CN116396076B - 一种导电铌酸锂靶材的制备方法 - Google Patents

一种导电铌酸锂靶材的制备方法 Download PDF

Info

Publication number
CN116396076B
CN116396076B CN202310352885.0A CN202310352885A CN116396076B CN 116396076 B CN116396076 B CN 116396076B CN 202310352885 A CN202310352885 A CN 202310352885A CN 116396076 B CN116396076 B CN 116396076B
Authority
CN
China
Prior art keywords
powder
lithium niobate
temperature
crushing
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310352885.0A
Other languages
English (en)
Other versions
CN116396076A (zh
Inventor
朱伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemch Material Technology Suzhou Co ltd
Original Assignee
Gemch Material Technology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemch Material Technology Suzhou Co ltd filed Critical Gemch Material Technology Suzhou Co ltd
Priority to CN202310352885.0A priority Critical patent/CN116396076B/zh
Publication of CN116396076A publication Critical patent/CN116396076A/zh
Application granted granted Critical
Publication of CN116396076B publication Critical patent/CN116396076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种导电铌酸锂靶材的制备方法,涉及溅射靶材领域,旨在提供一种铌酸锂靶材,其技术方案要点是:S1:配置C粉、Nb2O5粉末、Li2CO3粉末;S2:将粉末称重后加入到去离子水中形成浆液,进行砂磨破碎,离心喷雾造粒;S3:进行预烧结;S4:将预烧后的还原粉末与Li2CO3粉末称重后加入到去离子水中形成浆液,进行砂磨破碎,进行离心喷雾造粒;S5:对造粒后的粉末再次进行预烧结,得到还原粉末;S6:破碎后筛分;S7:预压,进行烧结;S8:真空退火;S9:退火完成后进行机加工完成产品所需要求。本发明的一种导电铌酸锂靶材的制备方法可制备出高致密度、高纯度、细晶、近化学计量比的铌酸锂导电靶材。

Description

一种导电铌酸锂靶材的制备方法
技术领域
本发明涉及磁控溅射靶材领域,更具体地说,它涉及一种导电铌酸锂靶材的制备方法。
背景技术
铌酸锂薄膜在室温下具有高离子电导率、高电子电阻率、高的可见光透过性,且化学稳定性好,可用于全固态电致变色器件中的离子导电层(电解质层)。制备铌酸锂薄膜通常采用磁控溅射或用脉冲激光沉积技术,这就需要高性能的铌酸锂溅射靶材。铌酸锂溅射靶材分为铌酸锂单晶溅射靶材和铌酸锂陶瓷溅射靶材,前者生产周期长、成本高,后者制备工艺简单,成本较低,有利于全固态电致变色器件的成本控制。但对于铌酸锂陶瓷溅射靶材,要求其化学组分均一、晶粒细小且尺寸均匀、致密度高、纯度高。铌酸锂陶瓷溅射靶材的制备方法一般有激光辐照法、固相烧结法。
多年来,铌酸锂(LiNbO3)以单晶形式被广泛研究和应用。有关铌酸锂陶瓷的研究报道却很少。主要原因是铌酸锂陶瓷的制备工艺的每个步骤都存在相当难度。具体表现在烧结时Li的挥发、矫顽场和极化温度高等。此外,铌酸锂陶瓷的制备主要是采用传统的固相反应烧结法,烧结周期长、无法实时监控。随着近年来对无铅压电陶瓷的强烈需求,铌酸锂陶瓷优良的铁电性能受到广泛关注。
现有技术中,不论通过激光辐照法还是固相烧结法,为了制备致密度高的铌酸锂陶瓷溅射靶材,都需要加入聚乙烯醇,聚乙烯醇高温热解,部分碳元素会残留在铌酸锂陶瓷溅射靶材中,会在铌酸锂陶瓷溅射靶材中引入碳杂质,导致其纯度下降,且聚乙烯醇热解造成环境污染。因此,制备化学组分均一、晶粒细小且尺寸均匀、致密度高以及纯度高的铌酸锂陶瓷溅射靶材是本领域技术人员迫切需要解决的问题,这些问题严重制约铌酸锂陶瓷溅射靶材及铌酸锂薄膜技术领域的发展。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种导电铌酸锂靶材的制备方法,可制备出高致密度、高纯度、细晶、近化学计量比的铌酸锂导电靶材。
本发明的上述技术目的是通过以下技术方案得以实现的:一种导电铌酸锂靶材的制备方法,包括以下步骤:
S1:按照化学计量比配置C粉、Nb2O5粉末、Li2CO3粉末;
S2:将质量分数0.1%-0.4%的C粉及Nb2O5粉末称重后加入到去离子水中形成浆液,所述浆液固含量10%-40%;然后加入到砂磨机中进行砂磨破碎,砂磨结束后所得粉体细度0.3-0.5μm;对砂磨后的浆液进行离心喷雾造粒;
S3:对造粒后的粉末进行预烧结,使其原位反应得到还原粉末;
S4:将预烧后的还原粉末与计量比的Li2CO3粉末称重后加入到去离子水中形成浆液,所述浆液固含量10%-40%,然后加入到砂磨机中进行砂磨破碎,砂磨结束后所得粉体细度0.3-0.5μm;对砂磨后的浆液进行离心喷雾造粒;
S5:对造粒后的粉末再次进行预烧结,使其原位反应得到还原粉末;
S6:将最终预烧结的还原粉末经过破碎后筛分得到10-25μm的预烧粉末;
S7:将预烧粉末按照产品尺寸计算出所需重量后装入热压石墨模具中,将石墨模具置于真空热压炉的压头正下方,对模具进行预压,然后设定烧结参数进行烧结;
S8:将烧结后的毛坯靶放入真空退火炉中进行真空退火;
S9:退火完成后进行机加工完成产品所需要求。
本发明进一步设置为:在S1步骤中,C粉规格为D50=1-10μm,纯度≥99.99%,片状形貌;Nb2O5粉末规格为D50=5-15μm、纯度≥99.99%、不规则形貌;Li2CO3粉末规格为D50=10-25μm、纯度≥99.99%、不规则形貌。
本发明进一步设置为:在S2步骤中,砂磨破碎时的砂磨转速为1000-2500r/min,砂磨时间1-3h;球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球的一种或多种,装载量为筒体容积的1/3-1/2。
本发明进一步设置为:在S2步骤中,离心喷雾造粒时进风口温度200-300℃、出风口温度90-150℃、雾化盘转速8000-12000r/min、塔体负压为-30--60KPa。
本发明进一步设置为:在S2步骤中,离心喷雾造粒的造粒粘结剂为PVA、PVC、乙基纤维素其中的一种或多种,增塑剂为聚乙二醇或二酸二辛酯,消泡剂为正辛醇或硅基溶液;所述粘结剂的质量百分比为0.5%-1.5%、增塑剂的质量百分比为0.1%-0.5%、消泡剂的质量百分比0.1%-0.5%。
本发明进一步设置为:在S3步骤中,还原温度为900℃-1200℃,烧结气氛为真空或Ar气。
本发明进一步设置为:在S5步骤中,还原温度为500℃-700℃、烧结气氛为真空或Ar气。
本发明进一步设置为:在S4步骤中,所述砂磨破碎的转速为1000-2500r/min,砂磨时间1-3h,球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球的一种或多种,装载量为筒体容积的1/3-1/2。
本发明进一步设置为:在S7步骤中,装模时首先在底部及内部四周垫石墨纸,将粉末分次加入到石墨腔内,每加一层均需使粉末平整,然后再放石墨纸,且石墨模具及石墨纸均需均匀喷涂六方氮化硼脱模剂。
本发明进一步设置为:在S7步骤中,烧结过程包括:将炉体抽真空至100Pa以下,先以5-10℃/min升温至200-300℃并保温1-4h;然后以3-8℃/min升温至500-750℃,保温0.5-4h;再以3-5℃/min升温速率升至800℃-1000℃,然后按照升温速率计算升至高温的时间,以0.5-4MPa/min升压至15-40MPa,使高温和高压同时达到;保温结束后,关闭加热,压力按照1-5MPa/min的速度进行撤压至0MPa;待温度降至室温后将模具取出进行脱模操作。
综上所述,本发明具有以下有益效果:
1、采用C粉末、Nb2O5粉末及Li2CO3粉末作为铌酸锂靶材的原材料,原材料易于获得、价格相对低廉;
2、采用原位烧结反应的方法将Nb2O5粉末预还原,形成缺氧Nb的氧化物,且反应过后C生产CO2挥发,无残留;
3、将预还原的Nb2O5粉末同Li2CO3粉末再次原位烧结反应,形成LiNbO3-x缺氧靶材,由于靶材缺氧,因此在通电时有自由电子移动,因此靶材可以导电,可采用直流磁控溅射靶机进行打靶镀膜,提高生产效率,降低生产成本;
4、采用真空热压的方式对粉末进行固相烧结,并对烧成的毛坯靶进行真空退火处理,可制备出高致密度、高纯度、细晶、近化学计量比的铌酸锂导电靶材。
附图说明
图1为本发明的制备工艺流程图;
图2为装模示意图。
具体实施方式
下面结合附图和实施例,对本发明进行详细描述。
本发明提供一种高品质磁控溅射用导电铌酸锂靶材的制备方法,其工艺流程图参照图1所示,包括以下步骤:
按照化学计量比配置C粉(D50=1-10μm、纯度≥99.99%、片状形貌)、Nb2O5粉末(D50=5-15μm、纯度≥99.99%、不规则形貌)、Li2CO3粉末(D50=10-25μm、纯度≥99.99%、不规则形貌)。本发明的优势在于在C源的引入可以得到缺氧的LiNbO3-x,使得靶材本身导电,且采用真空热压的方式得到致密度高、纯度高、晶粒细小的产品。
将质量分数0.1%-0.4%的C粉及Nb2O5粉末称重后加入到去离子水中形成浆液,浆液固含量10%-40%;通过吸料管加入到砂磨机中进行砂磨破碎,砂磨转速为1000 -2500r/min、砂磨时间1-3h、球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球,装载量为筒体容积的1/3-1/2;砂磨结束后所得粉体细度0.3-0.5μm。
对砂磨后的浆液进行离心喷雾造粒,离心喷雾造粒进风口温度200-300℃,出风口温度90-150℃,雾化盘转速8000-12000r/min,塔体负压为-30~-60KPa;造粒粘结剂为PVA、PVC、乙基纤维素等,增塑剂为聚乙二醇、二酸二辛酯,消泡剂为正辛醇、硅基溶液,粘结剂含量(质量比)为0.5%-1.5%、增塑剂含量(质量比)为0.1%-0.5%、消泡剂(质量比)含量为0.1%-0.5%。
对造粒后的粉末进行预烧结,使其原位反应得到还原粉末,其中还原温度为900℃-1200℃,烧结气氛为真空(真空度<10-2Pa)或Ar气。
将预烧后的C粉+T2O5粉末与计量比的Li2CO3粉末称重后加入到去离子水中形成浆液,浆液固含量10%-40%;通过吸料管加入到砂磨机中进行砂磨破碎,砂磨转速为1000-2500r/min、砂磨时间1-3h、球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球,装载量为筒体容积的1/3-1/2;砂磨结束后所得粉体细度0.3-0.5μm。
对砂磨后的浆液进行离心喷雾造粒,离心喷雾造粒进风口温度200-300℃,出风口温度90-150℃,雾化盘转速8000-12000r/min,塔体负压为-30~-60KPa;造粒粘结剂为PVA、PVC、乙基纤维素等,增塑剂为聚乙二醇、二酸二辛酯,消泡剂为正辛醇、硅基溶液,粘结剂的质量百分数为0.5%-1.5%、增塑剂的质量百分数为0.1%-0.5%、消泡剂的质量百分数为0.1%-0.5%。
对造粒后的粉末再次进行预烧结,使其原位反应得到还原粉末,还原温度为500-700℃、烧结气氛为真空(真空度<10-2Pa)或Ar气。
将最终预烧结的粉末经过破碎后筛分得到10-25μm的粉末。
将预烧粉末按照产品尺寸计算出所需重量后装入热压石墨模具中,装模如附图2所示,装模时首先在底部及内部四周垫石墨纸,将粉末分次加入到石墨腔内,每加一层均需使粉末平整,然后再放石墨纸,且石墨模具及石墨纸均需均匀喷涂六方氮化硼脱模剂。
将石墨模具置于真空热压炉的压头正下方,并对模具进行预压0.5-2MPa,设定烧结参数;首先,将炉体抽真空至100Pa以下,先以5-10℃/min升温至200-300℃并保温1-4h;然后以3-8℃/min升温至500-750℃,保温0.5-4h;再以3℃/min-5℃/min升温速率升至800℃-1000℃然后按照升温速率计算升至高温的时间,以0.5-4MPa/min升压至15-40MPa,使高温和高压同时达到;保温结束后,关闭加热,压力按照1-5MPa/min的速度进行撤压至0MPa,待温度降至室温后将模具取出进行脱模操作。
对烧结的毛坯靶进行简单的处理,去掉表面的石墨纸,然后放入真空退火炉中进行真空退火:首先,将炉体抽真空至100Pa以下,以1-5℃/min升温至300-500℃并保温2-8h进行退火,保温结束后随炉冷却至室温后取出产品,并对毛坯进行各种机加工至所需产品要求。
实施例1
将质量分数0.2%、D50=2μm的C粉及剩余D50=10μm的Nb2O5粉末称重后加入到去离子水中形成浆液,浆液固含量20%;通过吸料管加入到砂磨机中进行砂磨破碎,砂磨转速为2000r/min、砂磨时间2h、球磨介质为0.3mm:0.5mm=1:1的氧化锆球、装载量为筒体容积的1/3;砂磨结束后所得粉体细度0.5μm。
对砂磨后的浆液进行离心喷雾造粒,离心喷雾造粒进风口温度300℃,出风口温度120℃,雾化盘转速11000r/min,塔体负压为-40KPa;所述造粒粘结剂为PVA,增塑剂为聚乙二醇,消泡剂为正辛醇,所述粘结剂含量为0.5%,增塑剂含量为0.2%,消泡剂含量为0.1%。
对造粒后的粉末进行预烧结,使其原位反应得到还原粉末,所述还原温度为1050℃、烧结气氛为真空(真空度<10-2Pa)。
将预烧后的C粉+T2O5粉末与近计量比的D50=15μm的Li2CO3粉末称重后加入到去离子水中形成浆液,浆液固含量15%;通过吸料管加入到砂磨机中进行砂磨破碎,砂磨转速为2500r/min,砂磨时间3h,球磨介质为0.3mm:0.5mm=1:2的氧化锆球,装载量为筒体容积的1/2;砂磨结束后所得粉体细度0.3μm。
对砂磨后的浆液进行离心喷雾造粒,所述离心喷雾造粒进风口温度300℃、出风口温度120℃、雾化盘转速11000r/min、塔体负压为-40KPa;所述造粒粘结剂为PVA,增塑剂为聚乙二醇,消泡剂为正辛醇;所述粘结剂质量含量为0.5%,增塑剂质量含量为0.2%,消泡剂质量含量为0.1%。
对造粒后的粉末再次进行预烧结,使其原位反应得到还原粉末,所述还原温度为650℃、烧结气氛为真空(真空度<10-2Pa)。
将最终预烧结的粉末经过破碎后筛分得到10μm的粉末。
将预烧粉末按照产品尺寸计算出所需重量后装入热压石墨模具中,装模时首先在底部及内部四周垫石墨纸,将粉末分次加入到石墨腔内,每加一层均需使粉末平整,然后再放石墨纸,且石墨模具及石墨纸均需均匀喷涂六方氮化硼脱模剂。
将石墨模具置于真空热压炉的压头正下方,并对模具进行预压0.5Mpa,设定烧结参数:首先,将炉体抽真空至100Pa以下,先以5℃/min升温至250℃并保温1h;然后以3℃/min升温至650℃,保温3h,最后以2℃/min升温至900℃,保温4h;然后按照升温速率计算升至高温的时间,以0.5MPa/min升压至40MPa,使高温和高压同时达到;保温结束后,关闭加热,压力按照1MPa/min的速度进行撤压至0MPa。待温度降至室温后将模具取出进行脱模操作。
对烧结的毛坯靶进行简单的处理,去掉表面的石墨纸,然后放入真空退火炉中进行真空退火:首先,将炉体抽真空至100Pa以下,以1℃/min升温至450℃并保温8h进行退火,保温结束后随炉冷却至室温后取出产品,并对毛坯进行各种机加工至所需产品要求。
实施例2
实施例2基本同实施例1相同,不用之处在于:粉末预烧气氛为Ar气。
对比例1
对比例1的粉末砂磨、造粒及预烧步骤同实施例1相同,不同之处在于最终预烧后的粉末再次进行砂磨造粒;对造粒粉末进行成型操作,成型方式分为两步进:第一步:采用液压机进行模压成型,成型压力为200MPa、保压时间10min;第二步:将模压成型的素坯进行包套密封,抽真空后进行冷等静压,压力为150MPa、保压时间20min。经过两步成型的素坯具有一定的强度,首先对素坯进行机加工至所需形状(按照烧结收缩率留余量)。对加工后的素坯进行无压烧结,烧结气氛为采用Ar气保护,所述烧结温度为1100℃、升温速率2℃/min、保温时间4h;烧结完成后以5℃/min的降温速率降至室温,取出毛坯后进行各种机加工。
对实施例1、实施例2以及对比例1进行性能测试获得如下表1数据:
表1性能测试结果:
致密度/% 平均晶粒尺寸/μm 电阻率/Ω.cm
实施例1 95.3 48 5.4*10-4
实施例2 94.9 52 4.7*10-4
对比例1 86.7 104 6.9*10-3
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种导电铌酸锂靶材的制备方法,其特征在于,包括以下步骤:
S1:按照化学计量比配置C粉、Nb2O5粉末、Li2CO3粉末;
S2:将质量分数0.1%-0.4%的C粉及Nb2O5粉末称重后加入到去离子水中形成浆液,所述浆液固含量10%-40%;然后加入到砂磨机中进行砂磨破碎,砂磨结束后所得粉体细度0.3-0.5μm;对砂磨后的浆液进行离心喷雾造粒;
S3:对造粒后的粉末进行预烧结,使其原位反应得到还原粉末;
S4:将预烧后的还原粉末与计量比的Li2CO3粉末称重后加入到去离子水中形成浆液,所述浆液固含量10%-40%,然后加入到砂磨机中进行砂磨破碎,砂磨结束后所得粉体细度0.3-0.5μm;对砂磨后的浆液进行离心喷雾造粒;
S5:对造粒后的粉末再次进行预烧结,使其原位反应得到最终预烧结的还原粉末;
S6:将最终预烧结的还原粉末经过破碎后筛分得到10-25μm的预烧粉末;
S7:将预烧粉末按照产品尺寸计算出所需重量后装入热压石墨模具中,将石墨模具置于真空热压炉的压头正下方,对模具进行预压,然后设定烧结参数进行烧结;
S8:将烧结后的毛坯靶放入真空退火炉中进行真空退火;
S9:退火完成后进行机加工完成产品所需要求;
其中,在S3步骤中,还原温度为900℃-1200℃,烧结气氛为真空或Ar气;
在S5步骤中,还原温度为500℃-700℃、烧结气氛为真空或Ar气;
在S7步骤中,烧结过程包括:将炉体抽真空至100Pa以下,先以5-10℃/min升温至200-300℃并保温1-4h;然后以3-8℃/min升温至500-750℃,保温0.5-4h,再以3 -5℃/min升温速率升至800℃-1000℃;然后按照升温速率计算升至高温的时间,以0.5-4MPa/min升压至15-40MPa,使高温和高压同时达到;保温结束后,关闭加热,压力按照1-5MPa/min的速度进行撤压至0MPa;待温度降至室温后将模具取出进行脱模操作。
2.根据权利要求1所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S1步骤中,C粉规格为D50=1-10μm,纯度≥99.99%,片状形貌;Nb2O5粉末规格为D50=5-15μm、纯度≥99.99%、不规则形貌;Li2CO3粉末规格为D50=10-25μm、纯度≥99.99%、不规则形貌。
3.根据权利要求1所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S2步骤中,砂磨破碎时的砂磨转速为1000-2500r/min,砂磨时间1-3h;球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球的一种或多种,装载量为筒体容积的1/3-1/2。
4.根据权利要求1所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S2步骤中,离心喷雾造粒时进风口温度200-300℃、出风口温度90-150℃、雾化盘转速8000-12000r/min、塔体负压为-30--60KPa。
5.根据权利要求1或4所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S2步骤中,离心喷雾造粒的造粒粘结剂为PVA、PVC、乙基纤维素其中的一种或多种,增塑剂为聚乙二醇或二酸二辛酯,消泡剂为正辛醇或硅基溶液。
6.根据权利要求1所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S4步骤中,所述砂磨破碎的转速为1000-2500r/min,砂磨时间1-3h,球磨介质为0.3mm、0.5mm、1mm、2mm的氧化锆球的一种或多种,装载量为筒体容积的1/3-1/2。
7.根据权利要求1所述的一种导电铌酸锂靶材的制备方法,其特征在于:在S7步骤中,装模时首先在底部及内部四周垫石墨纸,将粉末分次加入到石墨腔内,每加一层均需使粉末平整,然后再放石墨纸,且石墨模具及石墨纸均需均匀喷涂六方氮化硼脱模剂。
CN202310352885.0A 2023-04-04 2023-04-04 一种导电铌酸锂靶材的制备方法 Active CN116396076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310352885.0A CN116396076B (zh) 2023-04-04 2023-04-04 一种导电铌酸锂靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310352885.0A CN116396076B (zh) 2023-04-04 2023-04-04 一种导电铌酸锂靶材的制备方法

Publications (2)

Publication Number Publication Date
CN116396076A CN116396076A (zh) 2023-07-07
CN116396076B true CN116396076B (zh) 2024-04-26

Family

ID=87011749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310352885.0A Active CN116396076B (zh) 2023-04-04 2023-04-04 一种导电铌酸锂靶材的制备方法

Country Status (1)

Country Link
CN (1) CN116396076B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116813346A (zh) * 2023-08-17 2023-09-29 宁波江丰电子材料股份有限公司 一种氧化铌靶材的制备方法及用途

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109566A (ja) * 1993-10-08 1995-04-25 Ulvac Japan Ltd スパッタリングターゲット
JP2003073173A (ja) * 2001-08-31 2003-03-12 Sumitomo Metal Mining Co Ltd 焼結体の製造方法、得られる焼結体及びそれを用いたスパッタリングターゲット
JP2004307247A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Mining Co Ltd 導電性酸化物焼結体、その製造方法及びそれを用いて得られるスパッタリングターゲット
JP2014096350A (ja) * 2012-11-07 2014-05-22 Ngk Insulators Ltd セラミック正極−固体電解質複合体
CN104496473A (zh) * 2014-12-30 2015-04-08 山东昊轩电子陶瓷材料有限公司 高致密导电氧化铌靶材的生产方法
CN107235724A (zh) * 2016-03-29 2017-10-10 Tdk株式会社 压电陶瓷溅射靶材、无铅压电薄膜以及压电薄膜元件
CN107235723A (zh) * 2016-03-29 2017-10-10 Tdk株式会社 压电陶瓷溅射靶材、无铅压电薄膜及压电薄膜元件
JP6756886B1 (ja) * 2019-04-26 2020-09-16 Jx金属株式会社 ニオブ酸カリウムナトリウムスパッタリングターゲット
CN112608151A (zh) * 2020-06-12 2021-04-06 佛山(华南)新材料研究院 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法
CN113956039A (zh) * 2021-11-30 2022-01-21 山东山科智晶光电科技有限公司 一种大尺寸高品质钽铌酸钾陶瓷靶材的制备方法
CN115710124A (zh) * 2022-11-11 2023-02-24 北方民族大学 一种铌酸锂陶瓷溅射靶材及其制备方法、应用
CN115974552A (zh) * 2023-03-15 2023-04-18 基迈克材料科技(苏州)有限公司 一种磁控溅射用导电钽酸锂靶材的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109566A (ja) * 1993-10-08 1995-04-25 Ulvac Japan Ltd スパッタリングターゲット
JP2003073173A (ja) * 2001-08-31 2003-03-12 Sumitomo Metal Mining Co Ltd 焼結体の製造方法、得られる焼結体及びそれを用いたスパッタリングターゲット
JP2004307247A (ja) * 2003-04-04 2004-11-04 Sumitomo Metal Mining Co Ltd 導電性酸化物焼結体、その製造方法及びそれを用いて得られるスパッタリングターゲット
JP2014096350A (ja) * 2012-11-07 2014-05-22 Ngk Insulators Ltd セラミック正極−固体電解質複合体
CN104496473A (zh) * 2014-12-30 2015-04-08 山东昊轩电子陶瓷材料有限公司 高致密导电氧化铌靶材的生产方法
CN107235724A (zh) * 2016-03-29 2017-10-10 Tdk株式会社 压电陶瓷溅射靶材、无铅压电薄膜以及压电薄膜元件
CN107235723A (zh) * 2016-03-29 2017-10-10 Tdk株式会社 压电陶瓷溅射靶材、无铅压电薄膜及压电薄膜元件
JP6756886B1 (ja) * 2019-04-26 2020-09-16 Jx金属株式会社 ニオブ酸カリウムナトリウムスパッタリングターゲット
CN112608151A (zh) * 2020-06-12 2021-04-06 佛山(华南)新材料研究院 一种超薄铌酸钾钠基柔性压电薄膜材料及其制备方法
CN113956039A (zh) * 2021-11-30 2022-01-21 山东山科智晶光电科技有限公司 一种大尺寸高品质钽铌酸钾陶瓷靶材的制备方法
CN115710124A (zh) * 2022-11-11 2023-02-24 北方民族大学 一种铌酸锂陶瓷溅射靶材及其制备方法、应用
CN115974552A (zh) * 2023-03-15 2023-04-18 基迈克材料科技(苏州)有限公司 一种磁控溅射用导电钽酸锂靶材的制备方法

Also Published As

Publication number Publication date
CN116396076A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
US5433901A (en) Method of manufacturing an ITO sintered body
CN116396076B (zh) 一种导电铌酸锂靶材的制备方法
CN112723863A (zh) 一种高世代tft级细晶粒ito靶材的制造方法
CN108947520B (zh) 一种ito烧结靶材的制备方法
US20130206590A1 (en) Manufacture of High Density Indium Tin Oxide (ITO) Sputtering Target
CN108218419B (zh) 一种铟锡氧化物陶瓷靶材的制备方法
CN113735567A (zh) 一种氧化物平面靶及其制备方法
CN115353373B (zh) 一种氧化铝靶材及其制备方法与应用
CN115974552B (zh) 一种磁控溅射用导电钽酸锂靶材的制备方法
CN114620996A (zh) 一种高效太阳能电池用旋转陶瓷靶材
EP3219690A1 (en) Lithium cobalt sintered body and sputtering target produced by using the sintered body, production method of lithium cobalt oxide sintered body, and thin film formed from lithium cobalt oxide
CN113354407A (zh) 一种掺铝氧化锌靶材的变温快烧工艺
CN114031376A (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN111304479A (zh) 一种VCrNbMoW难熔高熵合金制备方法
US20120037502A1 (en) Sintered Body for ZnO-Ga2O3-Based Sputtering Target and Method of Producing the Same
CN108623287A (zh) 一种氧化铟镓锌烧结体的短流程制备方法
CN106587940B (zh) 一种高纯致密氧化镁靶材及其制备方法
CN114409380A (zh) 一种ito靶材废料的回收利用方法
CN112624741B (zh) 一种流延成型制备高纯氧化镁陶瓷承烧板生坯的方法
CN112374554A (zh) 一种高纯度高活性的氧化镍基粉体、制备方法及用途
CN113061851A (zh) 一种太阳能钼靶坯及其制备方法和用途
JPH09125236A (ja) インジウム酸化物系焼結体およびその製造方法ならびにインジウム酸化物系ターゲット
CN112624739A (zh) 一种氧化镍基陶瓷靶材、薄膜及薄膜制备工艺
JP4122547B2 (ja) Ito焼結体の再生方法および用途
CN115679282A (zh) 一种钛硅靶材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant