CN116516488A - 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用 - Google Patents

一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用 Download PDF

Info

Publication number
CN116516488A
CN116516488A CN202310405281.8A CN202310405281A CN116516488A CN 116516488 A CN116516488 A CN 116516488A CN 202310405281 A CN202310405281 A CN 202310405281A CN 116516488 A CN116516488 A CN 116516488A
Authority
CN
China
Prior art keywords
cerium
crystal material
nonlinear optical
order nonlinear
optical crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310405281.8A
Other languages
English (en)
Inventor
张弛
吴天辉
吴超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202310405281.8A priority Critical patent/CN116516488A/zh
Publication of CN116516488A publication Critical patent/CN116516488A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0604Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising a non-linear region, e.g. generating harmonics of the laser frequency

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用,该晶体材料的化学式为Ce3F4(SO4)4,分子量为880.60,属于单斜晶系,其空间群为C2,晶胞参数为α=90°,β=96.67°~96.87°,γ=90°,Z=2,晶胞体积为本发明的晶体Ce3F4(SO4)4在1064nm激光照射下其粉末SHG系数为KH2PO4(KDP)的1.0倍,且在1064nm激光照射下能实现相位匹配,表明其在激光频率转换、光电调制、激光信号全息储存等领域具有广泛的应用前景。

Description

一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与 应用
技术领域
本发明属于非线性光学晶体材料技术领域,涉及一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用。
背景技术
二阶非线性光学晶体的典型特征是具有倍频效应(SHG),是一种重要的光电功能材料,在激光频率转换、光电调制、激光信号全息储存等领域具有重要的应用前景。目前已商业化的非线性光学材料有BBO(β-偏硼酸钡)、LBO(硼酸锂)、KDP(磷酸二氢钾)、KTP(磷酸钛氧钾)等。随着激光技术的发展和可调谐激光器的出现,非线性光学器件发展迅速,激光倍频、混频、参量振荡与放大;电光调制、偏转、Q开关和光折变器件等相继出现。以上的这些研究与应用,对非线性光学材料提出了更多更高的物理、化学性能的要求,而目前非线性光学材料的发展尚难以满足其要求,因此,需要不断开发新型的非线性光学晶体。
发明内容
本发明的目的就是为了提供一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用,所制得的晶体表现出强的倍频效应,其粉末SHG效应为KDP的1倍以上,且能实现相位匹配,是具有潜在应用价值的非线性光学材料。
本发明的目的可以通过以下技术方案来实现:
本发明的技术方案之一提供了一种氟代铈基硫酸盐二阶非线性光学晶体材料,其化学式为Ce3F4(SO4)4,属于单斜晶系,其空间群为C2,晶胞参数为 α=90°,β=96.67°~96.87°,γ=90°,Z=2,晶胞体积为/>
本发明的氟代硫酸盐的晶体结构如下:两个晶体学独立的Ce4+离子分别与五个氧原子、三个氟原子以及六个氧原子、两个氟原子配位形成了[Ce(1)O5F3]和[Ce(2)O6F2]两种多面体,其中相邻Ce(1)和Ce(2)原子通过F(2)原子连接,相邻的Ce(1)和Ce(1)原子通过F(1)桥接,从而形成了二维的[Ce3F4]层状平面。两种晶体学上独立的[SO4]基团覆盖在相邻的[Ce(1)O5F3]和[Ce(2)O6F2]多面体之间形成了三元环,并进一步作为层间连接剂,从而形成了最终的三维结构。
本发明的技术方案之二提供了一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,将铈源、硫源、氟源、和水混合形成初始混合原料,再在水热条件下晶化,即得到目标产物。
进一步的,所述的铈源为二氧化铈或硫酸铈。
进一步的,所述的硫源为硫酸。
进一步的,所述的氟源为氟化锶。
进一步的,所述铈源、硫源、氟源和水的添加量满足:初始混合原料中铈元素、硫元素、氟元素和水的摩尔比例为1:(0.5~40):(0.5~50):(1~100)。优选的,铈元素、硫元素、氟元素和水的摩尔比例为1:(0.5~40):(0.5~50):(1~100);更优选的,铈元素、硫元素、氟元素和水的摩尔比例为1:(1~10):(2~20):(5~30)。
进一步的,水热条件的温度为150~230℃,时间不少于24h。优选的,水热条件温度为180~230℃,晶化时间不少于48h。
进一步的,晶化完成后还进行降温处理,降温速率为0.5~15℃/h。优选的,降温速率为0.5~6℃/h。
本发明的技术方案之三提供了氟代铈基硫酸盐二阶非线性光学晶体材料的应用,该晶体材料用于可见红外激光变频输出。具体的,其可应用于激光频率转化器中,如用于可见光和红外激光光束以二倍频谐波输出。本发明的氟代铈基硫酸盐晶体材料具有较大的倍频效应,在1064nm激光辐照下其粉末倍频效应约为KDP晶体的1.0倍,可实现相位匹配。此外,该晶体材料的带隙为2.50eV,热稳定温度为260oC。因而该晶体材料在非线性光学领域具有广阔的应用前景。
进一步的,该晶体材料用于倍频发生器、光参量振荡器、光参量放大器和光电整流器中。
与现有技术相比,本发明具有以下优点:
(1)本发明的晶体材料具有较大的倍频效应,在1064nm激光辐照下约为KDP晶体倍频强度的1.0倍,能够实现相位匹配。此外,该晶体材料在紫外-可见光区和红外光区有很宽的透过范围,带隙为2.50eV,热稳定温度达到260oC,在激光频率转换、光电调制、激光信号全息储存等领域有广阔的应用前景;
(2)本发明采用反应条件温和的水热法,在150~230oC的温度下,通过水热晶化,可高产率地得到高纯度晶态样品,方法简单,条件温和,有利于实现大规模工业化生产;
(3)本发明的氟代铈基硫酸盐晶体材料可应用于激光频率转换器,可用于将可见和红外激光光束以二倍频谐波输出。
附图说明
图1是氟代铈基硫酸盐的晶体结构示意图;
图2是X射线衍射图谱对比;其中(a)是样品1#根据单晶X射线衍射数据解析出的晶体结构,模拟得到的X射线衍射图谱;(b)是样品1#研磨成粉末后用X射线衍射测试得到的图谱;
图3是样品1#的紫外-可见-近红外吸收光谱;
图4是样品1#的红外光谱(2.5~25μm)光谱;
图5是样品1#的热重量分析图谱;
图6是样品1#和KDP样品尺寸在105~150μm范围内的二次谐波信号图;
图7是样品1#在1.064μm波段下的二次谐波相位匹配图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
以下各实施例中,如无特别说明的原料或处理技术,则表明其均为本领域的常规市售原料或常规处理技术。
将铈源、硫源、氟源和水按照一定比例混合成起始原料,密封于带有聚四氟乙烯内衬的水热反应釜中,升温至晶化温度,恒温一段时间后,以一定速率将反应体系温度缓慢降至室温,过滤清洗,即可获得透明块状的氟代铈基硫酸盐晶体。
初始混合物中原料的种类及配比、晶化温度、晶化时间与样品编号的关系如表1所示。
表1样品与采用原料及合成条件的对应性
实施例2:
晶体结构解析
采用单晶X射线衍射和粉末X射线衍射方法,对样品1#~6#进行结构解析。
其中单晶X射线衍射测试在德国Bruker公司D8 VENTURE CMOS X型X射线单晶衍射仪上进行。晶体尺寸为0.12×0.07×0.06mm3;数据收集温度为293K,衍射光源为石墨单色化的Mo-Kα射线扫描方式为ω;数据采用Multi-Scan方法进行吸收校正处理。结构解析采用SHELXTL-97程序包完成;用直接法确定重原子的位置,用差值傅立叶合成法得到其余原子坐标;用基于F2的全矩阵最小二乘法精修所有原子的坐标及各向异性热参数。
粉末X射线衍射测试在德国Bruker公司Bruker D8型的X射线粉末衍射仪上进行,测试条件为固定靶单色光源Cu-Kα,波长电压电流为40kV/20A,狭缝DivSlit/RecSlit/SctSlit分别为2.00deg/0.3mm/2.00deg,扫描范围5~70°,扫描步长0.02°。Ce3F4(SO4)4,分子量为880.60,属于单斜晶系,其空间群为C2,晶胞参数为α=90°,β=96.67°~96.87°,γ=90°,Z=2,晶胞体积为/>
其中,单晶X射线衍射测试结果显示,样品1#~6#具有相同的化学结构式和晶体结构,化学式为Ce3F4(SO4)4,分子量为880.60,属于单斜晶系,其空间群为C2,晶胞参数为α=90°,β=96.67°~96.87°,γ=90°,Z=2,晶胞体积为/>
以样品1#为典型代表,其晶体结构数据为 α=90°,β=96.773°,γ=90°,Z=2,晶胞体积为/>其晶体结构如图1所示。
粉末X射线衍射测试结果显示,在样品1#~6#的粉末XRD谱图上,各样品峰值位置基本相同,峰强度略有差别。
以样品1#为典型代表,如图2所示。图2(a)中样品1#研磨成粉末后经X射线衍射测试得到的图谱与图2(b)中根据其单晶X射线衍射解析出的晶体结构,模拟得到的X射线衍射图谱,峰值位置和峰强度一致,说明所得样品有很高纯度。
实施例3:
紫外漫反射光谱测试
样品1#的漫反射吸收光谱测试在美国安捷伦公司Cary 5000型紫外-可见-近红外分光光度计上进行。结果如图3所示,由图3可以看出该化合物具有较宽的光学透过范围,光学带隙为2.50eV。
实施例4:
红外光谱测试
样品1#的红外光谱测试在美国赛默飞世尔科技有限公司Nicolet iS10型傅里叶红外光谱仪上进行。结果如图4所示,由图4可以看出该化合物具有较宽的光学透过范围。
实施例5:
热重量测试
样品1#的热重测试在德国耐驰设备制造有限公司Netzsch STA 409PC型热重分析仪上进行。结果如图5所示,由图5可以看出该化合物可以稳定到260oC,具有较好的热稳定性。
实施例6:
倍频测试实验及结果
样品1#的倍频测试实验具体如下:采用调Q的Nd:YAG固体激光器产生的波长为1064nm的激光作为基频光,照射被测试晶体粉末,利用光电倍增管探测产生的二次谐波,用示波器显示谐波强度。将晶体样品与对照样品KDP晶体分别研磨,用标准筛筛分出不同颗粒度的晶体,颗粒度范围分别为小于26、26~50、50~74、74~105、105~150、150~200、200~280μm。观察倍频信号强度随颗粒度变化的趋势,判断其是否可以实现相位匹配。同样测试条件下,比较样品与KDP样品所产生的二次谐波强度,从而得到样品倍频效应的相对大小。
测试结果表明,化合物氟代铈基硫酸盐晶体具有较大的倍频效应,在1064nm波长激光辐照下,倍频信号强度为对照样品KDP晶体的1.0倍(如图6),可实现相位匹配(如图7)。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种氟代铈基硫酸盐二阶非线性光学晶体材料,其特征在于,其化学式为Ce3F4(SO4)4,属于单斜晶系,其空间群为C2,晶胞参数为 α=90°,β=96.67°~96.87°,γ=90°,Z=2,晶胞体积为/>
2.如权利要求1所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,将铈源、硫源、氟源、和水混合形成初始混合原料,再在水热条件下晶化,即得到目标产物。
3.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,所述的铈源为二氧化铈或硫酸铈。
4.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,所述的硫源为硫酸。
5.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,所述的氟源为氟化锶。
6.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,所述铈源、硫源、氟源和水的添加量满足:初始混合原料中铈元素、硫元素、氟元素和水的摩尔比例为1:(0.5~40):(0.5~50):(1~100)。
7.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,水热条件的温度为150~230℃,时间不少于24h。
8.根据权利要求2所述的一种氟代铈基硫酸盐二阶非线性光学晶体材料的制备方法,其特征在于,晶化完成后还进行降温处理,降温速率为0.5~15℃/h。
9.如权利要求1所述的氟代铈基硫酸盐二阶非线性光学晶体材料的应用,其特征在于,该晶体材料用于可见红外激光变频输出。
10.根据权利要求9所述的氟代铈基硫酸盐二阶非线性光学晶体材料的应用,其特征在于,该晶体材料用于倍频发生器、光参量振荡器、光参量放大器和光电整流器中。
CN202310405281.8A 2023-04-17 2023-04-17 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用 Pending CN116516488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310405281.8A CN116516488A (zh) 2023-04-17 2023-04-17 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310405281.8A CN116516488A (zh) 2023-04-17 2023-04-17 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用

Publications (1)

Publication Number Publication Date
CN116516488A true CN116516488A (zh) 2023-08-01

Family

ID=87395123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310405281.8A Pending CN116516488A (zh) 2023-04-17 2023-04-17 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用

Country Status (1)

Country Link
CN (1) CN116516488A (zh)

Similar Documents

Publication Publication Date Title
CN111719182B (zh) 一水合碘酸铕红外非线性光学晶体材料及其制备与应用
CN112981537B (zh) 氟硫酸铈二阶非线性光学晶体材料及其制备方法与应用
CN113897679B (zh) 氟硫酸锆二阶非线性光学晶体材料及其制备方法与应用
CN117987918A (zh) 一种有机-无机杂化锑基氧氟化物二阶非线性光学晶体材料及其制备和应用
CN113235160B (zh) 一种氟碘酸铈二阶非线性光学晶体材料及其制备和应用
CN113417008B (zh) 一种碘酸硫酸铈二阶非线性光学晶体及其制备与应用
CN111850695B (zh) 一种氟代亚硒酸镥倍频晶体及其制备和应用
CN110952139A (zh) 一种无机化合物晶体LuI3O8(IO3)2、其制备方法及应用
CN113481599B (zh) 一种钼氟亚碲酸铷二阶非线性光学晶体材料及其制备与在激光频率转换中的应用
CN113249788B (zh) 一种氟代钼氧氟碘酸盐类非线性光学晶体材料及其制备和应用
CN111850694B (zh) 氟代镓亚硒酸盐类无机化合物晶体、其制备方法、非线性光学晶体材料和激光频率转换器
CN113122907B (zh) 一种硫酸铟铷二阶非线性光学晶体材料及其制备与应用
CN111850690B (zh) 硝酸碘酸钪无机化合物晶体、其制备方法、作为非线性光学晶体材料及在激光器中的应用
CN111778546B (zh) 一种无机化合物晶体、其制备方法及应用
CN111850691B (zh) 一种钒酸铯红外倍频晶体材料及其制备与应用
CN116516488A (zh) 一种氟代铈基硫酸盐二阶非线性光学晶体材料及其制备与应用
CN109930195B (zh) 一种亚硒酸硝酸钆倍频晶体材料及其制备和应用
CN110318094B (zh) 一种晶体、其制备方法及其应用
CN108360066B (zh) 一种红外非线性光学晶体混卤素铋酸钾及制备方法与应用
CN115058776B (zh) 一种宽带隙氟钨酸氟碘酸盐中红外非线性光学晶体材料及其制备和应用
CN115341281B (zh) 一种一水合氟化锆二阶非线性光学晶体及其制备和应用
CN115404545B (zh) 一种铪氧氟化合物二阶非线性光学晶体材料及其制备与应用
CN111056570B (zh) 一种无机化合物晶体CsVO2F(IO3)、其制备方法及应用
CN113502529B (zh) 一种碳酸氧铅二阶非线性光学晶体材料及其制备与应用
CN113215657B (zh) 一种碘酸钪二阶非线性光学晶体材料及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination