 (2022-12-31) *

Similar Documents

Publication Publication Date Title
CN106747541B (zh) 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法
CN112174144B (zh) 一种超高透明度大尺寸块体二氧化硅气凝胶及其制备方法和应用
CN105199106B (zh) 一种加成型液体氟硅橡胶的制备方法
CN108516818A (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN110790581A (zh) 一种高强度耐高温石英陶瓷辊的制备工艺
CN111517770A (zh) 一种高致密性熔融石英陶瓷的生产方法
CN113912410B (zh) 一种仿生多功能水泥-水凝胶复合材料的制备方法
CN104909791A (zh) 石英纤维增强石英陶瓷复合材料的致密化方法
CN109369194A (zh) 一种低介电、高强度多孔氮化硅陶瓷及其制备方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN116813326A (zh) 一种基于Isobam凝胶体系制备透明陶瓷的方法
CN112898038A (zh) 一种氮化硅基纤维独石陶瓷透波材料制备方法
CN115466518B (zh) 一种有机无机原位杂化气凝胶隔热材料及其制备方法
US6508082B2 (en) Method for fabricating high-purity silica glass using sol-gel processing
CN113045310B (zh) 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法
CN106117923A (zh) 一种具有自清洁功能的聚四氟乙烯材料及其制备方法
CN113087501A (zh) 一种高强度石英陶瓷辊及其制备工艺
CN112573928B (zh) 一种含硼聚合物先驱体陶瓷的制备方法
KR102348935B1 (ko) 비정질 SiC 블록 제조방법
JP2002037682A (ja) 多孔質炭化珪素焼結体の製造方法
CN111924850A (zh) 一种聚合物交联改性的球形氧化硅气凝胶材料的制备方法
KR20150123470A (ko) 세라믹 코어 및 이의 제조방법
KR100337703B1 (ko) 졸-겔 공정용 실리카 글래스 조성물
CN110922175A (zh) 一种高性能多晶硅铸锭用熔融石英坩埚的制备方法
TWI716271B (zh) 陶瓷生坯及其製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination